首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
A detailed study of the pyroclastic deposits of the AD 79 ‘Pompei’Plinian eruption of Vesuvius has allowed: (1) reconstructionof the thermal, compositional and isotopic (87Sr/86Sr) pre-eruptivelayering of the shallow magma chamber; (2) quantitative definitionof the syn-eruptive mixing between the different magmas occupyingthe chamber, and its relationships with eruption dynamics; (3)recognition of the variability of mafic magma batches supplyingthe chamber. During the different phases of the eruption 25–30%of the magma was ejected as white K-phonolitic pumice, and 70–75%as grey K-tephri-phonolitic pumice. The white pumice resultsfrom the tapping of progressively deeper magma from a body (T= 850–900%C) consisting of two distinct layers mainlyformed by crystal fractionation. The grey pumice results fromsyn-eruptive mixing involving three main end-members: the phonolitic‘white’ magmas (salic end-member, SEM), mafic cumulates(cumulate end-member, CEM) and a crystal-poor ‘grey’phono-tephritic magma (mafic end-member, MEM), which was nevererupted without first being mixed with ‘white’ magma.Evidence is provided that mixing occurred within the chamberand was characterized by a transition with time from physicalmixing at a microscopic scale to chemical hybridization. TheMEM magma had a homogeneous composition and constant 87Sr86Srisotopic ratio, possibly as a result of sustained convection.No unambiguous liquidus phases were found, suggesting that theMEM magma was superheated (T = 1000–1100C); its verylow viscosity was a main cause in the establishment of a physicaldiscontinuity separating the white and the grey magmas. Thewhite-grey boundary layer possibly consisted of a multiply diffusiveinterface, periodically broken and recreated, supplying thephonolitic body through mixing of moderate amounts of fractionatedgrey melts with the overlying white magma. The presence of alarge overheated mass indicates the young, growing stage ofthe AD 79 chamber, whose main engine was the periodic arrivalof hot mafic magma batches. These were characterized by K-tephriticto K-basanitic compositions, high temperatures (>1150C),high volatile contents (20–25% H2O +Cl+F+S), low viscosities[(1+2 102 poises)] and relatively low densities (2500–2600kg/m3). The birth of the Pompei chamber followed the repeatedarrival of these batches (on average characterized by 87Sr/86Sr070729)into a reservoir containing a tephriticphonolitic, crystal-enriched,magma, a residue from the preceding ‘Avellino’ Plinianeruption (3400 BP).In fact, about half of magma ejected duringthe AD 79 eruption could have been inherited from pre-Avellinotimes. KEY WORDS: Vesuvius; magma chamber; magma mixing; compositional layering phonolites; magma supply; potassic magmas *Correponding author  相似文献   

2.
Aoba picrites in Vanuatu arc (Southwestern Pacific) offer the opportunity to address the question of the origin of Si-undersaturated arc magmas, through the geochemical study of their olivine-hosted melt inclusions. These latter delineate a differentiation trend of calc-alkaline silica-undersaturated basalts, with typical trace-element patterns of arc magmas. The most primitive melt inclusions, preserved in olivines with Fo ≥ 89, have normative nepheline compositions with CaO/Al2O3 > 0.8, but belong to three distinct populations differing in their enrichment or depletion in LILE, Cl, and alkalis (Rb, K). The dominant population is characterized by medium-LILE concentrations (La/Yb ~ 7–8) and represents the parental magma of the Aoba lavas. The two others (La/Yb ~ 20 and 2) are either significantly enriched or extremely depleted in LILE, Cl, and alkalis. This compositional variability of primitive magma batches requires the multi-stage mixing between melts generated by partial melting of both peridotite and clinopyroxene-rich lithologies. Medium-LILE magma derives from the mixing between peridotite- and clinopyroxenite-derived melts, whereas the high- and low-LILE melts involve amphibole-bearing and amphibole-free clinopyroxenite sources, respectively.  相似文献   

3.
In plutonic systems, magma mixing is often modelled by mass balance based on whole-rock geochemistry. However, magma mixing is a chaotic process and chemical equilibration is controlled by non-linear diffusive–advective processes unresolved by the study of bulk samples. Here we present textural observations, LA-(MC-)ICP-MS trace element and Sr–Nd isotopic data of accessory apatites and titanites from a hybrid granodiorite of the Neoarchean Matok pluton (South Africa), collected in a zone of conspicuous mixing between mafic and felsic magmas. Apatite grains mostly show a pronounced zoning in CL images, corresponding to abrupt changes in REE and HFSE concentrations recording their transfer through compositionally different melt domains during mixing. These grains crystallized early, at temperatures of 950–1000 °C. Titanite grains crystallized at temperatures of 820–900 °C (Zr-in-sphene thermometry). They show limited intra-grain chemical variations but huge inter-grain compositional scatter in REE and HFSE, pinpointing crystallization within a crystal mush, from isolated melt pockets having different composition from one another owing to incomplete chemical homogenization and variable Rayleigh fractionation. These chemical–textural characteristics, in combination with partitioning models and Polytopic Vector Analysis, point to “self-mixing” between co-genetic dioritic and granodioritic/granitic magmas. Both resulted from differentiation of mantle-derived mafic melts, showing that mixing does not necessarily involve magmas from contrasted (crust vs. mantle) sources. Systematic variations in εNd t (?4.5 to ?2.5) and 87Sr/86Sr(i) (0.703–0.707) of titanite and apatite grains/domains crystallized from the two magmas point to an isotopically inhomogeneous mantle source, which is not resolved by bulk-rock isotopic data. Interaction between the two magmas must have occurred at relatively high temperatures (ca. 900°C) so that their viscosity contrast remained low, allowing efficient mechanical mixing. Despite this, chemical homogenization was incomplete, as recorded by diffusive fractionation between REE–HFSE and Sr. Modelling thereof reveals that chemical exchange between the liquid phases of the two mixed magmas did not last more than a few tens to hundreds of years. The chemical equilibration between mixed magmas thus strongly depends on the considered elements and observational length scales.  相似文献   

4.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

5.
Mafic and intermediate intrusions occur in the Slavkovsky les as dykes, sills and minor tabular bodies emplaced in metamorphic rocks or enclosed in late Variscan granites near the SW contact of the Western Krušné hory/Erzgebirge granite pluton. They are similar in composition and textures to the redwitzites defined in NE Bavaria. Single zircon Pb-evaporation analyses constrain the age of a quartz monzodiorite at 323.4 ± 4.4 Ma and of a granodiorite at 326.1 ± 5.6 Ma. The PT range of magma crystallization is estimated at ~1.4–2.2 kbar and ~730–870°C and it accords with a shallow intrusion level of late Variscan granites but provides lower crystallization temperatures compared to the Bavarian redwitzites. We explain the heterogeneous composition of dioritic intrusions in the Slavkovsky les by mixing between mafic and felsic magmas with a minor effect of fractional crystallization. Increased K, Ba, Rb, Sr and REE contents compared to tholeiitic basalts suggest that the parental mafic magma was probably produced by melting of a metasomatised mantle, the melts being close to lamprophyre or alkali basalt composition. Diorites and granodiorites originated from mixed magmas derived by addition of about 25–35 and 50 vol.%, respectively, of the acid end-member (granite) to lamprophyre or alkali-basalt magma. Our data stress an important role of mafic magmas in the origin of late Variscan granitoids in NW Bohemian Massif and emphasize the effect of mantle metasomatism on the origin of K-rich mafic igneous rocks.  相似文献   

6.
Summary Pyroclastites erupted from the Upper Pollara magma chamber (13 ka, Salina Island, Aeolian Archipelago) resulted from mingling and mixing of rhyolitic and andesitic magmas. An experimental study has been conducted on the rhyolitic end-member to constrain the pre-eruptive conditions of the magma. In order to check for the role of mixing on the equilibrium phase assemblage, three different starting compositions, corresponding to three different mixing degrees, have been used. The crystallization experiments were conducted at two different oxygen fugacities and at variable temperature and fluid contents. The results indicate that the natural mineralogical assemblage can only be reproduced from a composition showing a certain degree of mixing. Assuming a pressure of 200 MPa (generally accepted for the Aeolian Islands), the pre-eruptive temperature of the magmas is estimated between 755 and 800 °C and the water content of the melt was higher than 4–4.5 wt.%. The Upper Pollara magma crystallized at relatively high fO2 (ΔlogfO2 = Ni–NiO + 1 log unit), compared to rhyolitic magmas from Lipari and Vulcano. As this difference has not been observed for the most primitive magmas the difference in fO2 could be related to different degassing processes operating in Salina and Lipari – Vulcano magmas.  相似文献   

7.
The Northern Marginal Zone of the Rum Igneous Centre is a remnant of an early caldera and its infill. It is composed of intra-caldera breccias and various small-volume pyroclastic deposits, overlain by prominent rhyodacite ash-flow sheets of up to 100 m thickness. The ash-flows were fed from a feeder system near the caldera ring-fault, and intrusive rhyodacite can locally be seen grading into extrusive deposits. A variety of features suggest that the ash-flows were erupted from a magma chamber that contemporaneously hosted felsic and mafic magmas: (i) chilled basaltic inclusions in rhyodacite; (ii) formerly glassy basaltic to andesitic enclaves with fluid-fluid relationships; (iii) feldspars with thick reaction rims enclosed in the basaltic to andesitic inclusions, yet with cores chemically resembling those of the rhyodacite: (iv) trace element compositions of the rhyodacite and the mafic enclaves form a mixing line between the end-member rhyodacite and basalt compositions. Additionally, textural and chemical features in the rhyodacite feldspar phenocrysts are consistent with magma mixing; (v) feldspars with resorption embayments cutting through internal zonation of the crystals; (vi) complexly zoned crystals with sieve-textured zones that are overgrown with euhedral zones; (vii) oscillatory zonation of feldspar phenocrysts in the rhyodacite, showing sharp increases in anorthite (An 10%) followed by gradual decrease in An-content (An 4%). This evidence points to eruption of ash-flows from a felsic magma chamber that was periodically replenished by injection of mafic magma. Diffusional mixing between the two magmas was permitted by temperature and compositional differences, but was slow due to the contrast in viscosities and densities. The Fe–Ti–P-enriched basic magma that replenished the chamber was degassing on entering the lower temperature environment and soon equilibrated thermally, followed by chemical exchange between the two end-member magmas. This process formed hybrid andesite enclaves enriched in trace elements beyond that caused by simple mixing, implying trace element diffusion in addition to bulk mixing. Eruption was caused by replenishment with, and degassing of, the basic magma and the chamber partially evacuated while the process of hybridisation was underway. The erupted products record magma mixing by chamber replenishment, blending of two magmas and elemental exchange in the magma chamber, and also physical mingling in the eruptive conduit.  相似文献   

8.
The paper is devoted to experiments on mixing of natural melts of different compositions at 1300-1850° C and 1-12 kbars. Two series of experiments were carried out: one involving gravity-driven convective mixing and one involving diffusive mixing. The results demonstrate the effectiveness of mixing of contrasting magmas in the course of relative motion. Less viscous mafic melt transforms into andesitic much more easily than viscous silicic melt. The latter tends to “dissolve” into the mafic melt. Diffusive runs revealed selective behavior of alkalies and other components due to diffusion. Uphill diffusion of alkalies may cause double-diffusive convection in intercoupled melts. Diffusive interaction of two contrasting melts is explained as a multistage chemical reaction following the principle of acid-base interaction of components in silicate melts.  相似文献   

9.
Süphan is a 4,050 m high Pleistocene-age stratovolcano in eastern Anatolia, Turkey, with eruptive products consisting of transitional calc-alkaline to mildly alkaline basalts through trachyandesites and trachytes to rhyolites. We investigate the relative contributions of fractional crystallization and magma mixing to compositional diversity at Süphan using a combination of petrology, geothermometry, and melt inclusion analysis. Although major element chemistry shows near-continuous variation from basalt to rhyolite, mineral chemistry and textures indicate that magma mixing played an important role. Intermediate magmas show a wide range of pyroxene, olivine, and plagioclase compositions that are intermediate between those of basalts and rhyolites. Mineral thermometry of the same rocks yields a range of temperatures bracketed by rhyolite (~750°C) and basalt (~1,100°C). The linear chemical trends shown for most major and trace elements are attributed to mixing processes, rather than to liquid lines of descent from a basaltic parent. In contrast, glassy melt inclusions, hosted by a wide range of phenocryst types, display curved trends for most major elements, suggestive of fractional crystallization. Comparison of these trends to experimental data from basalts and trachyandesites of similar composition to those at Süphan indicates that melt inclusions approximate true liquid lines of descent from a common hydrous parent at pressures of ~500 MPa. Thus, the erupted magmas are cogenetic, but were generated at depths below the shallow, pre-eruptive magma storage region. We infer that chemical differentiation of a mantle-derived basalt occurred in the mid- to lower crust beneath Süphan. A variety of more and less evolved melts with ≥55 wt% SiO2 then ascended to shallow level where they interacted. The presence of glomerocrysts in many lavas suggests that cogenetic plutonic rocks were implicated in the interaction process. Blending of diverse, but cogenetic, minerals, and melts served to obscure the true liquid lines of descent in bulk rocks. The fact that chemical variation in melt inclusions preserves deep-seated chemical differentiation indicates that inclusions were trapped in phenocrysts prior to shallow-level blending. Groundmass glasses evolved after mixing and display trends that are distinct from those of melt inclusions.  相似文献   

10.
In this contribution, we present a virtual voyage through 3D structures generated by chaotic mixing of magmas and numerical simulations with the aim to highlight the power of 3D representations in the understanding of this geological phenomenon. In particular, samples of mixed juveniles from Salina island (Southern Italy) are reconstructed in 3D by serial lapping and digital montage and numerical simulations are performed by using a 3D chaotic dynamical system. Natural and simulated magma mixing structures are visualized by using several multimedia tools including animations and “virtual reality” models. It is shown that magma interaction processes can generate large spatial and temporal compositional heterogeneities in magmatic systems. The same topological structures are observed in both 3D reconstructed rock samples and chaotic numerical simulations, indicating that the mixing of magmas is governed by chaotic dynamics. The use of 3D multimedia models gives the opportunity to penetrate into magma mixing structures and to understand their significance in the context of magma dynamics. Such an approach is very powerful since multimedia tools can strongly capture the attention of the reader bringing him/her into an interactive and memorable geological experience. Electronic supplementary material  enclosed:  相似文献   

11.
Summary  From the early Tertiary K?lvegletscher ultramafic cumulate complex, emplaced into the Archaean basement on the west side of the Kangerlussuaq Fjord, East Greenland, we present geochemical and isotopic data from an outcrop of finely layered dunitic adcumulates. The dunites were deposited in a trough structure, interpreted to be a fossilized feeder channel to the K?lvegletscher magma chamber. Detailed geochemical sampling of the trough reveals subtle cryptic compositional variations of olivines (Fo = 86.5–89.3; Ni = 2000–2700 ppm) and chromites (Cr# = 66–80) in a stratigraphical profile perpendicular to the layering as well as relatively large simultaneous variations of whole-rock 87Sr/86Sr ratios. The dunites are separable into sequences of normal and reverse cryptic zonations which are interpreted as resulting from fractional crystallisation and magma chamber recharge, respectively. Up to 20% of magma chamber replenishment by high-Mg melts is suggested. Sr-isotope compositions of the cumulates correlate with olivine compositions and suggest mixing of fractionated and unfractionated parental melts assimilating up to 8% local basement. We propose the existence of a vigorous volcanic system at the K?lvegletscher site in early Tertiary times, where plume-derived magmas incorporated minor amounts of local basement and underwent fractionation and mixing in crustal chambers. Estimates of processed magma volumes during deposition of the trough cumulates are in the range of 100–130 km3. Received January 18, 2000;/revised version accepted December 19, 2000  相似文献   

12.
Geochronological, geochemical, whole-rock Sr–Nd, and zircon Hf isotopic analyses were carried out on the Jiasha Gabbro, mafic microgranular enclaves (MME) and host Longchahe Granite samples from the Gejiu area in the southeast Yunnan province, SW China, with the aim of characterizing their petrogenesis. Compositional zoning is evident in the gabbro body as the cumulate textures and mineral proportions in the gabbro interior are distinct from the gabbro margin. The Longchahe Granite largely comprises metaluminous quartz monzonite with distinctive K-feldspar megacrysts, but also contains a minor component of peraluminous leucogranite. The MME have spheroidal to elongated/lenticular shapes with sharp, crenulated and occasionally diffuse contacts with the host granite, which we attribute to the undercooling and disaggregation of mafic magma globules within the cooler host felsic magma. Field observations, geochronology, geochemistry, Sr–Nd and zircon Hf isotopic compositions point to a complex petrogenesis for this granite–MME–gabbro association. Zircon 206Pb/238U ages determined by LA-ICP-MS for a mafic enclave, its host granite and the gabbro body are 83.1 ± 0.9 Ma, 83.1 ± 0.4 Ma and 83.2 ± 0.4 Ma, respectively, indicating coeval crystallization of these igneous rock units. Crystal fractionation processes can explain much of the compositional diversity of the Jiasha Gabbro. The geochemical features of the gabbro, such as high Mg# (up to 70) and Cr (up to 327 ppm), enrichment in LILEs (e.g., Rb, Ba, K2O) and LREEs, and depletion in HFSE (e.g., Nb, Ta, Ti), together with initial 87Sr/86Sr ratios of 0.708–0.709 and negative εNd(t) values (−5.23 to −6.45), indicate they were derived from a mantle source that had undergone previous enrichment, possibly by subduction components. The Longchahe Granite has a large range of SiO2 (59.87–74.94 wt%), is distinctly alkaline in composition, and has Sr–Nd–Hf isotopic compositions ((87Sr/86Sr)i > 0.712, εNd(t) = −6.93 to −7.62 and εHf(t) = −5.8 to −9.9) that are indicative of derivation from a crustal source. However, the most primitive rocks of Longchahe Granite are compositionally distinct from any feasible crustal melt. We interpret the spectrum of rock types of the Longchahe Granite to have formed via mixing between crustally derived peraluminous leucogranite magma and mantle-derived magma of similar heritage to the Jiasha Gabbro. We speculate that this mixing event occurred early in the magmatic history of these rocks at relatively high temperature and/or deep in the crust to allow efficient physical mixing of magmas. Saturation and accumulation of K-feldspar and zircon in the mixed magma is invoked to explain the megacrystic K-feldspar and elevated K2O and Zr content of some of the granitic rocks. A later episode of magma mixing/mingling is preserved as the MME that have geochemical and isotopic compositions that, for the most part, are intermediate between the granite and the gabbro. The MME are interpreted to be fractionated melts of mafic magma related to gabbro that were subsequently injected into the cooler, partly crystalline granitic magma. Mingling and mixing processes within the convectively dynamic upper crustal magma chamber resulting in a hybrid (MME) magma. During this second mixing episode, element interdiffusion, rather than bulk physical mixing, is interpreted to be the dominant mixing process.  相似文献   

13.
This study documents the chemical and textural responses of zircon in the Elba igneous complex, with particular reference to the 7- to 7.8-Ma-old Monte Capanne pluton in relation to its coeval volcanic counterpart (Capraia), using BSE imaging and quantitative electron microprobe analyses. The Monte Capanne pluton displays multiple field and geochemical evidence for magma mixing. The samples we have investigated (including monzogranitic, mafic enclave and dyke samples) display similar zircon textures and are associated with an extremely large range of trace and minor element (Hf, Y, HREE, Th, U) compositions, which contrast with relatively simple textures and zoning patterns in zircons from a Capraia dacite. We have used a relatively simple textural classification (patchy zoning, homogenous cores, oscillatory zoning and unzoned zircon) as the basis for discussing the chemical composition and chemical variation within zircons from the Monte Capanne pluton. Based on these data and other works (Dini et al. 2004 in Lithos 78:101–118, 2004) , it is inferred that mixing between metaluminous and peraluminous melts occurred early in the evolution of the Monte Capanne magma chamber. In particular, mixing was responsible for the development of the patchy-zoning texture in the zircon cores, which was associated with reactions between other accessory phases (including monazite, apatite, allanite), which we infer to have significantly affected the Th distribution in zircon. Zircons from the MC pluton displaying “homogeneous cores” have chemical affinities with zircons in the coeval Capraia volcanic system, consistent with the participation of a Capraia-like mantle end-member during mixing. Further zircon growth in the MC pluton produced the oscillatory zoning texture, which records both long-term (crystal fractionation) and transient (recharge with both silicic and mafic magmas) events in a hybrid magma chamber. It is inferred that Hf and the Th/U ratio cannot be used alone to infer magmatic processes due to their dependency on temperature, nor are they a diagnostic feature of xenocrystic grains. This study shows that zircon chemistry coupled with detailed textural analysis can provide a powerful tool to elucidate the complex evolution of a magma system.  相似文献   

14.
The Saldanha eruption centre, on the West Coast of South Africa, consists of 542 Ma, intracaldera, S-type, rhyolite ignimbrites divided into the basal Saldanha Ignimbrite and the partly overlying Jacob’s Bay Ignimbrite. Depleted-mantle Nd model ages suggest magma sources younger than the Early Mesoproterozoic, and located within the Neoproterozoic Malmesbury Group and Swartland complex metasedimentary and metavolcanic rocks that form the regional basement. The Sr isotope systematics suggest that the dominant source rocks were metavolcaniclastic rocks and metagreywackes, and that the magmas formed from separate batches extracted from the same heterogeneous source. No apparent magma mixing trends relate the Saldanha to the Jacob’s Bay Ignimbrites, or either of these to the magmas that formed the Plankiesbaai or Tsaarsbank Ignimbrites in the neighbouring Postberg eruption centre. The magmas were extracted from their source rocks carrying small but significant proportions of peritectic and restitic accessory minerals. Variations in the content of this entrained crystal cargo were responsible for most of the chemical variations in the magmas. Although we cannot construct a cogent crystal fractionation model to relate these groups of magmas, at least some crystal fractionation occurred, as an overlay on the primary signal due to peritectic assemblage entrainment (PAE). Thus, the causes of the cryptic chemical variation among the ignimbrite magmas of the Saldanha centre are variable, but dominated by the compositions of the parent melts and PAE. The preservation of clear, source-inherited chemical signatures, in individual samples, calls into question the common interpretation of silicic calderas as having been formed in large magma reservoirs, with magma compositions shaped by magma mingling, mixing, and fractional crystallization. The Saldanha rocks suggest a more intimate connection between source and erupted magma, and perhaps indicate that silicic magmas are too viscous to be significantly modified by magma-chamber processes.  相似文献   

15.
The Emeishan flood basalts can be divided into high-Ti (HT) basalt (Ti/Y>500) and low-Ti (LT) basalt (Ti/Y<500). Sr, Nd isotopic characteristics of the lavas indicate that the LT- and the HT-type magmas originated from distinct mantle sources and parental magmas. The LT-type magma was derived from a shallower lithospheric mantle, whereas the HT-type magma was derived from a deeper mantle source that may be possibly a mantle plume. However, few studies on the Emeishan flood basalts involved their Pb isotopes, especially the Ertan basalts. In this paper, the authors investigated basalt samples from the Ertan area in terms of Pb isotopes, in order to constrain the source of the Emeishan flood basalts. The ratios of 206Pb/204Pb (18.31–18.41), 207Pb/204Pb (15.55–15.56) and 208Pb/204Pb (38.81–38.94) are significantly higher than those of the depleted mantle, just lying between EM I and EM II. This indicates that the Emeishan HT basalts (in the Ertan area) are the result of mixing of EMI end-member and EMII end-member.  相似文献   

16.
Heterogeneous andesitic and dacitic lavas on Cordn El Guadalbear on the general problem of how magmas of differing compositionsand physical properties interact in shallow reservoirs beneathcontinental arc volcanoes. Some of the lavas contain an exceptionallylarge proportion (<40%) of undercooled basaltic andesiticmagma in various states of disaggregation. Under-cooled maficmagma occurs in the silicic lavas as large (<40 cm) basalticandesitic magmatic inclusions, as millimeter-sized crystal-clotsof Mg-rich olivine phenocrysts plus adhering Carich plagioclasemicrophenocrysts (An50–70), and as uniformly distributed,isolated phenocrysts and microphenocrysts. Compositions andtextures of plagioclase phenocrysts indicate that inclusion-formingmagmas are hybrids formed by mixing basaltic and dacitic melts,whereas textural features and compositions of groundmass phasesindicate that the andesitic and dacitic lavas are largely mechanicalmixtures of dacitic magma and crystallized basaltic andesiticmagma. This latter observation is significant because it indicatesthat mechanical blending of undercooled mafic magma and partiallycrystallized silicic magma is a possible mechanism for producingthe common porphyritic texture of many calc-alkaline volcanicrocks. The style of mafic-silicic magma interaction at CordonEl Guadal was strongly dependent upon the relative proportionsof the endmembers. Equally important in the Guadal system, however,was the manner in which the contrasting magmas were juxtaposed.Textural evidence preserved in the plagioclase phenocrysts indicatesthat the transition from liquid-liquid to solid-liquid mixingwas not continuous, but was partitioned into periods of magmachamber recharge and eruption, respectively. Evidently, duringperiods of recharge, basaltic magmas rapidly entrained smallamounts of dacitic magma along the margins of a turbulent injectionfountain. Conversely, during periods of eruption, dacitic magmagradually incorporated small parcels of basaltic andesitic magma.Thus, the coupled physical-chemical transition from mixed inclusionsto commingled lavas is presumably not coincidental. More likely,it probably provides a partial record of the dynamic processesoccurring in shallow magma chambers beneath continental arevolcanoes. KEY WORDS: Chile; commingling; magma mixing; magmatic inclusions *Present address: Department of Earth Sciences, Montana State University, Bozeman, MT 59717, USA  相似文献   

17.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

18.
Disequilibrium phenocryst assemblages in the Younger Andesitesand Dacites of Iztacc?huatl, a major Quaternary volcano in theTrans-Mexican Volcanic Belt, provide an excellent record ofepisodic replenishment, magma mixing, and crystallization processesin calc-alkaline magma chambers. Phenocryst compositions andtextures in ‘mixed’ lavas, produced by binary mixingof primitive olivine-phyric basalt and evolved hornblende dacitemagmas, are used to evaluate the mineralogical and thermal characteristicsof end-members and the physical and chemical interactions thatattend mixing. Basaltic end-members crystallized olivine (FO90–88) andminor chrome spinel during ascent into crustal magma chambers.Resident dacite magma contained phenocrysts of andesine (An45–35),hypersthene (En67–61), edenitic-pargasitic hornblende,biotite, quartz, .titanomagnetite, and ilmenite. On reachinghigh-level reservoirs, basaltic magmas were near their liquidiat temperatures of about 1250–1200?C according to theolivine-liquid geothermometer. Application of the Fe-Ti-oxidegeothermometer-oxygen barometer indicates that hornblende dacitemagma, comprising phenocrysts (<30 vol. per cent) and coexistingrhyolitic liquid, had an ambient temperature between 940 and820?C at fO2s approximately 0?3 log units above the nickel-nickeloxide buffer assemblage. Mixing induced undercooling of hybridliquids and rapid crystallization of skeletal olivine (Fo88–73),strongly-zoned clinopyroxene (endiopside-augite), calcic plagioclase(An65–60); and orthopyroxene (bronzite), whereas low-temperaturephenocrysts derived from hornblende dacite were resorbed ordecomposed by hybrid melts. Quartz reacted to form coronas ofacicular augite and hydroxylated silicates were heated to temperaturesabove their thermal stability limit ({small tilde}940?C foramphibole, according to clinopyroxene-orthopyroxene geothermometry,and {small tilde}880?C for biotite). Calculations of phenocrystresidence times in hybrid liquids based on reaction rates suggestthat the time lapse between magma chamber recharge and eruptionwas extremely short (hours to days). It is inferred that mixing of magmas of diverse compositionis driven by convective turbulence generated by large differencesin temperature between end-members. The mixing mechanism involves:(1)rapid homogenization of contrasting residual liquid compositionsby thermal erosion and diffusive transfer (liquid blending);(2) assimilation of phenocrysts derived from the low-temperatureend-member; and (3) dynamic fractional crystallization of rapidlyevolving hybrid liquids in a turbulent boundary layer separatingbasaltic and dacitic magmas. The mixed lavas of lztacc?huatlrepresent samples of this boundary layer quenched by eruption.  相似文献   

19.
We present the first set of chaotic mixing experiments performed using natural basaltic and rhyolitic melts. The mixing process is triggered by a recently developed apparatus that generates chaotic streamlines in the melts, mimicking the development of magma mixing in nature. The study of the interplay of physical dynamics and chemical exchanges between melts is carried out performing time series mixing experiments under controlled chaotic dynamic conditions. The variation of major and trace elements is studied in detail by electron microprobe and Laser Ablation ICP-MS. The mobility of each element during mixing is estimated by calculating the decrease in the concentration variance in time. Both major and trace element variances decay exponentially, with the value of exponent of the exponential function quantifying the element mobility. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. The differential mobility of elements in the mixing system is considered to be responsible for the highly variable degree of correlation (linear, nonlinear, or scattered) of chemical elements in many published inter-elemental plots. Elements with similar mobility tend to be linearly correlated, whereas, as the difference in mobility increases, the plots become progressively more nonlinear and/or scattered. The results from this study indicate that the decay of concentration variance is in fact a robust tool for obtaining new insights into chemical exchanges during mixing of silicate melts. Concentration variance is (in a single measure) an expression of the influence of all possible factors (e.g., viscosity, composition, and fluid dynamic regime) controlling the mobility of chemical elements and thus can be an additional petrologic tool to address the great complexity characterizing magma mixing processes.  相似文献   

20.
The Gil-Marquez Complex is an exceptional outcrop of plutonic rocks ranging in composition from diorites to granites emplaced into Devonian terrigenous metasediments of the southernmost part of the Hercynian basement of Iberia. A combined study of this complex, including field geology, petrology, structural geology and geochemistry, reveals that it represents an ancient conduit of magma transport through the continental crust. This conduit allowed the intrusion of magmas of contrasted compositions. Two end-members and several hybrids are identified. The first end-member is a biotite granite and the second is a basaltic magma generated by partial melting of a depletedmantle source. Both magmas rose through a common channel in which favorable conditions for unstable flow and magma mixing occurred. The observed relations in the Gil-Márquez Complex show that mixing in conduits may be an important mechanism for producing homogeneous hybrid magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号