首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

2.
A detailed petrological study is presented for six phenocryst-poor obsidian samples (73–75 wt% SiO2) erupted as small volume, monogenetic domes in the Mexican and Cascade arcs. Despite low phenocryst (+microphenocryst) abundances (2–6 %), these rhyolites are each multiply saturated with five to eight mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± zircon ± hornblende ± clinopyroxene ± sanidine ± pyrrhotite). Plagioclase and orthopyroxene phenocrysts (identified using phase-equilibrium constraints) span ≤30 mol % An and ≤15 % Mg#, respectively. Eruptive temperatures (±1σ), on the basis of Fe–Ti two oxide thermometry, range from 779 (±25) to 940 (±18) °C. Oxygen fugacities (±1σ) range from ?0.4 to 1.4 (±0.1) log units relative to those along the Ni–NiO buffer. With temperature known, the plagioclase-liquid hygrometer was applied; maximum water concentrations calculated for the most calcic plagioclase phenocryst in each sample range from 2.6 to 6.5 wt%. This requires that the rhyolites were fluid-saturated at depths ≥2–7 km. It is proposed that the wide compositional range in plagioclase and orthopyroxene phenocrysts, despite their low abundance, can be attributed to changing melt water concentrations owing to degassing during magma ascent. Phase-equilibrium experiments from the literature show that higher dissolved water concentrations lead to more Fe-rich orthopyroxene, as well as more calcic plagioclase. Loss of dissolved water leads to a progressive increase in melt viscosity, and phenocrysts often display diffusion-limited growth textures (e.g., dendritic and vermiform), consistent with large undercoolings caused by degassing. A kinetic barrier to microlite crystallization occurred at viscosities from 4.5 to 5.0 log10 Pa s for these rhyolites, presumably because the rate at which melt viscosity changed was high owing to rapid loss of dissolved water during magma ascent.  相似文献   

3.
The bulk (post-eruptive) wt% FeO concentration in each of 11 phenocryst-poor (<5%) andesite and dacite (60–69 wt% SiO2) lavas from different monogenetic vents in the Mexican arc has been measured by titration, in duplicate. The results match, within analytical error, the wt% FeO content of the magmas during phenocryst growth (pre-euptive), which were calculated on the basis of oxygen fugacity and temperature results from Fe–Ti two-oxide oxygen barometry. The average deviation between the pre- and post-eruptive FeO concentrations is ±0.15 wt%. Application of the plagioclase-liquid hygrometer shows that at the time of phenocryst growth, these 11 magmas contained from ~3–8 wt% H2O, which was extensively degassed upon eruption. There is no evidence that degassing of ≤8 wt% H2O changed the oxidation state of these magmas. Calculations of pre-eruptive and post-eruptive oxygen fugacity values relative to the Ni-NiO buffer (in terms of log10 units) for the 11 samples span a similar range; pre-eruptive ∆NNO = −0.9 to +0.7 and post-eruptive ∆NNO = −0.4 to +0.8. The data further show that extensive groundmass (closed-system) crystallization had no affect on bulk Fe3+/Fe2+ ratios. Finally, there is no systematic variation in the range of pre-eruptive Fe3+/FeT values of the samples as a function of SiO2 concentration (i.e., differentiation). Therefore, the results of this study indicate that the elevated Fe3+/FeT ratios of arc andesites and dacites, compared with magmas erupted in other tectonic settings, cannot be attributed to the effects of (1) degassing of H2O, (2) closed-system crystallization, and/or (3) differentiation effects, but instead must be inherited from their parental source rocks (i.e., mantle-derived arc basalts).  相似文献   

4.
We have conducted high pressure (to 3 kbar), water saturated melting experiments on an andesite (62 wt% SiO2) and a basaltic andesite (55 wt% SiO2) from western Mexico. A close comparison between the experimental phase assemblages and their compositions, and the phenocryst assemblages of the lavas, is found in water saturated liquids, suggesting that the CO2 content was minimal in the fluid phase. Thus the historic lavas from Volcan Colima (with phenocrysts of orthopyroxene, augite, plagioclase, and hornblende) were stored at a temperature between 950–975 °C, at a pressure between 700–1500 bars, and with a water content of 3.0–5.0 wt%. A hornblende andesite (spessartite) from Mascota, of nearly identical composition but with only amphibole phenocrysts, had a similar temperature but equilibrated at a minimum of 2000 bars pressure with a dissolved water content of at least 5.5 wt% in the liquid. Experiments on the basaltic andesite show that the most common natural phenocryst assemblages (olivine, ±augite, ±plagioclase) could have precipitated at temperatures from 1000–1150 °C, in liquids with a wide range of dissolved water content (∼2.0–6.0 wt%) and a corresponding pressure range. A lava of the same bulk composition with phenocrysts of hornblende, olivine, plagioclase, and augite is restricted to temperatures below 1000 °C and pressures below 2500 bars, corresponding to <5.5 wt% water in the residual liquid. Although there is some evidence for mixing in the andesites (sporadic olivine phenocrysts), the broad theme of the history of both lava types is that the phenocryst assemblages for both the andesitic magmas and basaltic andesitic magmas are generated from degassing and reequilibration on ascent of initially hydrous parents containing greater than 6 wt% water. Indeed andesitic magmas could be related to a basaltic andesite parent by hornblende-plagioclase fractionation under the same hydrous conditions. Received: 10 December 1996 / Accepted: 21 August 1997  相似文献   

5.
Primitive andesites from the Taupo Volcanic Zone formed by magma mixing   总被引:1,自引:0,他引:1  
Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand’s Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.  相似文献   

6.
Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high-Mg# (Mg/Mg + Fe > 0.65) basalts, basaltic andesites and andesites from the Kurile-Kamchatka subduction system. Primitive andesitic samples are from the Shisheisky Complex, a field of Quaternary-age, monogenetic cones located in the Aleutian–Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite volcano in Kamchatka. The Shisheisky lavas have Mg# of 0.66–0.73 at intermediate SiO2 (54–58 wt%) with low CaO (<8.8%), CaO/Al2O3 (<0.54), and relatively high Na2O (>3.0 wt%) and K2O (>1.0 wt%). Olivine phenocryst core compositions of Fo90 appear to be in equilibrium with whole-rock ‘melts’, consistent with the sparsely phyric nature of the lavas. Compared to the Shisheisky andesites, primitive basalts from the region (Kuriles, Tolbachik, Kharchinsky) have higher CaO (>9.9 wt%) and CaO/Al2O3 (>0.60), and lower whole-rock Na2O (<2.7 wt%) and K2O (<1.1 wt%) at similar Mg# (0.66–0.70). Olivine phenocrysts in basalts have in general, higher CaO and Mn/Fe and lower Ni and Ni/Mg at Fo88 compared to the andesites. The absence of plagioclase phenocrysts from the primitive andesitic lavas contrasts the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the primitive andesitic magmas compared to basalts. Estimated temperature and water contents for primitive basaltic andesites and andesites are 984–1,143°C and 4–7 wt% H2O. For primitive basalts they are 1,149–1,227°C and 2 wt% H2O. Petrographic and mineral compositions suggest that the primitive andesitic lavas were liquids in equilibrium with mantle peridotite and were not produced by mixing between basalts and felsic crustal melts, contamination by xenocrystic olivine, or crystal fractionation of basalt. Key geochemical features of the Shisheisky primitive lavas (high Ni/MgO, Na2O, Ni/Yb and Mg# at intermediate SiO2) combined with the location of the volcanic field above the edge of the subducting Pacific Plate support a genetic model that involves melting of eclogite or pyroxenite at or near the surface of the subducting plate, followed by interaction of that melt with hotter peridotite in the over-lying mantle wedge. The strongly calc-alkaline igneous series at Shiveluch Volcano is interpreted to result from the emplacement and evolution of primitive andesitic magmas similar to those that are present in nearby monogenetic cones of the Shisheisky Complex.  相似文献   

7.
Approximately 150 km west of Mexico City in the central part of the Mexican Volcanic Belt (MVB) near Zitácuaro, Mexico, young volcanism has produced shield volcanoes, large volume silicic deposits, and fault-related basalt and andesite lava flows and cinder cones. This paper concerns a small cluster of Pleistocene andesite cones and flows which can be separated into two distinct groups: high-magnesium andesites (>6% MgO, 57–59% SiO2), conveniently called basaltic andesites, with phenocrysts of orthopyroxene and augite, or augite and olivine; and andesites (60–62% SiO2, <4.6% MgO), which have phenocrysts of orthopyroxene and augite, and ghosts of relict hornblende. Remarkably, plagioclase phenocrysts are absent, and evenly distributed but sparse (0.5–3.5%) quartz xenocrysts are present in all the lavas. In order to establish the conditions under which early crystallizing plagioclase is suppressed in these lavas, water saturated experiments up to 3 kbars were performed on one of the basaltic andesites. The conditions required to reproduce the phenocryst assemblages (either olivine + augite or opx + augite) are temperatures in excess of 1000 °C, with water saturated liquids (>3 wt%) at pressures of about 1 kbar. Compared to basaltic andesites of western Mexico, the Zitácuaro basaltic andesites have ∼2 wt% lower Al2O3 concentrations, which causes plagioclase to precipitate at significantly lower temperatures, and it therefore follows the crystallization sequence: olivine, augite, and orthopyroxene. Based on ubiquitous quartz xenocrysts, with glassy rhyolitic inclusions, a reasonable conclusion is that substantial mixing of a quartz-bearing rhyolitic magma with a parental basaltic andesite has occurred at low pressure (shallow depth), and this would account for the low Al2O3 concentrations in the Zitácuaro basaltic andesites. Whatever the mechanism of incorporation, the quartz xenocrysts are evidence of contamination of basaltic magma with more siliceous material, thus making it difficult to use these magmas as indicators of mantle melting processes. Received: 29 July 1997 / Accepted: 29 January 1998  相似文献   

8.
 Pleistocene-Holocene volcanism in the Jalisco block of western Mexico is confined to two conspicuous grabens, where potassic eruptives range from absarokites (48–52% SiO2) and minettes (49–54% SiO2) through basaltic andesites (53–57% SiO2), the most voluminous type, to andesites and their lamprophyric equivalent spessartite (58–62% SiO2); there are no contemporary rhyolitic rocks. This suite has high concentrations of Mg, Cr (<550 ppm) and Ni (<450 ppm) accompanied by large concentrations of K, P, Ba (<4000 ppm) and Sr (<5000 ppm) and elements such as LREE and Zr (<600 ppm). No combination of crystal fractionation and/or crustal contamination can reproduce the compositional range of these magmas, which nevertheless are believed to be genetically related because of their proximity in time and space. Hydrous minerals in the lamprophyres and the typical absence of plagioclase phenocrysts in both basaltic andesites and andesites reflect the relatively high concentrations of water in the magmas, which suppressed the crystallisation of feldspar. Experimental verification of the minimal amounts of water required to reproduce the phenocryst assemblages in selected rocks range from 3.5 to 6%. During ascent in a volcanic conduit, andesitic magma may lose water and consequently precipitate plagioclase, or it may ascend more rapidly, retaining more of its initial water, which stabilises phenocrysts of hornblende at the expense of plagioclase. Our estimates of water concentrations, which are consistent with the various low pressure phenocryst assemblages, will be minimal for the magmas in their source regions, and the process of magmatic dewatering on ascent may be typical in well established volcanic conduits. In accord with the compositions of phenocrystic olivine in the basaltic andesites and the minettes, the values of FeO and Fe2O3 of the bulk lavas and scoriae are demonstrably pristine. As a consequence, there are two characteristic features of the Mascota suite: the high range of relative oxygen fugacities (ΔNNO=1–5) and the high Mg# (MgO/MgO+FeO) that ranges from 0.70 to 0.91 (with only one andesite as low as 0.66). From the evidence of phlogopite phenocrysts, a partial melt involving phlogopite would have a higher Mg# than one from olivine (Fo90) and pyroxene alone. As the Mascota series shows a correlation between K2O and Mg#, we conclude that it was generated by partial fusion of the mantle wedge, with a variable contribution of phlogopite and apatite from veins throughout the lherzolitic assemblage. In conformity with an origin by varying increments of partial fusion of a phlogopite-bearing mantle, all incompatible elements vary linearly with Ti (or K) as if phlogopite (+apatite) in the source dominated their contribution to the partial melts. Fluids from dehydration of the subducting slab presumably deposit hydrous and other minerals in veins in the mantle wedge and also increase its redox state. As the Mascota volcanism occurs in grabens closer to the trench than the main andesite arc, it is concluded that the eruption of these small volumes of hydrous magmas require the tectonically favored ascent paths offered by the extensional grabens to reach the surface from their mantle sources. Received: 24 January 1995 / Accepted: 21 February 1996  相似文献   

9.
Cordierite-bearing lavas (CBL;~105 ka) erupted from the Mt. S. Angelo volcano at Lipari (Aeolian arc, Italy) are high-K andesites, displaying a range in the geochemical and isotopic compositions that reflect heterogeneity in the source and/or processes. CBL consist of megacrysts of Ca-plagioclase and clinopyroxene, euhedral crystals of cordierite and garnet, microphenocrysts of orthopyroxene and plagioclase, set in a heterogeneous rhyodacitic-rhyolitic groundmass containing abundant metamorphic and gabbroic xenoliths. New petrographic, chemical and isotopic data indicate formation of CBL by mixing of basaltic-andesitic magmas and high-K peraluminous rhyolitic magmas of anatectic origin and characterize partial melting processes in the lower continental crust of Lipari. Crustal anatectic melts generated through two main dehydration-melting peritectic reactions of metasedimentary rocks: (1) Biotite + Aluminosilicate + Quartz + Albite = Garnet + Cordierite + K-feldspar + Melt; (2) Biotite + Garnet + Quartz = Orthopyroxene + Cordierite + K-feldspar + Melt. Their position into the petrogenetic grid suggests that heating and consequent melting of metasedimentary rocks occurred at temperatures of 725 < T < 900°C and pressures of 0.4–0.45 GPa. Anatexis in the lower crust of Lipari was induced by protracted emplacement of basic magmas in the lower crust (~130 Ky). Crustal melting of the lower crust at 105 ka affected the volcano evolution, impeding frequent mafic-magma eruptions, and promoting magma stagnation and fractional crystallization processes.  相似文献   

10.
Back-scattered electron (BSE)-derived zoning patterns of plagioclase phenocrysts are used to identify magma processes at Bezymianny Volcano, Kamchatka, based on the 2000–2007 sequence of eruptive products. The erupted magmas are two-pyroxene andesites, which last equilibrated at ~915°C temperature, 77–87 MPa pressure, and a water content of ~1.4 wt%. Textural and compositional zoning of individual plagioclase phenocrysts typically includes a repeated core-to-rim sequence of oscillatory zoning (An50–60) truncated by a dissolution surface followed by an abrupt increase in An content (up to An85), which then gradually decreases rimward. This zoning pattern is interpreted to be the result of frequent replenishments of the magma chamber which cause both thermal and chemical interaction between resident and recharge magmas. The outermost 70- to 150-μm-wide zoning patterns of plagioclase phenocrysts are composed of dissolution surface with a subsequent increase in An and Fe contents. Zoning patterns of the rims exhibit correlation among plagioclase phenocrysts within one eruption. Rims are interpreted as a result of crystallization of a batch of magma in the conduit after recharge event.  相似文献   

11.
Arenal volcano is nearly unique among arc volcanoes with its 42 year long (1968–2010) continuous, small-scale activity erupting compositionally monotonous basaltic andesites that also dominate the entire, ~7000 year long, eruptive history. Only mineral zoning records reveal that basaltic andesites are the result of complex, open-system processes deriving minerals from a variety of crystallization environments and including the episodic injections of basalt. The condition of the mafic input as well as the generation of crystal-rich basaltic andesites of the recent, 1968–2010, and earlier eruptions were addressed by an experimental study at 200 MPa, 900–1,050 °C, oxidizing and fluid-saturated conditions with various fluid compositions [H2O/(H2O + CO2) = 0.3–1]. Phase equilibria were determined using a phenocryst-poor (~3 vol%) Arenal-like basalt (50.5?wt% SiO2) from a nearby scoria cone containing olivine (Fo92), plagioclase (An86), clinopyroxene (Mg# = 82) and magnetite (Xulvö = 0.13). Experimental melts generally reproduce observed compositional trends among Arenal samples. Small differences between experimental melts and natural rocks can be explained by open-system processes. At low pressure (200 MPa), the mineral assemblage as well as the mineral compositions of the natural basalt were reproduced at 1,000 °C and high water activity. The residual melt at these conditions is basaltic andesitic (55 wt% SiO2) with 5 wt% H2O. The evolution to more evolved magmas observed at Arenal occurred under fluid-saturated conditions but variable fluid compositions. At 1,000 °C and 200 MPa, a decrease of water content by approximately 1 wt% induces significant changes of the mineral assemblage from olivine + clinopyroxene + plagioclase (5 wt% H2O in the melt) to clinopyroxene + plagioclase + orthopyroxene (4 wt% H2O in the melt). Both assemblages are observed in crystal-rich basalt (15 vol%) and basaltic andesites. Experimental data indicate that the lack of orthopyroxene and the presence of amphibole, also observed in basaltic andesitic tephra units, is due to crystallization at nearly water-saturated conditions and temperatures lower than 950 °C. The enigmatic two compositional groups previously known as low- and high-Al2O3 samples at Arenal volcano may be explained by low- and high-pressure crystallization, respectively. Using high-Al as signal of deeper crystallization, first magmas of the 1968–2010 eruption evolved deep in the crust and ascent was relatively fast leaving little time for significant compositional overprint by shallower level crystallization.  相似文献   

12.
Between 1953 and 1974, approximately 0.5 km3 of andesite and dacite erupted from a new vent on the southwest flank of Trident volcano in Katmai National Park, Alaska, forming an edifice now known as Southwest (or New) Trident. Field, analytical, and experimental evidence shows that the eruption commenced soon after mixing of dacite and andesite magmas at shallow crustal levels. Four lava flows (58.3–65.5 wt% SiO2) are the dominant products of the eruption; these contain discrete andesitic enclaves (55.8–58.9 wt% SiO2) as well as micro- and macro-scale compositional banding. Tephra from the eruption spans the same compositional range as lava flows; however, andesite scoria (56–58.1 wt% SiO2) is more abundant relative to dacite tephra, and is the explosively erupted counterpart to andesite enclaves. Fe–Ti oxide pairs from andesite scoria show a limited temperature range, clustered around 1000 °C. Temperatures from grains found in dacite lavas possess a wider range; however, cores from large (>100 μm) magnetite and coexisting ilmenite give temperatures of ∼890 °C, taken to represent a pre-mixing temperature for the dacite. Water contents from dacite phenocryst melt inclusions and phase equilibria experiments on the andesite imply that the two magmas last resided at a water pressure of 90 MPa, and contained ∼3.5 wt% H2O, equivalent to 3 km depth if saturated. Unzoned pyroxene and sodic plagioclase in the dacite suggest that it likely underwent significant crystallization at this depth; highly resorbed anorthitic plagioclase from the andesite suggests that it originated at greater depths and underwent relatively rapid ascent until it reached 3 km, mixed with dacite, and erupted. Diffusion profiles in phenocrysts suggest that mixing preceded eruption of earliest lava by approximately one month. The lack of a compositional gap in the erupted rock suite indicates that thorough mixing of the andesite and dacite occurred quickly, via disaggregation of enclaves, phenocryst transfer from one magma to another, and direct mixing of compositionally distinct melt phases. Received: 22 September 1999 / Accepted: 4 April 2000  相似文献   

13.
 All six Holocene volcanic centers of the Andean Austral Volcanic Zone (AVZ; 49–54°S) have erupted exclusively adakitic andesites and dacites characterized by low Yb and Y concentrations and high Sr/Y ratios, suggesting a source with residual garnet, amphibole and pyroxene, but little or no olivine and plagioclase. Melting of mafic lower crust may be the source for adakites in some arcs, but such a source is inconsistent with the high Mg# of AVZ adakites. Also, the AVZ occurs in a region of relatively thin crust (<35 km) within which plagioclase rather than garnet is stable. The source for AVZ adakites is more likely to be subducted oceanic basalt, recrystallized to garnet-amphibolite or eclogite. Geothermal models indicate that partial melting of the subducted oceanic crust is probable below the Austral Andes due to the slow subduction rate (2 cm/year) and the young age (<24 Ma) of the subducted oceanic lithosphere. Geochemical models for AVZ adakites are also consistent with a large material contribution from subducted oceanic crust (35–90% slab-derived mass), including sediment (up to 4% sediment-derived mass, representing approximately 15% of all sediment subducted). Variable isotopic and trace-element ratios observed for AVZ adakites, which span the range reported for adakites world-wide, require multistage models involving melting of different proportions of subducted basalt and sediment, as well as an important material contribution from both the overlying mantle wedge (10–50% mass contribution) and continental crust (0–30% mass contribution). Andesites from Cook Island volcano, located in the southernmost AVZ (54°S) where subduction is more oblique, have MORB-like Sr, Nd, Pb and O isotopic composition and trace-element ratios. These can be modeled by small degrees (2–4%) of partial melting of eclogitic MORB, yielding a tonalitic parent (intermediate SiO2, CaO/Na2O>1), followed by limited interaction of this melt with the overlying mantle (≥90% MORB melt, ≤10% mantle), but only very little (≤1%) or no participation of either subducted sediment or crust. In contrast, models for the magmatic evolution of Burney (52°S), Reclus (51°S) and northernmost AVZ (49–50°S) andesites and dacites require melting of a mixture of MORB and subducted sediment, followed by interaction of this melt not only with the overlying mantle, but the crust as well. Crustal assimilation and fractional crystallization (AFC) processes and the mass contribution from the crust become more significant northwards in the AVZ as the angle of convergence becomes more orthogonal. Received: 1 March 1995 / Accepted: 13 September 1995  相似文献   

14.
 Spectroscopic measurements of water in glass inclusions in pyroxene from boninite samples from the Bonin Islands conclusively document the high (2.8–3.2 wt %) primary water contents of boninite magmas. Associated quenched glass from pillow lava rims have slightly lower (2.2–2.4 wt %) water contents, suggesting that minor amounts of degassing occurred between the time of melt entrapment in the orthopyroxenes and subsequent eruption on the sea floor. Some zonation of molecular water contents in pillow rim glasses was observed. OH contents of the host orthopyroxene phenocrysts were also measured, allowing for the calculation of partition coefficients for water between boninite melt and orthopyroxene. These values (0.003–0.004) for water partitioning between orthopyroxene and mafic melts may help constrain petrogenetic models of mantle-derived magmas. Received: 20 September 1993 / Accepted: 26 June 1994  相似文献   

15.
Amphibole, while uncommon as a phenocryst in arc lavas, is increasingly recognized as a key constituent in the petrogenesis of arc magmas. Fractional crystallization of water-saturated arc magmas in the lower crust can yield substantial volumes of amphibole cumulates that, depending on the pressure of crystallization, may also contain garnet. Fractionation of this higher pressure assemblage has been invoked as a possible mechanism in the production of magmas that contain an adakitic signature. This study examines newly dated Late-Oligocene (25.37 ± 0.13 Ma) hypabyssal amphibole-rich andesites from Cerro Patacon in the Panama Canal region. These andesites contain nodules of amphibole cumulates that are ~4–6 cm in diameter and are almost entirely composed of 5–10-mm amphibole crystals (dominantly ferri-tschermakite). Geochemical variations, optical and chemical zoning of the Cerro Patacon amphiboles are consistent with their evolution in a crystal mush environment that had at least one recharge event prior to entrainment in the host andesite. Amphiboles hosted within the cumulate nodules differ from those hosted in the Cerro Patacon andesite and contain consistently higher values of Ti. We suggest these nodules represent the early stages of fractionation from a water-saturated magma. Cerro Patacon andesites have REE concentrations that plot at the most depleted end of Central American Arc magmas and exhibit a distinctive depletion in the middle REE. These geochemical and petrographic observations strongly support significant amphibole fractionation during formation of the Cerro Patacon andesite, consistent with the petrographic evidence. Fractionation of water-saturated magmas is a mechanism by which adakitic compositions may be produced, and the Cerro Patacon andesites do exhibit adakite-like geochemical characteristics (e.g., elevated Sr/Y; 28–34). However, the relatively elevated concentrations of Y and HREE indicate garnet was not stable in the fractionating assemblage during this early stage of arc development.  相似文献   

16.
During its 1800-year-long persistent activity the Stromboli volcano has erupted a highly porphyritic (HP) volatile-poor scoriaceous magma and a low porphyritic (LP) volatile-rich pumiceous magma. The HP magma is erupted during normal Strombolian explosions and lava effusions, while the LP one is related to more energetic paroxysms. During the March–April 2003 explosive activity, Stromboli ejected two typologies of juvenile glassy ashes, namely highly vesicular LP shards and volatile-poor HP shards. Their textural and in situ chemical characteristics are used to unravel mutual relationships between HP and LP magmas, as well as magma dynamics within the shallow plumbing system. The mantle-normalized trace element patterns of both ash types show the typical arc-lava pattern; however, HP glasses possess incompatible element concentrations higher than LP glasses, along with Sr and Eu negative anomalies. HP shards are generally characterized by higher Li contents (to ~20 ppm) and lower δ7Li values (+1.2 to −3.8‰) with respect to LP shards (Li contents of 7–14 ppm and δ7Li ranging between +4.6 and +0.9‰). Fractional crystallization models based on major and trace element compositions, combined with a degassing model based on open-system Rayleigh distillation and on the assumption that melt/fluidDLi > 1, show that abundant (~30%) plagioclase precipitation and variable degrees of degassing can lead the more primitive LP magma to evolve toward a differentiated (isotopically lighter) HP magma ponding in the upper conduit and undergoing slow continuous degassing-induced crystallization. This study also evidences that in March 2003 Stromboli volcano poured out a small early volume of LP magma that traveled slower within the conduit with respect to later and larger volumes of fast ascending LP magma erupted during the April 5 paroxysm. The different ascent rates and cooling rates of the two LP magma batches (i.e., pre- and post-paroxysm) resulted in small, but detectable, differences in their chemical signatures. Finally, this study highlights the high potential of in situ investigations of juvenile glassy ashes in petrologic and geochemical monitoring the volcanic activity and of Li isotopes as tracers of degassing processes within the shallow plumbing system.  相似文献   

17.
Detailed geological and petrological-geochemical study of rocks of the lava complex of Young Shiveluch volcano made it possible to evaluate the lava volumes, the relative sequence in which the volcanic edifice was formed, and the minimum age of the onset of eruptive activity. The lavas of Young Shiveluch are predominantly magnesian andesites and basaltic andesites of a mildly potassic calc-alkaline series (SiO2 = 55.0–63.5 wt %, Mg# = 55.5–68.9). Geologic relations and data on the mineralogy and geochemistry of rocks composing the lava complex led us to conclude that the magnesian andesites of Young Shiveluch volcano are of hybrid genesis and are a mixture of silicic derivatives and a highly magnesian magma that was periodically replenished in the shallow-depth magmatic chamber. The fractional crystallization of plagioclase and hornblende at the incomplete segregation of plagioclase crystals from the fractionating magmas resulted in adakitic geochemical parameters (Sr/Y = 50–71, Y < 18 ppm) of the most evolved rock varieties. Our results explain the genesis of the rock series of Young Shiveluch volcano without invoking a model of the melting of the subducting Pacific slab at its edge.  相似文献   

18.
Near-liquidus crystallization experiments have been carried out on two basalts (12.5 and 7.8 wt% MgO) from Soufriere, St Vincent (Lesser Antilles arc) to document the early stages of differentiation in calc-alkaline magmas. The water-undersaturated experiments were performed mostly at 4 kbar, with 1.6 to 7.7 wt% H2O in the melt, and under oxidizing conditions (ΔNNO = −0.8 to +2.4). A few 10 kbar experiments were also performed. Early differentiation of primitive, hydrous, high-magnesia basalts (HMB) is controlled by ol + cpx + sp fractionation. Residual melts of typical high-alumina basalt (HAB) composition are obtained after 30–40% crystallization. The role of H2O in depressing plagioclase crystallization leads to a direct relation between the Al2O3 content of the residual melt and its H2O concentration, calibrated as a geohygrometer. The most primitive phenocryst assemblage in the Soufriere suite (Fo89.6 olivine, Mg-, Al- and Ti-rich clinopyroxene, Cr–Al spinel) crystallized from near-primary (Mg# = 73.5), hydrous (∼5 wt% H2O) and very oxidized (ΔNNO = +1.5–2.0) HMB liquids at middle crustal pressures and temperatures from ∼1,160 to ∼1,060°C. Hornblende played no role in the early petrogenetic evolution. Derivative HAB melts may contain up to 7–8 wt% dissolved H2O. Primitive basaltic liquids at Soufriere, St Vincent, have a wide range of H2O concentrations (2–5 wt%).  相似文献   

19.
Voluminous andesite and dacite lavas of Daisen volcano, SW Japan,contain features suggesting the reverse of normal fractionation(anti-fractionation), in the sense that magma genesis progressedfrom dacite to andesite, accompanied by rises in temperature.A positive correlation exists between phenocryst content (0–40vol. %) and wt % SiO2 (61–67%). Phenocryst-rich dacitescontain hornblende and plagioclase that are generally unaltered,clear, and euhedral. However, phenocryst-poor rocks containsieve-textured plagioclase, resorbed plagioclase, and opacitein which hornblendes are pseudomorphed. Some Daisen rocks containtwo coexisting pyroxenes. Many orthopyroxene phenocrysts fromtwo-pyroxene lavas have high-Ca overgrowth rims (up to 50 µm),a feature consistent with crystallization from a higher-temperaturemagma than the core. Rim compositions are similar from phenocrystto phenocryst in individual samples. Temperatures of 800–900°Care obtained from the cores, whereas temperatures of 1000–1100°Care indicated for the rims. Lavas ranging from aphyric andesite(  相似文献   

20.
The Huerto Andesite is the largest of several andesite sequences interlayered with the large-volume ash-flow tuffs of the San Juan volcanic field, Colorado. Stratigraphically this andesite is between the region's largest tuff (the 27.8 Ma, 3,000 km3 Fish Canyon Tuff) and the evolved product of the Fish Canyon Tuff (the 27.4 Ma, 1,000 km3 Carpenter Ridge Tuff), and eruption was from vents located approximately 20–30 km southwest and southeast of calderas associated with these ashflow tuffs. Olivine phenocrysts are present in the more mafic, SiO2-poor samples of andesite, hence the parent magma was most likely a mantle-derived basaltic magma. The bulk compositions of the olivine-bearing andesites compared to those containing orthopyroxene phenocrysts suggest the phenocryst assemblage equilibrated at 2–5 kbar. Two-pyroxene geothermometry yields equilibrium temperatures consistent with near-peritectic magmas at 2–5 kbar. Fractionation of phenocryst phases (olivine or orthopyroxene + clinopyroxene + plagioclase + Ti-magnetite + apatite) can explain most major and trace element variations of the andesites, although assimilation of some crustal material may explain abundances of some highly incompatible trace elements (Rb, Ba, Nb, Ta, Zr, Hf) in the most evolved lavas. Despite the great distance of the San Juan volcanic field from the inferred Oligocene destructive margin, the Huerto Andesite is similar to typical plate-margin andesites: both have relatively low abundances of Nb and Ta and similar values for trace-element ratios such as La/Yb and La/Nb.Deriving the Fish Canyon and Carpenter Ridge Tuffs by crystal fractionation from the Huerto Andesite cannot be dismissed by major-element models, although limited trace-element data indicate the tuffs may not have been derived by such direct evolution. Alternatively, heat of crystallization released as basaltic magmas evolved to andesitic compositions may have caused melting of crust to produce the felsic-ash flows. Mafic magmas may have been gravitationally trapped below lighter felsic magmas; mafic magmas which ascended to the surface probably migrated upwards around the margins of silicic chambers, as suggested by the present-day outcrops of andesitic units around the margins of recognized ash-flow calderas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号