首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we have extended the entropy-driven model of cluster evolution developed by Bower in order to be able to predict the evolution of galaxy clusters for a range of cosmological scenarios. We have applied this model to recent measurements of the evolution of the L x− T normalization and X-ray luminosity function in order to place constraints on cosmological parameters. We find that these measurements alone do not select a particular cosmological framework. An additional constraint is required on the effective slope of the power spectrum to break the degeneracy that exists between this and the background cosmology. We therefore include a theoretical calculation of the Ω0 dependence on the power spectrum, based on the cold dark matter paradigm, which infers Ω0<0.55 (0.1<Ω0<0.7 for Ω00=1), at the 95 per cent confidence level. Alternatively, an independent measurement of the slope of the power spectrum from galaxy clustering requires Ω0<0.6 (Ω0<0.65 for Ω00=1), again to 95 per cent confidence. The rate of entropy evolution is insensitive to the values of Ω0 considered, although it is sensitive to changes in the distribution of the intracluster medium.  相似文献   

2.
Measurements of the cosmic microwave background radiation (CMBR) provide a powerful tool with which to measure the primary cosmological parameters. However, there is a large degree of parameter degeneracy in simultaneous measurements of the matter density, Ωm, and the Hubble parameter, H 0. In the present paper we use the currently available CMBR data together with measurements of the cosmological baryon-to-photon ratio, η , from big bang nucleosynthesis, and the relative mass fraction of baryons in clusters to break the parameter degeneracy in measuring Ωm and H 0. We find that present data are inconsistent with the standard Ω=1, matter-dominated model. Our analysis favours a medium-density universe with a rather low Hubble parameter. This is compatible with new measurements of Type Ia supernovae, and the joint estimate of the two parameters is     and     . We stress that the upper bound on the Hubble parameter is likely to be much more uncertain than indicated here, because of the limited number of free parameters in our analysis.  相似文献   

3.
We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local ( z ≤0.1) and distant Universe ( z ∼1) . To this end we compare the measured angular correlation function for bright (Akylas et al.) and faint (Vikhlinin & Forman) ROSAT X-ray sources respectively with those expected in three spatially flat cosmological models. Taking into account the different functional forms of the bias evolution, we find that there are two cosmological models which match the data well. In particular, low-Ω cosmological models (ΩΛ=1−Ω=0.7) that contain either (i) high σ 8mass=1.13 value with galaxy merging bias, b ( z )∝(1+ z )1.8 or (ii) low σ 8mass=0.9 with non-bias, b ( z ) ≡ 1 best reproduce the AGN clustering results, while τ CDM models with different bias behaviour are ruled out at a high significance level.  相似文献   

4.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

5.
The current methods available to estimate gravitational shear from astronomical images of galaxies introduce systematic errors which can affect the accuracy of weak lensing cosmological constraints. We study the impact of KSB shape measurement bias on the cosmological interpretation of tomographic two-point weak lensing shear statistics.
We use a set of realistic image simulations produced by the Shear Testing Programme (STEP) collaboration to derive shape measurement bias as a function of redshift. We define biased two-point weak lensing statistics and perform a likelihood analysis for two fiducial surveys. We present a derivation of the covariance matrix for tomography in real space and a fitting formula to calibrate it for non-Gaussianity.
We find the biased aperture mass dispersion is reduced by  ∼20 per cent  at redshift ∼1, and has a shallower scaling with redshift. This effect, if ignored in data analyses, biases σ8 and w 0 estimates by a few per cent. The power of tomography is significantly reduced when marginalizing over a range of realistic shape measurement biases. For a Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)-Wide-like survey,  [Ωm, σ8]  confidence regions are degraded by a factor of 2, whereas for a Kilo-Degree Survey (KIDS)-like survey the factor is 3.5. Our results are strictly valid only for KSB methods, but they demonstrate the need to marginalize over a redshift-dependent shape measurement bias in all future cosmological analyses.  相似文献   

6.
We measure the matter power spectrum from 31 Lyα spectra spanning the redshift range of 1.6–3.6. The optical depth, τ, for Lyα absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by using a simple power-law relation,  τ∝ (1 +δ)α  . The non-linear 1D power spectrum of the gas density is then inferred with a method that makes simultaneous use of the one- and two-point statistics of the flux and compared against theoretical models with a likelihood analysis. A cold dark matter model with standard cosmological parameters fits the data well. The power-spectrum amplitude is measured to be (assuming a flat Universe),  σ8= (0.92 ± 0.09) × (Ωm/0.3)−0.3  , with α varying in the range of 1.56–1.8 with redshift. Enforcing the same cosmological parameters in all four redshift bins, the likelihood analysis suggests some evolution in the temperature–density relation and the thermal smoothing length of the gas. The inferred evolution is consistent with that expected if reionization of He  ii occurred at   z ∼ 3.2  . A joint analysis with the Wilkinson Microwave Anisotropy Probe results together with a prior on the Hubble constant as suggested by the Hubble Space Telescope key project data, yields values of Ωm and σ8 that are consistent with the cosmological concordance model. We also perform a further inversion to obtain the linear 3D power spectrum of the matter density fluctuations.  相似文献   

7.
Using the ray-bundle method for calculating gravitational lens magnifications, we outline a method by which the magnification probability may be determined specifically in the weak lensing limit for cosmological models obtained from N -body simulations.
16 different models are investigated, which are variations on three broad classes of cold dark matter model: the standard model with  (Ω0, λ 0)=(1.0,0.0)  , the open model with  (Ω0, λ 0)=(0.3,0.0)  and the lambda model, which is a flat model with a cosmological constant  (Ω0, λ 0)=(0.3,0.7)  .
The effects of varying the Hubble parameter, H 0, the power spectrum shape parameter, Γ, and the cluster mass normalization, σ 8, are studied. It is shown that there is no signature of these parameters in the weak lensing magnification distributions. The magnification probability distributions are also shown to be independent of the numerical parameters such as the lens mass and simulation box size in the N -body simulations.  相似文献   

8.
We forecast the constraints on the values of  σ8, Ωm  and cluster scaling-relation parameters which we expect to obtain from the XMM Cluster Survey (XCS). We assume a flat Λ cold dark matter Universe and perform a Monte Carlo Markov Chain analysis of the evolution of the number density of galaxy clusters that takes into account a detailed simulated selection function. Comparing our current observed number of clusters shows good agreement with predictions. We determine the expected degradation of the constraints as a result of self-calibrating the luminosity–temperature relation (with scatter), including temperature measurement errors, and relying on photometric methods for the estimation of galaxy cluster redshifts. We examine the effects of systematic errors in scaling relation and measurement error assumptions. Using only  ( T , z )  self-calibration, we expect to measure Ωm to ±0.03 (and  ΩΛ  to the same accuracy assuming flatness), and σ8 to ±0.05, also constraining the normalization and slope of the luminosity–temperature relation to ±6 and ±13 per cent (at 1σ), respectively, in the process. Self-calibration fails to jointly constrain the scatter and redshift evolution of the luminosity–temperature relation significantly. Additional archival and/or follow-up data will improve on this. We do not expect measurement errors or imperfect knowledge of their distribution to degrade constraints significantly. Scaling-relation systematics can easily lead to cosmological constraints 2σ or more away from the fiducial model. Our treatment is the first exact treatment to this level of detail, and introduces a new 'smoothed ML' (Maximum Likelihood) estimate of expected constraints.  相似文献   

9.
This is the second paper of a series where we study the clustering of luminous red galaxies (LRG) in the recent spectroscopic Sloan Digital Sky Survey (SDSS) data release, DR6, which has 75 000 LRG covering over  1 Gpc3  h −3  for  0.15 < z < 0.47  . Here, we focus on modelling redshift-space distortions in  ξ(σ, π)  , the two-point correlation in separate line-of-sight and perpendicular directions, at small scales and in the line-of-sight. We show that a simple Kaiser model for the anisotropic two-point correlation function in redshift space, convolved with a distribution of random peculiar velocities with an exponential form, can describe well the correlation of LRG on all scales. We show that to describe with accuracy the so-called 'fingers-of-God' (FOG) elongations in the radial direction, it is necessary to model the scale dependence of both bias b and the pairwise rms peculiar velocity σ12 with the distance. We show how both quantities can be inferred from the  ξ(σ, π)  data. From   r ≃ 10 Mpc  h −1  to   r ≃ 1 Mpc  h −1  , both the bias and σ12 are shown to increase by a factor of 2: from   b = 2  to 4 and from  σ12= 400  to  800 km s−1  . The latter is in good agreement, within a 5 per cent accuracy in the recovered velocities, with direct velocity measurements in dark matter simulations with  Ωm= 0.25  and  σ8= 0.85  .  相似文献   

10.
We study the peculiar velocity field inferred from the Mark III spirals using a new method of analysis. We estimate optimal values of Tully–Fisher scatter and zero-point offset, and we derive the three-dimensional rms peculiar velocity ( σ v ) of the galaxies in the samples analysed. We check our statistical analysis using mock catalogues derived from numerical simulations of cold dark matter (CDM) models considering measurement uncertainties and sampling variations. Our best determination for the observations is σ v =(660±50) km s−1. We use the linear theory relation between σ v , the density parameter Ω, and the galaxy correlation function ξ ( r ) to infer the quantity     , where b is the linear bias parameter of optical galaxies and the uncertainties correspond to bootstrap resampling and an estimated cosmic variance added in quadrature. Our findings are consistent with the results of cluster abundances and redshift-space distortion of the two-point correlation function. These statistical measurements suggest a low value of the density parameter Ω∼0.4 if optical galaxies are not strongly biased tracers of mass.  相似文献   

11.
The universal baryonic mass fraction  (Ωbm)  can be sensitively constrained using X-ray observations of galaxy clusters. In this paper, we compare the baryonic mass fraction inferred from measurements of the cosmic microwave background with the gas mass fractions ( f gas) of a large sample of clusters taken from the recent literature. In systems cooler than 4 keV, f gas declines as the system temperature decreases. However, in higher temperature systems, f gas( r 500) converges to  ≈(0.12 ± 0.02)( h /0.72)−1.5  , where the uncertainty reflects the systematic variations between clusters at r 500. This is significantly lower than the maximum-likelihood value of the baryon fraction from the recently released Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr results. We investigate possible reasons for this discrepancy, including the effects of radiative cooling and non-gravitational heating, and conclude that the most likely solution is that Ωm is higher than the best-fitting WMAP value (we find  Ωm= 0.36+0.11−0.08  ), but consistent at the 2σ level. Degeneracies within the WMAP data require that σ8 must also be greater than the maximum likelihood value for consistency between the data sets.  相似文献   

12.
We perform Monte Carlo simulations of synthetic EMSS cluster samples, to quantify the systematic errors and the statistical uncertainties on the estimate of Ω0 derived from fits to the cluster number density evolution and to the X-ray temperature distribution up to z =0.83 . We identify the scatter around the relation between cluster X-ray luminosity and temperature to be a source of systematic error, of the order of ΔsystΩ0=0.09 , if not properly taken into account in the modelling. After correcting for this bias, our best Ω0 is 0.66. The uncertainties on the shape and normalization of the power spectrum of matter fluctuations imply relatively large uncertainties on this estimate of Ω0, of the order of ΔstatΩ0=0.1 at the 1 σ level. On the other hand, the statistical uncertainties due to the finite size of the high-redshift sample are twice as small. Therefore, what is needed in order to improve the accuracy of Ω0 estimates based on cluster number density evolution is a more reliable measure of the local temperature function and a better understanding of the cluster observed properties both in the local Universe and at high redshift, that is the relation between cluster mass, temperature and luminosity. This requires detailed observations of X-ray selected cluster samples, in comparison with hydrodynamic simulations including refined physics.  相似文献   

13.
We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R -band imaging of two  0.5 × 0.5 deg2  fields, affording shear estimates for over 52 000 galaxies; we combine these with photometric redshift estimates from our 17-band survey, in order to obtain a 3D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 4.7σ level given reasonable priors, and measure the rate of evolution for  0 < z < 1  . We also fit correlation functions to our 3D data as a function of cosmological parameters σ8 and  ΩΛ  . We find joint constraints on  ΩΛ  and σ8, demonstrating an improvement in accuracy by ≃40 per cent over that available from 2D weak lensing for the same area.  相似文献   

14.
correlator of the galaxy density field Q 21 is examined from the point of view of biasing. It is shown that, to leading order, it depends on two biasing parameters b b 2, and on q 21, the underlying cumulant correlator of the mass. As the skewness Q 3 has analogous properties, the slope of the correlation function −γ, Q 3 and Q 21 uniquely determine the bias parameter on a particular scale to be b  = γ/6( Q 21 −  Q 3), when working in the context of gravitational instability with Gaussian initial conditions. Thus on large scales, easily accessible with the future Sloan Digital Sky Survey and the 2 Degree Field Survey, it will be possible to extract b b 2 from simple counts-in-cells measurements. Moreover, the higher order cumulants, Q N , successively determine the higher order biasing parameters. From these it is possible to predict higher order cumulant correlators as well. Comparison of the predictions with the measurements will provide internal consistency checks on the validity of the assumptions in the theory, most notably perturbation theory of the growth of fluctuations by gravity and Gaussian initial conditions. Since the method is insensitive Ω, it can be successfully combined with results from velocity fields, which determine Ω0.6/b, to measure the total density parameter in the Universe.  相似文献   

15.
We calculate analytically and numerically the distance–redshift equation in perfect fluid quintessence models and give an accurate fit to the numerical solutions for all the values of the density parameter and the quintessence equation of state. Then we apply our solutions to the estimation of H 0 from multiple image time delays and find that the inclusion of quintessence modifies significantly the likelihood distribution of H 0, generally reducing the best estimate with respect to a pure cosmological constant. Marginalizing over the other parameters (Ω m and the quintessence equation of state) we obtain H 0=71±6 km s−1 Mpc−1 for an empty beam and H 0=64±4 km s−1 Mpc−1 for a filled beam. These errors, however, do not take into account the uncertainty on the modelling of the lens. We also discuss the future prospects for distinguishing quintessence from a cosmological constant with time delays.  相似文献   

16.
Large-scale polarization of the cosmic microwave background measured by the WMAP satellite requires a mean optical depth to Thomson scattering,  τe∼ 0.17  . The reionization of the Universe must therefore have begun at relatively high redshift. We have studied the reionization process using supercomputer simulations of a large and representative region of a universe which has cosmological parameters consistent with the WMAP results (  Ωm= 0.3, ΩΛ= 0.7, h = 0.7, Ωb= 0.04, n = 1  and  σ8= 0.9  ). Our simulations follow both the radiative transfer of ionizing photons and the formation and evolution of the galaxy population which produces them. A previously published model with ionizing photon production as expected for zero-metallicity stars distributed according to a standard stellar initial mass function (IMF) (1061 photons per unit solar mass of formed stars) and with a moderate photon escape fraction from galaxies (5 per cent), produces  τe= 0.104  , which is within 1.0 to  1.5σ  of the 'best' WMAP value. Values of up to 0.16 can be produced by taking larger escape fractions or a top-heavy IMF. The data do not require a separate populations of 'miniquasars' or of stars forming in objects with total masses below  109 M  . Reconciling such early reionization with the observed Gunn–Peterson troughs in   z > 6  quasars may be challenging. Possible resolutions of this problem are discussed.  相似文献   

17.
The stochasticity in the distribution of dark haloes in the cosmic density field is reflected in the distribution function   P V ( N h| δ m)  , which gives the probability of finding N h haloes in a volume V with mass density contrast δ m. We study the properties of this function using high-resolution N -body simulations, and find that   P V ( N h| δ m)  is significantly non-Poisson. The ratio between the variance and the mean goes from ∼1 (Poisson) at  1+ δ m≪1  to <1 (sub-Poisson) at  1+ δ m∼1  to >1 (super-Poisson) at  1+ δ m≫1  . The mean bias relation is found to be well described by halo bias models based on the Press–Schechter formalism. The sub-Poisson variance can be explained as a result of halo exclusion, while the super-Poisson variance at high δ m may be explained as a result of halo clustering. A simple phenomenological model is proposed to describe the behaviour of the variance as a function of δ m. Galaxy distribution in the cosmic density field predicted by semi-analytic models of galaxy formation shows similar stochastic behaviour. We discuss the implications of the stochasticity in halo bias to the modelling of higher order moments of dark haloes and of galaxies.  相似文献   

18.
19.
20.
We determine cosmological and evolutionary parameters from the 3CR K -band Hubble diagram and K -band number counts, assuming that the galaxies in question undergo pure luminosity evolution. Separately the two data sets are highly degenerate with respect to choice of cosmological and evolutionary parameters, but in combination the degeneracy is resolved. Of models that either are flat or have  ΩΛ=0  , the preferred ones are close to the canonical case  Ωcold  matter=1  ,  ΩΛ=0  , with luminosity evolution amounting to 1 mag brighter at   z =1  .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号