首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The 65 Ma Chicxulub impact structure, Mexico, with a diameter of ~180 km is the focus of geoscientific research because of its link to the mass extinction event at the Cretaceous‐Tertiary (K/T) boundary. Chicxulub, now buried beneath thick post‐impact sediments, is probably one of the best‐preserved terrestrial impact structures known. Because of its inaccessibility, only limited samples on the impact lithologies from a few drill cores are available. We report major element and Sr‐, Nd‐, O‐, and C‐isotopic data for Chicxulub impact‐melt lithologies and basement clasts in impact breccias of drill cores C‐1 and Y‐6, and for melt particles in the Chicxulub ejecta horizon at the K/T boundary in Beloc, Haiti. The melt lithologies with SiO2 ranging from 58 to ~63 wt% show significant variations in the content of Al, Ca, and the alkalies. In the melt matrix samples, δ13C of the calcite is about ?3%o. The δ18O values for the siliceous melt matrices of Y‐6 samples range from 9.9 to 12.4%o. Melt lithologies and the black Haitian glass have rather uniform 87Sr/86Sr ratios (0.7079 to 0.7094); only one lithic fragment displays 87Sr/86Sr of 0.7141. The Sr model ages TSrUR for most lithologies range from 830 to 1833 Ma; unrealistic negative model ages point to an open Rb‐Sr system with loss of Rb in a hydrothermal process. The 143Nd/144Nd ratios for all samples, except one basement clast with 143Nd/144Nd of 0.5121, cluster at 0.5123 to 0.5124. In an ?Nd‐?Sr diagram, impactites plot in a field delimited by ?Nd of ?2 to ?6, and ?Sr of 55 to 69. This field is not defined by the basement lithologies described to occur as lithic clasts in impact breccias and Cretaceous sediments. At least one additional intermediate to mafic precursor component is required to explain the data.  相似文献   

2.
Abstract— The suevite breccia of the Chicxulub impact crater, Yucatàn, Mexico, is more variable and complex in terms of composition and stratigraphy than suevites observed at other craters. Detailed studies (microscope, electron microprobe, SEM, XRF) have been carried out on a noncontinuous set of samples from the drill hole Yucatàn 6 (Y6) located 50 km SW from the center of the impact structure. Three subunits can be distinguished in the suevite: the upper unit is a fine‐grained carbonate‐rich suevite breccia with few shocked basement clasts, mostly altered melt fragments, and formerly melted carbonate material; the middle suevite is a coarse‐grained suevite with shocked basement clasts and altered silicate melt fragments; the lower suevite unit is composed of shocked basement and melt fragments and large evaporite clasts. The matrix of the suevite is not clastic but recrystallized and composed mainly of feldspar and pyroxene. The composition of the upper members of the suevite is dominated by the sedimentary cover of the Yucatàn target rock. With depth in well Y6, the amount of carbonate decreases and the proportion of evaporite and silicate basement rocks increases significantly. Even at the thin section scale, melt phases of different chemistry can be identified, showing that no widespread homogenization of the melt took place. The melt compositions also reflect the heterogeneity of the deep Yucatàn basement. Calcite with characteristic feathery texture indicates the existence of formerly pure carbonate melt. The proportion of carbonate to evaporite clasts is less than 5:1, except in the lower suevite where large evaporite clasts are present. This proportion constrains the amount of CO2 and SOX released by the impact event.  相似文献   

3.
Abstract— The Chicxulub Scientific Drilling Project (CSDP), Mexico, produced a continuous core of material from depths of 404 to 1511 m in the Yaxcopoil‐1 (Yax‐1) borehole, revealing (top to bottom) Tertiary marine sediments, polymict breccias, an impact melt unit, and one or more blocks of Cretaceous target sediments that are crosscut with impact‐generated dikes, in a region that lies between the peak ring and final crater rim. The impact melt and breccias in the Yax‐1 borehole are 100 m thick, which is approximately 1/5 the thickness of breccias and melts exposed in the Yucatán‐6 exploration hole, which is also thought to be located between the peak ring and final rim of the Chicxulub crater. The sequence and composition of impact melts and breccias are grossly similar to those in the Yucatán‐6 hole. Compared to breccias in other impact craters, the Chicxulub breccias are incredibly rich in silicate melt fragments (up to 84% versus 30 to 50%, for example, in the Ries). The melt in the Yax‐1 hole was produced largely from the silicate basement lithologies that lie beneath a 3 km‐ thick carbonate platform in the target area. Small amounts of immiscible molten carbonate were ejected with the silicate melt, and clastic carbonate often forms the matrix of the polymict breccias. The melt unit appears to have been deposited while molten but brecciated after solidification. The melt fragments in the polymict breccias appear to have solidified in flight, before deposition, and fractured during transport and deposition.  相似文献   

4.
The Lonar crater is a ~0.57‐Myr‐old impact structure located in the Deccan Traps of the Indian peninsula. It probably represents the best‐preserved impact structure hosted in continental flood basalts, providing unique opportunities to study processes of impact cratering in basaltic targets. Here we present highly siderophile element (HSE) abundances and Sr‐Nd and Os isotope data for target basalts and impactites (impact glasses and impact melt rocks) from the Lonar area. These tools may enable us to better constrain the interplay of a variety of impact‐related processes such as mixing, volatilization, and contamination. Strontium and Nd isotopic compositions of impactites confirm and extend earlier suggestions about the incorporation of ancient basement rocks in Lonar impactites. In the Re‐Os isochron plot, target basalts exhibit considerable scatter around a 65.6 Myr Re‐Os reference isochron, most likely reflecting weathering and/or magma replenishment processes. Most impactites plot at distinctly lower 187Re/188Os and 187Os/188Os ratios compared to the target rocks and exhibit up to two orders of magnitude higher abundances of Ir, Os, and Ru. Moreover, the impactites show near‐chondritic interelement ratios of HSE. We interpret our results in terms of an addition of up to 0.03% of a chondritc component to most impact glasses and impact melt rocks. The magnitude of the admixture is significantly lower than the earlier reported 12–20 wt% of extraterrestrial component for Lonar impact spherules, reflecting the typical difference in the distribution of projectile component between impact glass spherules and bulk impactites.  相似文献   

5.
Abstract— Libyan Desert Glass (LDG) is an impact‐related, natural glass of still unknown target material. We have determined Rb‐Sr and Sm‐Nd isotopic ratios from seven LDG samples and five associated sandstones from the LDG strewn field in the Great Sand Sea, western Egypt. Planar deformation features were recently detected in quartz from these sandstones. 87Sr/86Sr ratios and ?‐Nd values for LDG range between 0.71219 and 0.71344, and between –16.6 and –17.8, respectively, and hence are distinct from the less radiogenic 87Sr/86Sr ratios of 0.70910–0.71053 and ?‐Nd values from –6.9 to –9.6 for the local sandstones from the LDG strewn field. Previously published isotopic ratios from the Libyan BP and Oasis crater sandstones are generally incompatible with our LDG values. LDG formation undoubtedly occurred at 29 Ma, but neither the Rb‐Sr nor the Sm‐Nd isotopic system were rehomogenised during the impact event, as we can deduce from Pan‐African ages of ?540 Ma determined from the regression lines from a total of 14 LDG samples from this work and the literature. Together with similar Sr and Nd isotopic values for LDG and granitoid rocks from northeast Africa west of the Nile, these findings point to a sandy matrix target material for the LDG derived from a Precambrian crystalline basement, ruling out the Cretaceous sandstones of the former “Nubian Group” as possible precursors for LDG.  相似文献   

6.
Abstract Petrographical and chemical analysis of melt particles and alteration minerals of the about 100 m‐thick suevitic sequence at the Chicxulub Yax‐1 drill core was performed. The aim of this study is to determine the composition of the impact melt, the variation between different types of melt particles, and the effects of post‐impact hydrothermal alteration. We demonstrate that the compositional variation between melt particles of the suevitic rocks is the result of both incomplete homogenization of the target lithologies during impact and subsequent post‐impact hydrothermal alteration. Most melt particles are andesitic in composition. Clinopyroxene‐rich melt particles possess lower SiO2 and higher CaO contents. These are interpreted by mixing of melts from the silicate basement with overlying carbonate rocks. Multi‐stage post‐impact hydrothermal alteration involved significant mass transfer of most major elements and caused further compositional heterogeneity between melt particles. Following backwash of seawater into the crater, palagonitization of glassy melt particles likely caused depletion of SiO2, Al2O3, CaO, Na2O, and enrichment of K2O and FeOtot during an early alteration stage. Since glass is very susceptible to fluid‐rock interaction, the state of primary crystallization of the melt particles had a significant influence on the intensity of the post‐impact hydrothermal mass transfer and was more pronounced in glassy melt particles than in well‐crystallized particles. In contrast to other occurrences of Chicxulub impactites, the Yax‐1 suevitic rocks show strong potassium metasomatism with hydrothermal K‐feldspar formation and whole rock K20 enrichment, especially in the lower unit of the suevitic sequence. A late stage of hydrothermal alteration is characterized by precipitation of silica, analcime, and Na‐bearing Mg‐rich smectite, among other minerals. This indicates a general evolution from a silica‐undersaturated fluid at relatively high potassium activities at an early stage toward a silica‐oversaturated fluid at relatively high sodium activities at later stages in the course of fluid rock interaction.  相似文献   

7.
Abstract– To better constrain the emplacement mechanism of the so‐called “mega‐block zone,” a structurally complex unit of target rocks within the Chicxulub impact structure, the stratigraphic coherence of this zone is tested using its strontium isotopic composition. Forty‐eight samples across the 616 m sequence of deformed Cretaceous rocks in the lower part of the Yaxcopoil‐1 core, drilled by ICDP in 2002, were analyzed for their 87Sr/86Sr isotope ratio. The oceanic anoxic event 2 (OAE2 event), located near the base of the core forms the only stratigraphic anchor point. From this point upward to approximately 1050 m depth, the 87Sr/86Sr trend shows small oscillations, between approximately 0.7074 and 0.7073, characteristic of Cenomanian to Santonian values. This is followed by an increase to approximately 0.7075, similar to the one reported in the seawater strontium curve during the Campanian. Scattered Sr isotope ratios are attributed to local diagenetic effects, such as those expected from the possible presence of hot, impact‐induced dikes and hydrothermal fluid flow, originating from the thick central melt sheet. The absence of Upper Maastrichtian Sr isotope values may result from the removal of upper target lithologies during the impact cratering process. Based on these results, the displaced Cretaceous sequence in Yax‐1 appears to have preserved its stratigraphic coherence. During the modification stage, it probably moved as a whole into the annular basin during collapse of the crater wall, thereby breaking up into discrete units along previously weakened detachment zones. This model is consistent with the emplacement mechanism postulated by Kenkmann et al. (2004) .  相似文献   

8.
Abstract— Neodymium, strontium, and chromium isotopic studies of the LEW86010 angrite established its absolute age and the formation interval between its crystallization and condensation of Allende CAIs from the solar nebula. Pyroxene and phosphate were found to contain ~98% of its Sm and Nd inventory. A conventional 147Sm-143Nd isochron yielded an age of 4.53 ± 0.04 Ga (2 σ) and ?143 Nd = 0.45 ± 1.1. An 146Sm-142Nd isochron gives initial 146Sm/144Sm = 0.0076 ± 0.0009 and ?143 Nd = ?2.5 ± 0.4. The Rb-Sr analyses give initial 87Sr/86Sr (I87Sr) = 0.698972 ± 8 and 0.698970 ± 18 for LEW and ADOR, respectively, relative to 87Sr/86Sr = 0.71025 for NBS987. The difference, ΔI87Sr, between I87Sr for the angrites and literature values for Allende CAIs, corresponds to ~9 Ma of growth in a solar nebula with a CI chondrite value of 87Rb/86Sr = 0.91, or ~5 Ma in a nebula with solar photospheric 87Rb/86Sr = 1.51. Excess 53Cr from extinct 53Mn (t1/2 = 3.7 Ma) in LEW86010 corresponds to initial 53Mn/55Mn = 1.44 ± 0.07 × 10?6 and closure to Cr isotopic homogenization 18.2 ± 1.7 Ma after formation of Allende inclusions, assuming initial 53Mn/55Mn = 4.4 ± 1.0 × 10?5 for the inclusions as previously reported by the Paris group (Birck and Allegre, 1988). The 146Sm/144Sm value found for LEW86010 corresponds to solar system initial (146Sm/144Sm)o = 0.0080 ± 0.0009 for crystallization 8 Ma after Allende, the difference between Pb-Pb ages of angrites and Allende, or 0.0086 ± 0.0009 for crystallization 18 Ma after Allende, using the Mn-Cr formation interval. The isotopic data are discussed in the context of a model in which an undifferentiated “chondritic” parent body formed from the solar nebula ~2 Ma after Allende CAIs and subsequently underwent differentiation accompanied by loss of volatiles. Parent bodies with Rb/Sr similar to that of CI, CM, or CO chondrites could satisfy the Cr and Sr isotopic systematics. If the angrite parent body had Rb/Sr similar to that of CV meteorites, it would have to form slightly later, ~2.6 Ma after the CAIs, to satisfy the Sr and Cr isotopic systematics.  相似文献   

9.
Abstract— U-Th-Pb, Rb-Sr, and Sm-Nd isotopic signatures of corroded, but unaltered, black glassy tektites from Cretaceous-Tertiary (K-T) boundary rock on Haiti are not consistent with their derivation from an impact on MOR-derived oceanic crust or continental regions involving middle Proterozoic or older crustal material. Two single-grain and two batches of these tektites yielded present-day ?Nd = ?3.0 to ?3.4, ?Sr = +55 to 56, 206Pb/204Pb = 18.97; 207Pb/204Pb = 15.74; 208Pb/204Pb = 38.91 values, and Pb, Rb, Sr, Sm, and Nd concentrations of ~6, ~45, ~535, ~4.7, and ~22 ppm, respectively. Initial ?Nd and ?Sr values for the tektites are different from time-integrated Nd-Sr isotopic signatures for almost all oceanic crustal types. Age-corrected Pb isotopic values are similar to those for pelagic sediments with distinctly higher 207Pb/204Pb values compared to MORB. However, these results do not exclude the possibility of an oceanic impact site, if the tektites were derived from fine-grained sediments that typically overlie such regions, although other mineralogic and chemical evidence from K-T boundary debris suggests otherwise. Moreover, the Nd average crustal residence age of ~ 1080 Ma (TDM) for the black tektites eliminates impact sites on continental crustal regions involving middle Proterozoic or older rocks, or sedimentary rocks largely derived from them. Previously reported major and trace element data from the black tektites suggest that the source material was possibly sedimentary with a composition similar to average shale or graywacke. If this is the case, then the Nd isotopic data suggest that the source rocks were not older than Silurian (TCHUR = 400 Ma) in age, and were composed largely of young (< 1080 Ma) crustal material. Of the suspected K-T boundary impact sites, both the Manson (Iowa) and Chicxulub (Yucatan) structures occur in suitable lithologies to yield the Haitian black tektites, although neither structure has as yet proven to be the tektite source.  相似文献   

10.
Abstract— Late Eocene tektite material from DSDP site 612 is composed of angular to spherical tektites and microtektites containing abundant vesicles and a few unmelted to partially melted mineral inclusions. The major element compositions of the 612-tektites are generally comparable to those of North American tektites, but the physical features suggest that the DSDP-612 tektites were formed by less severe shock melting. The 87Sr/86Sr and 143Nd/144Nd compositions of 612-tektites: a) show much wider ranges than the tightly constrained group of North American tektites and microtektites, and b) are significantly different from those of other groups of tektites. The existence of large isotopic variations in tektites from DSDP site 612 requires that they were formed from a chemically and isotopically heterogeneous material in a regime that is distinctive from that of other groups of tektites. TNDCHUR and TSrUR model ages of the 612-tektites indicate that they were formed from a crustal source of late Precambrian mean age (800–1000 Ma) which in middle Palaeozoic time (?400 Ma) was further enriched in Rb/Sr during sedimentary processes. These source characteristics suggest that the impact which produced the 612-tektites occurred in rocks of the Appalachian orogeny or sediments derived from this orogenic belt. Potential source materials for both 612-tektites and North American tektites are present on the eastern and southeastern part of the North American continent and its adjacent shelf. The distinct isotopic differences between 612-tektites and North American tektites indicate that the two groups of tektites were either formed by the impact of more than one bolide in the same general area, or by a single impact event that sampled different layers.  相似文献   

11.
Abstract— The impact melt breccias from the Tenoumer crater (consisting of a fine‐grained intergrowth of plagioclase laths, pyroxene crystals, oxides, and glass) display a wide range of porosity and contain a large amount of target rock clasts. Analyses of major elements in impact melt rocks show lower contents of SiO2, Al2O3, and Na2O, and higher contents of MgO, Fe2O3, and CaO, than the felsic rocks (i.e., granites and gneisses) of the basement. In comparison with the bulk analyses of the impact melt, the glass is strongly enriched in Si‐Al, whereas it is depleted both in Mg and Fe; moreover, the impact melt rocks are variably enriched or depleted in some REE with respect to the felsic and mafic bedrock types. Gold is slightly enriched in the impact melt, and Co, Cr, and Ni abundances are possibly due to a contribution from mafic bedrock. Evidences of silicate‐carbonate liquid immiscibility, mainly as spherules and globules of calcite within the silicate glass, have been highlighted. HMX mixing calculation confirm that the impact melt rocks are derived from a mixing of at least six different target lithologies outcropping in the area of the crater. A large contribution is derived from granitoids (50%) and mica schist (17–19%), although amphibolites (?15%), cherty limestones (?10%), and ultrabasites (?6%) components are also present. The very low abundances of PGE in the melt rock seem to come mainly from some ultrabasic target rocks; therefore, the contamination from the meteoritic projectile appears to have been negligible.  相似文献   

12.
Abstract— The petrology, major and trace element geochemistry, and Nd‐Ar‐Sr isotopic compositions of a ferroan noritic anorthosite clast from lunar breccia 67215 have been studied in order to improve our understanding of the composition, age, structure, and impact history of the lunar crust. The clast (designated 67215c) has an unusually well preserved igneous texture. Mineral compositions are consistent with classification of 67215c as a member of the ferroan anorthositic suite of lunar highlands rocks, but the texture and mineralogy show that it cooled more rapidly and at shallower depths than did more typical ferroan anorthosites (FANs). Incompatible trace element concentrations are enriched in 67215c relative to typical FANs, but diagnostic signatures such as Ti/Sm, Sc/Sm, plagiophile element ratios, and the lack of Zr/Hf and Nb/Ta fractionation show that this cannot be due to the addition of KREEP. Alternatively, 67215c may contain a greater fraction of trapped liquid than is commonly present in lunar FANs. 147Sm‐143Nd isotopic compositions of mineral separates from 67215c define an isochron age of 4.40 ± 0.11 Gyr with a near‐chondritic initial ε143Nd of +0.85 ± 0.53. The 40Ar‐39Ar composition of plagioclase from this clast records a post‐crystallization thermal event at 3.93 ± 0.08 Gyr, with the greatest contribution to the uncertainty in this age deriving from a poorly constrained correction for lunar atmosphere 40Ar. Rb‐Sr isotopic compositions are disturbed, probably by the same event recorded by the Ar isotopic compositions. Trace element compositions of FANs are consistent with crystallization from a moderately evolved magma ocean and do not support a highly depleted source composition such as that implied by the positive initial ε143Nd of the ferroan noritic anorthosite 62236. Alternatively, the Nd isotopic systematics of lunar FANs may have been subject to variable degrees of modification by impact metamorphism, with the plagioclase fraction being more strongly affected than the mafic phases. 147Sm‐143Nd isotopic compositions of mafic fractions from the 4 ferroan noritic anorthosites for which isotopic data exist (60025, 62236, 67016c, 67215c) define an age of 4.46 ± 0.04 Gyr, which may provide a robust estimate for the crystallization age of lunar ferroan anorthosites.  相似文献   

13.
Abstract— The Chesapeake Bay impact structure, which is about 35 Ma old, has previously been proposed as the possible source crater of the North American tektites (NAT). Here we report major and trace element data as well as the first Sr‐Nd isotope data for drill core and outcrop samples of target lithologies, crater fill breccias, and post‐impact sediments of the Chesapeake Bay impact structure. The unconsolidated sediments, Cretaceous to middle Eocene in age, have ?Srt = 35.7 Ma of +54 to +272, and ?Ndt = 35.7 Ma ranging from ?6.5 to ?10.8; one sample from the granitic basement with a TNdCHUR model age of 1.36 Ga yielded an ?Srt = 35.7 Ma of +188 and an ?Ndt = 35.7 Ma of ?5.7. The Exmore breccia (crater fill) can be explained as a mix of the measured target sediments and the granite, plus an as‐yet undetermined component. The post‐impact sediments of the Chickahominy formation have slightly higher TNdCHUR model ages of about 1.55 Ga, indicating a contribution of some older materials. Newly analyzed bediasites have the following isotope parameters: +104 to +119 (?Srt = 35.7 Ma), ?5.7 (?Ndt = 35.7 Ma), 0.47 Ga (TSrUR), and 1.15 Ga (TNdCHUR), which is in excellent agreement with previously published data for samples of the NAT strewn field. Target rocks with highly radiogenic Sr isotopic composition, as required for explaining the isotopic characteristics of Deep Sea Drilling Project (DSDP) site 612 tektites, were not among the analyzed sample suite. Based on the new isotope data, we exclude any relation between the NA tektites and the Popigai impact crater, although they have identical ages within 2s? errors. The Chesapeake Bay structure, however, is now clearly constrained as the source crater for the North American tektites, although the present data set obviously does not include all target lithologies that have contributed to the composition of the tektites.  相似文献   

14.
Abstract— Chicxulub and Sudbury are 2 of the largest impact structures on Earth. Research at the buried but well‐preserved Chicxulub crater in Mexico has identified 6 concentric structural rings. In an analysis of the preserved structural elements in the eroded and tectonically deformed Sudbury structure in Canada, we identified ring‐like structures corresponding in both radius and nature to 5 out of the 6 rings at Chicxulub. At Sudbury, the inner topographic peak ring is missing, which if it existed, has been eroded. Reconstructions of the transient cavities for each crater produce the same range of possible diameters: 80–110 km. The close correspondence of structural elements between Chicxulub and Sudbury suggests that these 2 impact structures are approximately the same size, both having a main structural basin diameter of ?150 km and outer ring diameters of ?200 km and ?260 km. This similarity in size and structure allows us to combine information from the 2 structures to assess the production of shock melt (melt produced directly upon decompression from high pressure impact) and impact melt (shock melt and melt derived from the digestion of entrained clasts and erosion of the crater wall) in large impacts. Our empirical comparisons suggest that Sudbury has ?70% more impact melt than does Chicxulub (?31,000 versus ?18,000 km3) and 85% more shock melt (27,000 km3 versus 14,500 km3). To examine possible causes for this difference, we develop an empirical method for estimating the amount of shock melt at each crater and then model the formation of shock melt in both comet and asteroid impacts. We use an analytical model that gives energy scaling of shock melt production in close agreement with more computationally intense numerical models. The results demonstrate that the differences in melt volumes can be readily explained if Chicxulub was an asteroid impact and Sudbury was a comet impact. The estimated 70% difference in melt volumes can be explained by crater size differences only if the extremes in the possible range of melt volumes and crater sizes are invoked. Preheating of the target rocks at Sudbury by the Penokean Orogeny cannot explain the excess melt at Sudbury, the majority of which resides in the suevite. The greater amount of suevite at Sudbury compared to Chicxulub may be due to the dispersal of shock melt by cometary volatiles at Sudbury.  相似文献   

15.
16.
Abstract– Rb‐Sr and Sm‐Nd isotopic analyses of the lherzolitic shergottite Grove Mountains (GRV) 99027 are reported. GRV 99027 yields a Rb‐Sr mineral isochron age of 177 ± 5 (2σ) Ma and an initial 87Sr/86Sr ratio (ISr) of 0.710364 ± 11 (2σ). Due to larger uncertainties of the Sm‐Nd isotopic data, no Sm‐Nd isochron age was obtained for GRV 99027. The ε143Nd value is estimated approximately +12.2, assuming an age of 177 Ma. The ISr of GRV 99027 is distinguishable from other lherzolitic shergottites, confirming our previous conclusion that it is not paired with them ( Lin et al. 2005 ). The new data of GRV 99027 support the same age of approximately 180 Ma for most lherzolitic shergottites, and fill the small gap of ISr between Allan Hills A77005 and Lewis Cliff 88516 ( Borg et al. 2002 ). All available data are consistent with a single igneous source for the intermediate subgroup of lherzolitic shergottites.  相似文献   

17.
Abstract— We report the magnetostratigraphy of the sedimentary sequence between the impact breccias and the post‐impact carbonate sequence conducted on samples recovered by Yaxcopoil‐1 (Yax‐1). Samples of impact breccias show reverse polarities that span up to ~56 cm into the post‐impact carbonate lithologies. We correlate these breccias to those of PEMEX boreholes Yucatán‐6 and Chicxulub‐1, from which we tied our magnetostratigraphy to the radiometric age from a melt sample from the Yucatán‐6 borehole. Thin section analyses of the carbonate samples showed a significant amount of dark minerals and glass shards that we identified as the magnetic carriers; therefore, we propose that the mechanism of magnetic acquisition within the carbonate rocks for the interval studied is detrital remanent magnetism (DRM). With these samples, we constructed the scale of geomagnetic polarities where we find two polarities within the sequence, a reverse polarity event within the impact breccias and the base of the post‐impact carbonate sequence (up to 794.07 m), and a normal polarity event in the last ~20 cm of the interval studied. The polarities recorded in the sequence analyzed are interpreted to span from chron 29r to 29n, and we propose that the reverse polarity event lies within the 29r chron. The magnetostratigraphy of the sequence studied shows that the horizon at 794.11 m deep, interpreted as the K/T boundary, lies within the geomagnetic chron 29r, which contains the K/T boundary.  相似文献   

18.
Abstract— Darwin glass formed about 800,000 years ago in western Tasmania, Australia. Target rocks at Darwin crater are quartzites and slates (Siluro‐Devonian, Eldon Group). Analyses show 2 groups of glass, Average group 1 is composed of: SiO2 (85%), Al2O3 (7.3%), TiO2 (0.05%), FeO (2.2%), MgO (0.9%), and K2O (1.8%). Group 2 has lower average SiO2 (81.1%) and higher average Al2O3 (8.2%). Group 2 is enriched in FeO (+1.5%), MgO (+1.3%) and Ni, Co, and Cr. Average Ni (416 ppm), Co (31 ppm), and Cr (162 ppm) in group 2 are beyond the range of sedimentary rocks. Glass and target rocks have concordant REE patterns (La/Lu = 5.9–10; Eu/Eu* = 0.55–0.65) and overlapping trace element abundances. 87Sr/86Sr ratios for the glasses (0.80778–0.81605) fall in the range (0.76481–1.1212) defined by the rock samples. ε‐Nd results range from –13.57 to –15.86. Nd model ages range from 1.2–1.9 Ga (CHUR) and the glasses (1.2–1.5 Ga) fall within the range defined by the target samples. The 87Sr/86Sr versus 87Rb/86Sr regression age (411 ± 42 Ma) and initial ratio (0.725 ± 0.016), and the initial 43Nd/144Nd ratio (0.51153 ± 000011) and regression age (451 ± 140 Ma) indicate that the glasses have an inherited isotopic signal from the target rocks at Darwin crater. Mixing models using target rock compositions successfully model the glass for all elementsexcept FeO, MgO, Ni, Co, and Cr in group 2. Mixing models using terrestrial ultramafic rocks fail to match the glass compositions and these enrichments may be related to the projectile.  相似文献   

19.
Abstract— The Sm-Nd systematics of whole-rock and mineral separate samples from nakhlite Governador Valadares define a good 147Sm-143Nd mineral isochron age of 1.37 ± 0.02 Ga. This age is in excellent agreement with the 39Ar-40Ar and Rb-Sr ages obtained previously for this meteorite. However, the Rb-Sr isotopic data for our sample show that the isotopic system is disturbed. The lack of isotopic equilibrium is probably caused by the weathering of the sample as indicated by the presence of secondary alteration phases. The whole-rock and acid-washed mineral data yield a Rb-Sr age of 1.20 ± 0.05 Ga, which probably represents a lower limit to the crystallization age of the rock. The petrographic evidence indicates that this meteorite is a clinopyroxene cumulate that probably crystallized in a subsurface sill (McSween, 1994). Thus, the Sm-Nd isotopic age probably represents the age of such a magmatic event. The initial ε143Nd value determined for the rock at 1.37 Ga is +17 ± 1, indicating that the parent magma of the rock came from a light-rare-earth-element-depleted source of 147Sm/144Nd = ~0.237 based on a simple two-stage evolution model. Results of the same model calculation for the initial 87Sr/86Sr ratio of the rock suggest that its source material was depleted in 87Rb/86Sr by ~50% relative to the estimated martian value at 1.37 Ga. Both the high Sm/Nd and low Rb/Sr values support a clinopyroxene-rich cumulate source for the genesis of the nakhlite Governador Valadares. Furthermore, our Sm-Nd age and ε143Nd data and the previously published ε142Nd datum for the rock (Harper et al., 1995) are consistent with early differentiation of the parent planet, formation of cumulate sources ~4.56 Ga ago, and late melting of the sources and formation of the rock ~1.37 Ga ago. The good agreement of isotopic ages and petrographic features among Governador Valadares, Nakhla, and Lafayette strongly suggests that all three nakhlites have undergone similar evolutionary histories. The nakhlite age data suggest that isotopic heterogeneity in the martian mantle sources existed up to ~1.37 Ga ago and early mantle structures probably have not been disturbed for a significant portion of martian history.  相似文献   

20.
Abstract— Core from the Yaxcopoil‐1 (Yax‐1) hole, drilled as a result of the Chicxulub Scientific Drilling Project (CSDP), has been analyzed to investigate the relationship between opaque mineralogy and rock magnetic properties. Twenty one samples of suevite recovered from the depth range 818–894 m are generally paramagnetic, with an average susceptibility of 2000 times 10?6 SI and have weak remanent magnetization intensities (average 0.1 A/m). The predominant magnetic phase is secondary magnetite formed as a result of low temperature (<150 °C) alteration. It occurs in a variety of forms, including vesicle infillings associated with quartz and clay minerals and fine aggregates between plagioclase/diopside laths in the melt. Exceptional magnetic properties are found in a basement clast (metamorphosed quartz gabbro), which has a susceptibility of >45000 times 10?6 SI and a remanent magnetization of 77.5 A/m. Magnetic mafic basement clasts are a common component in the Yax‐1 impactite sequence. The high susceptibility and remanence in the mafic basement clasts are caused by the replacement of amphiboles and pyroxenes by an assemblage with fine <1 μm magnetite, ilmenite, K‐feldspar, and stilpnomelane. Replacement of the mafic minerals by the magnetic alteration assemblage occurred before impact. Similar alteration mechanisms, if operative within the melt sheet, could explain the presence of the high amplitude magnetic anomalies observed at Chicxulub.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号