首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 603 毫秒
1.
The sequential particle micromixing model (SPMMM) is used to estimate concentration fluctuations in plumes dispersing into a canopy flow. SPMMM uses the familiar single-particle Lagrangian stochastic (LS) trajectory framework to pre-calculate the required conditional mean concentrations, which are then used by an interaction by exchange with the conditional mean (IECM) micromixing model to predict the higher-order fluctuations of the scalar concentration field. The predictions are compared with experimental wind-tunnel dispersion data for a neutrally stratified canopy flow, and with a previously reported implementation using simultaneous particle trajectories. The two implementations of the LS–IECM model are shown to be largely consistent with one another and are able to simulate dispersion in a canopy flow with fair to good accuracy.  相似文献   

2.
The knowledge of the concentration probability density function (pdf) is of importance in a number of practical applications, and a Lagrangian stochastic (LS) pdf model has been developed to predict statistics and concentration pdf generated by continuous releases of non-reactive and reactive substances in canopy generated turbulence. Turbulent dispersion is modelled using a LS model including the effects of wind shear and along-wind turbulence. The dissipation of concentration fluctuations associated with turbulence and molecular diffusivity is simulated by an Interaction by Exchange with the Conditional Mean (IECM) micromixing model. A general procedure to obtain the micromixing time scale needed in the IECM model useful in non-homogeneous conditions and for single and multiple scalar sources has been developed. An efficient algorithm based on a nested grid approach with particle splitting, merging techniques and time averaging has been used, thus allowing the calculation for cases of practical interest. The model has been tested against wind-tunnel experiments of single line and multiple line releases in a canopy layer. The approach accounted for chemical reactions in a straightforward manner with no closure assumptions, but here the validation is limited to non-reacting scalars.  相似文献   

3.
A theoretical requirement of the Interaction by Exchange with the Conditional Mean (IECM) micromixing model is that the mean concentration field produced by it must be consistent with the mean concentration field produced by a traditional Lagrangian stochastic (LS) marked particle model. We examine the violation of this requirement that occurs in a coupled LS–IECM model when unrealistically high particle velocities occur. No successful strategy was found to mitigate the effects of these rogue trajectories. It is our hope that this work will provide renewed impetus for investigation into rogue trajectories and methods to eliminate them from LS models.  相似文献   

4.
A model was developed to predict the modification with fetch in offshore flow of mixing ratio, air–water exchange flux, and near-surface vertical gradients in mixing ratio of a scalar due to air–water exchange. The model was developed for planning and interpretation of air–water exchange flux measurements in the coastal zone. The Lagrangian model applies a mass balance over the internal boundary layer (IBL) using the integral depth scale approach, previously applied to development of the nocturnal boundary layer overland. Surface fluxes and vertical profiles in the surface layer were calculated using the NOAA COARE bulk algorithm and gas transfer model (e.g., Blomquist et al. 2006, Geophys Res Lett 33:1–4). IBL height was assumed proportional to the square root of fetch, and estimates of the IBL growth rate coefficient, α, were obtained by three methods: (1) calibration of the model to a large dataset of air temperature and humidity modification over Lake Ontario in 1973, (2) atmospheric soundings from the 2004 New England Air Quality Study and (3) solution of a simplified diffusion equation and an estimate of eddy diffusivity from Monin–Obukhov similarity theory (MOST). Reasonable agreement was obtained between the calibrated and MOST values of α for stable, neutral, and unstable conditions, and estimates of α agreed with previously published parametrizations that were valid for the stable IBL only. The parametrization of α provides estimates of IBL height, and the model estimates modification of scalar mixing ratio, fluxes, and near-surface gradients, under conditions of coastal offshore flow (0–50 km) over a wide range in stability.  相似文献   

5.
6.
An open-path cavity ring-down spectroscopy (CRDS) instrument for measurement of atmospheric iodine monoxide (IO) radicals has been tested in the laboratory and subsequently deployed in Roscoff on the north-west coast of France as part of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) project in September 2006. In situ measurements are reported of local IO mixing ratios in the marine boundary layer. To obtain these mixing ratios, accurate absorption cross sections of IO are required at the selected wavelengths used for spectroscopic measurements. Absorption cross sections at the bandheads of the IO A2Π3/2–X2Π3/2 (3,0) and (2,0) vibronic bands were thus verified by a combination of spectral simulation methods, inter-comparison of prior determinations of cross-sections at high and low spectral resolution, and by measurement of rates of loss of IO by its self-reaction. The performance of the open-path CRDS instrument was tested by measuring concentrations of NO2 in ambient air, both within and outside the laboratory, with results that were in excellent agreement with a previously validated continuous wave CRDS apparatus for NO2 detection. During the RHaMBLe campaign, the open-path CRDS instrument was located within a few metres of the shoreline and operated at wavelengths close to 435 nm to detect the absorption of light by trace levels of IO. The IO mixing ratios were obtained on two days, peaked close to low tide, and were approximately 5–10 times higher than values calculated from column densities previously reported by long-path, differential optical absorption spectroscopy (DOAS) in coastal regions. The typical detection limit of the instrument was estimated to be 10 pptv of IO, with some fluctuation around this value depending on the conditions of wind and atmospheric aerosol particles, and the total accumulation time was 30 s for each data point. The observations of relatively high concentration of IO, compared to the values previously reported by DOAS, are consistent with the concurrent observations using a LIF (Laser induced Fluorescence) instrument (Whalley et al. in press). The first such measurements of localized IO by CRDS and LIF should contribute to an improved understanding of the chemistry of halogen compounds and the formation of iodine oxide aerosol particles in the marine boundary layer.  相似文献   

7.
Degradation of isoprene, m-xylene, n-octane, propene, and methacrolein by hydroxyl radicals has been studied in the simulation chamber SAPHIR under burden of trace gases as they are typical for the moderately polluted planetary boundary layer. Measured time series of the hydrocarbon mixing ratios and the OH concentrations were used to determine the rate constants. The hydrocarbons were measured with gas chromatography and proton transfer reaction mass spectrometry. OH was measured with the Jülich DOAS (differential optical absorption spectroscopy) instrument. In all cases except methacrolein good agreement was found with the reference rate constants taken from the Master Chemical Mechanism (MCM3.1). The data for methacrolein are consistent with the results of Karl et al. (J. Atmos. Chem 55, 2006, doi:) who reported a 12% smaller value. The degradation of hydrocarbons provides an independent method to analyse precision and accuracy of the OH measurements. A precision of better than 4% over a period of nearly 4 months was found. The accuracy is within the limitations given by the light absorption cross section of OH. Both results are consistent with earlier results by Hausmann et al. (J. Geophys. Res. 102:16011–16022, 1997).  相似文献   

8.
A recently developed dynamic surface roughness model (Anderson and Meneveau, J Fluid Mech 679:288–314, 2011) for large-eddy simulation (LES) of atmospheric boundary-layer flow over multi-scale topographies is applied to boundary-layer flow over several types of fluvial-like landscapes. The landscapes are generated numerically with simulation of a modified Kardar–Parisi–Zhang equation (Passalacqua et al., Water Resour Res 42:WOD611, 2006). These surfaces possess the fractal-like channel network and anisotropic features often found in real terrains. The dynamic model is shown to lead to accurate flow predictions when the surface-height distributions exhibit power-law scaling (scale invariance) in the prevalent mean flow direction. In those cases, the LES provide accurate predictions (invariant to resolution) of mean velocity profiles. Conversely, some resolution dependence is found for applications in which the landscape’s streamwise spectra do not exhibit pure power-law scaling near wavenumbers corresponding to the LES grid resolution.  相似文献   

9.
An attempt is made to integrate subgrid scale scheme on the work of Dimri and Ganju (Pure Appl Geophys 167:1–24, 2007) to understand the overall nature of surface heterogeneity and landuse variability along with resolvable finescale micro/meso scale circulation over the Himalayan region, which is having different altitudes and orientations causing prevailing weather conditions to be complex. This region receives large amount of precipitation due to eastward moving low-pressure synoptic weather systems, called western disturbances, during winter season (December, January, February—DJF). Surface heterogeneity and landuse variability of the Himalayan region gives rise to numerous micro/meso scale circulation along with prevailing weather. Therefore, in the present work, a mosaic type parameterization of subgrid scale topography and landuse within a framework of a regional climate model (RegCM3) is extended to study interseasonal variability of surface climate during a winter season (October 1999–March 2000) of the work of Dimri and Ganju (Pure Appl Geophys 167:1–24, 2007). In this scheme, meteorological variables are disaggregated from the coarse grid to the fine grid, land surface calculations are then performed separately for each subgrid cell, and surface fluxes are calculated and reaggregated onto the coarse grid cell for input to the atmospheric model. By doing so, resolvable finescale structures due to surface heterogeneity and landuse variability at coarse grid are subjected to parameterize at regular finescale surface subgrid. Model simulations show that implementation of subgrid scheme presents more realistic simulation of precipitation and surface air temperature. Influence of topographic elevation and valleys is better represented in the scheme. Overall, RegCM3 with subgrid scheme provides more accurate representation of resolvable finescale atmospheric/surface circulations that results in explaining mean variability in a better way.  相似文献   

10.
A chemical substance being in a high-disperse state (fine aerosol particles and very thin films) in the environment reveals specific chemical and physicochemical features which differ from the processes in a relatively coarse disperse object and, even more, in ordinary liquid and solid “test-tube” assays. The kinetics and the mechanism of the direct and sensitized photochemical destruction of pesticide compound fipronil C12H4Cl2F6N4OS have been experimented as applied to the aerosol particles ≈0.12–1.3 μm in diameter and thin films ≈0.02–0.6 μm thick on the glass plates. A non-photochemical (“dark”) reaction of fipronil molecules with the OH radicals which spontaneously proceeds in the ambient air was also observed. Quantitative estimations based on experimental results show that the fipronil pollutant, observed in the atmosphere in the form of levitated aerosols, can convert chemically in the above reaction with the OH radicals for a very short time (from several minutes for a particle 2 μm in diameter to 12–24 h for a particle of 20–30 μm). The fipronil residues presented on foliage either in the form of 1–20 μm films or as a group of deposited 2–30 μm aerosols react under sunlight by two photochemical pathways (photooxidation and photodecay). The lifetime of these residues in the ambient conditions is expected to be 11–25 days. Besides, adding a small amount of the Shirvanol 2 sensitizer to the fipronil formulation, one can increase the overall decomposition rate to 8–12 days.  相似文献   

11.
The spatial peak surface shear stress tS¢¢{\tau _S^{\prime\prime}} on the ground beneath vegetation canopies is responsible for the onset of particle entrainment and its precise and accurate prediction is essential when modelling soil, snow or sand erosion. This study investigates shear-stress partitioning, i.e. the fraction of the total fluid stress on the entire canopy that acts directly on the surface, for live vegetation canopies (plant species: Lolium perenne) using measurements in a controlled wind-tunnel environment. Rigid, non-porous wooden blocks instead of the plants were additionally tested for the purpose of comparison since previous wind-tunnel studies used exclusively artificial plant imitations for their experiments on shear-stress partitioning. The drag partitioning model presented by Raupach (Boundary-Layer Meteorol 60:375–395, 1992) and Raupach et al. (J Geophys Res 98:3023–3029, 1993), which allows the prediction of the total shear stress τ on the entire canopy as well as the peak (tS ¢¢/t)1/2{(\tau _S ^{\prime\prime}/\tau )^{1/2}} and the average (tS/t)1/2{(\tau _S^{\prime}/\tau )^{1/2}} shear-stress ratios, is tested against measurements to determine the model parameters and the model’s ability to account for shape differences of various roughness elements. It was found that the constant c, needed to determine the total stress τ and which was unspecified to date, can be assumed a value of about c = 0.27. Values for the model parameter m, which accounts for the difference between the spatial surface average tS{\tau _S^{\prime}} and the peak tS ¢¢{\tau _S ^{\prime\prime}} shear stress, are difficult to determine because m is a function of the roughness density, the wind velocity and the roughness element shape. A new definition for a parameter a is suggested as a substitute for m. This a parameter is found to be more closely universal and solely a function of the roughness element shape. It is able to predict the peak surface shear stress accurately. Finally, a method is presented to determine the new a parameter for different kinds of roughness elements.  相似文献   

12.
Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1 × 1) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1 × 1 provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.  相似文献   

13.
We examine the performance of two steady-state models, a numerical solution of the advection-diffusion equation and the Gaussian plume-model-based AERMOD (the American Meteorological Society/Environmental Protection Agency Regulatory Model), to predict dispersion for surface releases under low wind-speed conditions. A comparison of model estimates with observations from two tracer studies, the Prairie Grass experiment and the Idaho Falls experiment indicates that about 50% of the concentration estimates are within a factor of two of the observations, but the scatter is large: the 95% confidence interval of the ratio of the observed to estimated concentrations is about 4. The model based on the numerical solution of the diffusion equation in combination with the model of Eckman (1994, Atmos Environ 28:265–272) for horizontal spread performs better than AERMOD in explaining the observations. Accounting for meandering of the wind reduces some of the overestimation of concentrations at low wind speeds. The results deteriorate when routine one-level observations are used to construct model inputs. An empirical modification to the similarity estimate of the surface friction velocity reduces the underestimation at low wind speeds.  相似文献   

14.
Height, time, and latitude dependences are analyzed of zonal mean vertical component of wind velocity for the period of 1992–2006 from the UKMO atmospheric general circulation model. It is shown that the ascending wind speed can provide vertical transport, against gravity, of rather large (up to 3–5μm) aerosol particles with density to 1.0–1.5 g/cm3 in the stratosphere and mesosphere. The wind velocity vertical component is supposedly a significant factor of particle motion up to 30–40–km levels and can affect sedimentation rate and residence time of the aerosol particles in the stratosphere. Structure of the mean vertical component of wind velocity allows occurrence of dynamically stable aerosol layers in the middle stratosphere.  相似文献   

15.
Evaporation from heterogeneous and sparse canopies is often represented by multi-source models that take the form of electrical analogues based upon resistance networks. The chosen representation de facto imposes a specific form on the composition of elementary fluxes and resistances. The two- and three-source representations are discussed in relation to previous work where some ambiguities arise. Using the two-layer model (Shuttleworth and Wallace, Q J R Meteorol Soc 111:839–855, 1985) and the clumped (three-source) model (Brenner and Incoll, Agric For Meteorol 84:187–205, 1997) as a basis, it is shown that the stomatal characteristics of the foliage (amphistomatous or hypostomatous) generate different formulations. New generic and more concise equations, valid in both configurations, are derived. The differences between the patch and layer approaches are outlined and the consequences they have on the composition and formulation of component fluxes are specified. Then, the issue of calculating the effective resistances of the single-layer model from multi-source representations is addressed. Finally, a sensitivity analysis is carried out to illustrate the significance of the new formulations.  相似文献   

16.
We analyze climate change in a cost–benefit framework, using the emission and concentration profiles of Wigley et al. (Nature 379(6562):240–243, 1996). They present five scenarios that cover the period 1990–2300 and are designed to reach stabilized concentration levels of 350, 450, 550, 650 and 750 ppmv, respectively. We assume that the damage cost in each year t is proportional to the corresponding gross world product and the square of the atmospheric temperature increase (ΔT(t)). The latter is estimated with a simple two-box model (representing the atmosphere and deep ocean). Coupling the damage cost with the abatement cost, we interpolate between the five scenarios to find the one that is optimal in the sense of minimizing the sum of discounted annual (abatement plus damage) costs over a time horizon of N years. Our method is simpler than ‘traditional’ models with the same purpose, and thus allows for a more transparent sensitivity study with respect to the uncertainties of all parameters involved. We report our central result in terms of the stabilized emission level E o and concentration level p o (i.e. their values at t = 300 years) of the optimal scenario. For the central parameter values (that is, N = 150 years, a discount rate r dis = 2%/year and a growth rate r gro = 1%/year of gross world product) we find E o  = 8.0 GtCO2/year and p o = 496 ppmv. Varying the parameters over a wide range, we find that the optimal emission level remains within a remarkably narrow range, from about 6.0 to 12 GtCO2/year for all plausible parameter values. To assess the significance of the uncertainties we focus on the social cost penalty, defined as the extra cost incurred by society relative to the optimum if one makes the wrong choice of the emission level as a result of erroneous damage and abatement cost estimates. In relative terms the cost penalty turns out to be remarkably insensitive to errors. For example, if the true damage costs are three times larger or smaller than the estimate, the total social cost of global climate change increases by less than 20% above its minimum at the true optimal emission level. Because of the enormous magnitude of the total costs involved with climate change (mitigation), however, even a small relative error implies large additional expenses in absolute terms. To evaluate the benefit of reducing cost uncertainties, we plot the cost penalty as function of the uncertainty in relative damage and abatement costs, expressed as geometric standard deviation and standard deviation respectively. If continued externality analysis reduces the geometric standard deviation of relative damage cost estimates from 5 to 4, the benefit is 0.05% of the present value G tot of total gross word product over 150 years (about $3.9 × 1015), and if further research reduces the standard deviation of relative abatement costs from 1 to 0.5, the benefit is 0.03% of G tot .  相似文献   

17.
A large-eddy simulation (LES) with the dynamic Smagorinsky-Germano subgrid-scale (SGS) model is used to study the dispersion of solid particles in a turbulent boundary layer. Solid particles are tracked in a Lagrangian way. The instantaneous velocity of the surrounding fluid is considered to have a large-scale part (directly computed by the LES) and a small-scale part. The SGS velocity of the surrounding fluid is given by a three-dimensional Langevin model written in terms of SGS statistics at a mesh level. An appropriate Lagrangian correlation time scale is considered in order to include the influences of gravity and inertia of the solid particle. Inter-particle collisions and the influence of particles on the mean flow are also taken into account. The results of the LES are compared with the wind-tunnel experiments of Nalpanis et al. (1993 J Fluid Mech 251: 661–685) and of Tanière et al. (1997 Exp in Fluids 23:463–471) on sand particles in saltation and in modified saltation, respectively.  相似文献   

18.
In order to estimate the impacts of buildings on air pollution dispersion, numerical simulations are performed over an idealized urban area, modelled as regular rows of large rectangular obstacles. The simulations are evaluated with the results of the Mock Urban Setting Test (MUST), which is a near full-scale experiment conducted in Utah’s West Desert area: it consists of releases of a neutral gas in a field of regularly spaced shipping containers. The numerical simulations are performed with the model Mercure_Saturne, which is a three-dimensional computational fluid dynamics code adapted to atmospheric flow and dispersion simulations. It resolves complex geometries and uses, in this study, a k closure for the turbulence model. Sensitivity studies focus on how to prescribe the inflow conditions for turbulent kinetic energy. Furthermore, different sets of coefficients available in the literature for the k closure model are tested. Twenty MUST trials with different meteorological conditions are simulated and detailed analyses are performed for both the dynamical variables and average concentration. Our results show overall good agreement according to statistical comparison parameters, with a fraction of predictions for average concentration within a factor of two of observations of 67.1%. The set of simulations offers several inflow wind directions and allows us to emphasize the impact of elongated buildings, which create a deflection of the plume centerline relative to the upstream wind direction.  相似文献   

19.
A modification of the most popular two-equation (E–φ) models, taking into account the plant drag, is proposed. Here E is the turbulent kinetic energy (TKE) and φ is any of the following variables: El (product of E and the mixing length l), (dissipation rate of TKE), and ω (specific dissipation of TKE, ). The proposed modification is due to the fact that the model constants estimated experimentally for ‘free-air’ flow do not allow for adequate reconstruction of the ratio between the production and dissipation rates of TKE in the vegetation canopy and have to be adjusted. The modification is universal, i.e. of the same type for all E–φ models considered. The numerical experiments carried out for both homogeneous and heterogeneous plant canopies with E–φ models (and with the El model taken as a kind of reference) show that the modification performs well. They also suggest that E– and E–ω schemes are more promising than the EEl scheme for canopy flow simulation since they are not limited by the need to use a wall function.In addition, a new parameterization for enhanced dissipation within the plant canopy is derived. It minimizes the model sensitivity to C μ, the key parameter for two-equation schemes, and whose estimates unfortunately vary considerably from experiment to experiment. The comparison of results of new modified E– and E –ω models with observations from both field and wind-tunnel experiments shows that the proposed parameterization is quite robust. However, because of uncertainties with the turbulence Prandtl and Schmidt numbers for the E– model within the canopy, the E–ω model is recommended for future implementation, with the suggested modifications.  相似文献   

20.
The limited-length-scale k-e{k-\varepsilon} model proposed by Apsley and Castro for the atmospheric boundary layer (Boundary-Layer Meteorol 83(1):75–98, 1997) is revisited with special attention given to its predictions in the constant-stress surface layer. The original model proposes a modification to the length-scale-governing e{\varepsilon} equation that ensures consistency with surface-layer scaling in the limit of small m/ max (where m is the mixing length and max its maximum) and yet imposes a limit on m as m/ max approaches one. However, within the equilibrium surface layer and for moderate values of z/ max, the predicted profiles of velocity, mixing length, and dissipation rate using the Apsley and Castro model do not coincide with analytical solutions. In view of this, a general e{\varepsilon} transport equation is derived herein in terms of an arbitrary desired mixing-length expression that ensures exact agreement with corresponding analytical solutions for both neutral and stable stability. From this result, a new expression for Ce3{C_{\varepsilon3}} can be inferred that shows this coefficient tends to a constant only for limiting values of z/L; and, furthermore, that the values of Ce3{C_{\varepsilon3}} for z/L → 0 and z/L →∞ differ by a factor of exactly two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号