首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Water solubility in orthopyroxene   总被引:7,自引:0,他引:7  
The solubility of water in pure enstatite was measured on samples synthesized at 1,100 °C and pressures to 100 kbar. Enstatite crystals were grown under water-saturated conditions from a stoichiometric mixture of high-purity SiO2 and Mg(OH)2. Water contents were calculated from polarized FTIR spectra measured on oriented single crystals. The water solubility in orthoenstatite increases with pressure to 867ᆷ ppm H2O by weight at 75 kbar. At 100 kbar, in the stability field of high-clinoenstatite, a water solubility of 714ᆷ ppm was observed. The water solubility in enstatite at 1,100 °C can be described by the equation cH2O=AfH2O exp(-P(V/RT), where fH2O is water fugacity, A=0.0204 ppm/bar and (V=12.3 cm3/mol. The infrared spectra of the hydrous enstatite crystals show a sharp, intense band at 3,363 cm-1 and a broad, weaker band at 3,064 cm-1. Both bands are strongly polarized parallel c. Most likely, pairs of protons attached to non-bridging oxygen atoms substitute for Mg2+. In order to investigate the effect of chemical impurities on water solubility in enstatite, an additional series of experiments was carried out with gels doped with Al, B, or Li as starting material. Whereas, the presence of Li and B had no detectable effect on water solubility, the addition of about 1 wt% Al2O3 increased water solubility in enstatite from 199 to 1,100 ppm at 1,100°C and 15 kbar. In the infrared spectra of these aluminous samples, additional bands occur in the range from 3,450 to 3,650 cm-1. Similar bands are also observed in natural, aluminous orthopyroxenes and are most likely caused by protons coupled with Al according to the substitution of Al3++H+ for Si4+. A series of hydrous annealing experiments on a natural, gem-quality aluminous enstatite from Tanzania yielded water solubilities generally consistent with the results from the synthetic model systems. The results presented here imply that pure enstatite has a similar storage capacity for water as olivine; however, aluminous orthopyroxenes in the mantle may dissolve much larger amounts of water comparable with the entire mass of the present hydrosphere. Moreover, the mechanism of aluminum substitution in orthopyroxenes, i.e., the distribution of Al between tetrahedral and octahedral sites, may be a potential probe of water fugacity.  相似文献   

2.
Water-saturated and water-undersaturated experiments (a H2 O = 1.0 and 0.5) were performed in the temperature range 780–1040°C at 2 and 5 kbar in order to determine the upper thermal stability of phlogopite in granitic melts. Starting compositions were: (A) subaluminous mixtures of 20 wt % synthetic phlogopite and 80 wt % synthetic anhydrous haplogranitic glass; (B) peraluminous mixtures (normative corundum  = 4 %) of 20 wt % synthetic phlogopite and 80 wt % synthetic anhydrous peraluminous haplogranitic glass. The molar quartz: albite: orthoclase ratio of the glasses of the 2␣kbar runs was 35:39:26 and that of the 5 kbar runs 30:42:28. In the subaluminous system, phlogopite is stable up to 820°C at a H2 O = 1.0 and up to 780°C at a H2 O = 0.5. At higher temperatures, it is replaced by enstatite. In the peraluminous system phlogopite has a remarkably higher thermal stability (up to 1000°C at 5 kbar and a H2 O = 1.0) and there is a temperature interval of 80°C at a H2 O = 1.0, and 90–100°C at a H2 O = 0.5 between the first appearance of enstatite and the disappearance of phlogopite. In the peraluminous system, phlogopite is a solid solution (ss) of phlogopite, muscovite, talc and eastonite components. The crystalline product of the phlogopitess breakdown reaction is an aluminous enstatite. The MgO-content of the melt depends on the normative corundum content of the starting material and the run temperature. It is independent of pressure. In the subaluminous system, the MgO-content ranges between 0.05 and 0.3 wt % in the temperature interval 780–880°C at both investigated water activities. The MgO-content of the peraluminous melts at a H2 O = 1.0 ranges between 0.4 and 1.7 wt % and at a H2 O = 0.5 between 0.2 and 1.4 wt % in the temperature range 780–980°C. Received: 28 August 1995 / Accepted: 6 August 1996  相似文献   

3.
Fluorine-, boron- and phosphorus-rich pegmatites of the Variscan Ehrenfriedersdorf complex crystallized over a temperature range from about 700 to 500 °C at a pressure of about 1 kbar. Pegmatite quartz crystals continuously trapped two different types of melt inclusions during cooling and growth: a silicate-rich H2O-poor melt and a silicate-poor H2O-rich melt. Both melts were simultaneously trapped on the solvus boundaries of the silicate (+ fluorine + boron + phosphorus) − water system. The partially crystallized melt inclusions were rehomogenized at 1 kbar between 500 and 712 °C in steps of 50 °C by conventional rapid-quench hydrothermal experiments. Glasses of completely rehomogenized inclusions were analyzed for H2O by Raman spectroscopy, and for major and some trace elements by EMP (electron microprobe). Both types of melt inclusions define a solvus boundary in an XH2O–T pseudobinary system. At 500 °C, the silicate-rich melt contains about 2.5 wt% H2O, and the conjugate water-rich melt about 47 wt% H2O. The solvus closes rapidly with increasing temperature. At 650 °C, the water contents are about 10 and 32 wt%, respectively. Complete miscibility is attained at the critical point: 712 °C and 21.5 wt% H2O. Many pegmatites show high concentrations of F, B, and P, this is particularly true for those pegmatites associated with highly evolved peraluminous granites. The presence of these elements dramatically reduces the critical pressure for fluid–melt systems. At shallow intrusion levels, at T ≥ 720 °C, water is infinitely soluble in a F-, B-, and P-rich melt. Simple cooling induces a separation into two coexisting melts, accompanied with strong element fractionation. On the water-rich side of the solvus, very volatile-rich melts are produced that have vastly different physical properties as compared to “normal” silicate melts. The density, viscosity, diffusivity, and mobility of such hyper-aqueous melts under these conditions are more comparable to an aqueous fluid. Received: 15 September 1999 / Accepted: 10 December 1999  相似文献   

4.
 The growth rates of enstatite rims produced by reaction of Fo92 and SiO2 were determined at 250–1500 MPa and 900–1100°C for a wide range of water contents. Growth rates were also determined for forsterite rims between MgO and Mg2Si2O6 and between MgO and SiO2. Rim growth rates are parabolic indicating diffusion-controlled growth of the polycrystalline rims which are composed of ˜ 2 μm diameter grains. Rim growth rates were used to calculate the product of the grain boundary diffusion coefficient (D'A) times the effective grain boundary thickness (δ) assuming in turn that MgO, SiO2, and Mg2Si−1 are the diffusing components (coupled diffusion of a cation and oxygen or interdiffusion of Mg and Si). The values for D'MgOδ, D', and D' for enstatite at 1000°C and 700 MPa confining pressure with about 0.1 wt %  water are about five times larger than the corresponding D'Aδ values for samples initially vacuum dried at 250°C. Most of the increase in D'Aδ occurs with the first 0.1 wt %  water. The activation energy for diffusion through the enstatite rims (1100–950°C) is 162 ± 30 kJ/mole. The diffusion rate through enstatite rims is essentially unchanged for confining pressures from 210–1400 MPa, but the nucleation rate is greatly reduced at low confining pressure (for  ≤ 1.0 wt % water present) and limits the conditions at which rim growth can be measured. The corresponding values for D'Aδ through forsterite rims are essentially identical for the two forsterite-producing reactions when 0.1 wt % water is added and similar to the D'Aδ values for enstatite at the same conditions. The D'Aδ values for forsterite are ˜ 28 times larger for samples starting with 0.1 wt %  water compared to samples that were first vacuum dried. Thus water enhances these grain boundary diffusion rates by a factor of 5–30 depending on the mineralogy, but the total range in D'Aδ is only slightly more than an order of magnitude for as wide a range of water contents as expected for most crustal conditions. Received: 1 July 1995 / Accepted: 1 August 1996  相似文献   

5.
Summary Augite and diopside crystals from the Oligo-Miocene high-Mg and high-Al basalts, basaltic andesites and andesites of Montresta (Sardinia, Italy) have been analysed by means of X-ray single crystal diffraction and electron microprobe. It has been found that crystallization or equilibration processes took place within the crust at pressures below 5 kbar. In particular, samples from high-Al basalts, basaltic andesites and andesites crystallised at pressures below one kbar while those from high-Mg basalts crystallised in a range from about 1.5 to 4.5 kbar. The intracrystalline temperatures range between about 550 °C for high-Mg basalts and 750 °C for andesites. The M2′ site is occupied in each of the studied crystals, which implies slow cooling rates.  相似文献   

6.
Diamonds and their syngenetic mineral inclusions from placer deposits (Akwatia mine) along the Birim River, Ghana were studied, thus providing the first detailed data collection for the West African Craton. Inclusion contents indicate an almost exclusively peridotitic diamond suite, with the vast majority being part of the harzburgitic paragenesis. Chemically the Akwatian diamond inclusions differ from those in our 1100 sample world-wide data base mainly by shifts towards lower Mg/Fe ratios for harzburgitic olivines and orthopyroxenes, extremely high Ni contents in both harzburgitic and lherzolitic olivines, and a higher mean Cr content in chromites. The inconsistency between the low Mg/Fe ratios and the highly refractory compatible trace element signature seems best to be explained by re-fertilisation of a previously depleted source, similar to the metasomatic re-enrichment of deformed, Fe-Ti-rich and hot peridotites discussed by Harte (1983). Geothermometry shows Akwatian inclusions to be 140–190 °C hotter than the peridotitic average (1050 °C) given by Harris (1992). Since garnet-opx equilibria (1100 °C/50 kbar to 1370 °C/67 kbar) indicate a typical shield geotherm (40–42 mW/m2), these elevated temperatures imply an origin of the Akwatian diamonds unusually deep for a peridotitic suite. This is consistent with the presence of extraordinary amounts of silicate spinel component in chromite inclusions, indicative of crystallisation under higher pressures than recorded for most peridotitic suites. In addition, one garnet showed the highest knorringite component (66.4 mol%) so far observed in an inclusion in diamond. The same garnet also contained a minor enstatite solid-solution component, which indicates crystallisation at pressures just below 80 kbar. Akwatian diamond inclusions, therefore, represent the most complete cross-section through peridotitic subcontinental lithospheric upper mantle so far observed, down to a maximum depth between 200–240 km. Received: 1 November 1995 / Accepted 5 January 1997  相似文献   

7.
Seeded, solid-media piston-cylinder runs of unusually long duration up to 31 days indicate growth or persistence of synthetic gedrite of the composition □Mg6Al[AlSi7O22](OH)2(=6:1:7), prepared from the purest chemicals available, at 10 kbar water pressure and 800 °C. Conversely, breakdown was observed at 11 kbar and 850 °C to aluminous enstatite, Al2SiO5, and a melt of the composition MgO·Al2O3·8SiO2. Thus, pure gedrite free of iron, sodium, and calcium is likely to have only a small PT stability field in the MASH system, estimated as 10 ± 1 kbar, 800 ± 20 °C, even though metastable growth of gedrite can be observed over a larger PT range. A second starting material with the anhydrous composition 5MgO · 2Al2O3 · 6SiO2 also yielded gedrite of the composition 6:1:7, together with more aluminous phases such as kyanite, corundum or sapphirine, thus suggesting that the end-member gedrite defined as □Mg5Al2[Al2Si6O22](OH)2(=5:2:6) by the IMA Commission on New Minerals and Mineral Names probably does not exist. With the use of this second starting material, which contains FeNaCa impurities, growth of 6:1:7-gedrite was observed over a still wider PT-range. Seeded runs indicate that the true stability field of such slightly impure 6:1:7-gedrites may also be larger than that of the pure MASH phase and extend at least to 15 kbar, 800 °C. There is, thus, a remarkable stabilization effect on the orthoamphibole structure by impurities amounting only to a total of less than one weight percent of oxides in the starting material. The gedrites synthesized are structurally well ordered amphiboles nearly free of chain multiplicity faults, as revealed by HRTEM. The X-ray diffraction work on the gedrites synthesized yielded the smallest cell volume yet reported for this phase. The small stability field of the pure MASH gedrite is intersected by the upper pressure stability limit of hydrous cordierite for excess-H2O conditions, thus leading to complicated phase relations for both gedrite and cordierite involving the additional phases aluminous enstatite, talc, quartz, Al2SiO5, melt and perhaps boron-free kornerupine. Received: 29 July 1998 / Accepted: 7 January 1999  相似文献   

8.
The nature and abundance of dislocations in quartz surrounding fluid inclusions were studied to obtain a better understanding of processes associated with fluid inclusion reequilibration. Synthetic fluid inclusions containing 10 wt% NaCl aqueous solution were formed in three samples at 700 °C and 5 kbar. One of the samples was quenched along an isochore to serve as a reference sample. The other two samples were quenched along a P-T path that generated internal pressures in excess of the confining pressure. The two samples were held at the final reequilibration P-T conditions of 625 °C and 2 kbar for 30 and 180 days, respectively. Following the experiments, microstructures associated with fluid inclusions were examined with the TEM. Quartz in healed fractures in the reference sample that was quenched isochorically shows a moderate dislocation activity. Quartz adjacent to reequilibrated fluid inclusions in the other two samples, however, showed a marked increase in dislocation activity compared to the un-reequilibrated sample. Deformation of the inclusion walls occurred anisotropically by expansion of mobile dislocations in their slip systems. Dislocation expansion was controlled by glide in the rhombohedral planes {1 0 1 1} that was restricted to narrow zones (≤3 μm) in the immediate vicinity of the fluid inclusion walls outside of the healed fracture plane. These plastic zones were observed after both short term (30 days) and long term (180 days) experiments and are attributed to hydrolytic weakening of quartz around fluid inclusions owing to diffusion of water into the quartz matrix during the experiment. The close spatial association of submicroscopic water bubbles with dislocations, and the rarity of water bubbles in the reference sample, show clearly that in both the 30 and 180 day experiments reequilibration involves water loss from the fluid inclusions. Our results indicate that synthetic fluid inclusions in this study recover (chemically and volumetrically), even at relatively fast experimental loading rates, such that internal stresses never reach the point of brittle failure. The driving force for fluid inclusion deformation involves two related mechanisms: plastic deformation of hydrolytically weakened wet quartz in the healed fracture, and water leakage associated with preexisting and strain-induced dislocations. Received: 5 May 1998 / Accepted: 10 February 2000  相似文献   

9.
 The solubility of hydroxyl in coesite was investigated in multianvil experiments performed at 1200 °C over the nominal pressure range 5–10 GPa, at an f O2 close to the Ni-NiO buffer. The starting material for each experiment was a cylinder of pure silica glass plus talc, which dehydrates at high P and T to provide a source of water and hydrogen (plus enstatite and excess SiO2). Fourier-transform infrared (FTIR) spectra of the recovered coesite crystals show five sharp bands at 3606, 3573, 3523, 3459, and 3299 cm−1, indicative of structurally bonded hydrogen (hydroxyl). The concentration of hydrogen increases with pressure from 285 H/106 Si (at 5 GPa) to 1415 H/106 Si (at 10 GPa). Assuming a model of incorporation by (4H)Si defects, the data are fit well by the equation C OH=Af 2 H2<\INF>Oexp(−PΔV/RT), with A=4.38 H/106 Si/GPa, and ΔV=20.6 × 10−6 m3 mol−1. An alternative model entailing association of hydrogen with cation substitution can also be used to fit the data. These results show that the solubility of hydroxyl in coesite is approximately an order of magnitude lower than in olivines and pyroxenes, but comparable to that in pyropic garnet. However, FTIR investigations on a variety of ultrahigh pressure metamorphic rocks have failed in all cases to detect the presence of water or hydrogen in coesite, indicating either that it grew in dry environments or lost its hydrogen during partial transformation to quartz. On the other hand, micro-FTIR investigations of quartz crystals replacing coesite show that they contain varying amounts of H2O. These results support the hypothesis that preservation of coesite is not necessarily linked to fast exhumation rates but is crucially dependent on limited fluid infiltration during exhumation. Received: 23 August 1999 / Accepted: 10 April 2000  相似文献   

10.
Diffusion of water was experimentally investigated for melts of albitic (Ab) and quartz-orthoclasic (Qz29Or71, in wt %) compositions with water contents in the range of 0 to 8.5 wt % at temperatures of 1100 to 1200 °C and at pressures of 1.0 and 5.0 kbar. Apparent chemical diffusion coefficients of water (D water) were determined from concentration-distance profiles measured by FTIR microspectroscopy. Under the same P-T condition and water content the diffusivity of water in albitic, quartz-orthoclasic and haplogranitic (Qz28Ab38 Or34, Nowak and Behrens, this issue) melts is identical within experimental error. Comparison to data published in literature indicates that anhydrous composition only has little influence on the mobility of water in polymerized melts but that the degree of polymerization has a large effect. For instance, Dwater is almost identical for haplogranitic and rhyolitic melts with 0.5–3.5 wt % water at 850 °C but it is two orders of magnitude higher in basaltic than in haplogranitic melts with 0.2–0.5 wt % water at 1300 °C. Based on the new water diffusivity data, recently published in situ near-infrared spectroscopic data (Nowak 1995; Nowak and Behrens 1995), and viscosity data (Schulze et al. 1996) for hydrous haplogranitic melts current models for water diffusion in silicate melts are critically reviewed. The NIR spectroscopy has indicated isolated OH groups, pairs of OH groups and H2O molecules as hydrous species in polymerized silicate melts. A significant contribution of isolated OH groups to the transport of water is excluded for water contents above 10 ppm by comparison of viscosity and water diffusion data and by inspection of concentration profiles from trace water diffusion. Spectroscopic measurements have indicated that the interconversion of H2O molecules and OH pairs is relatively fast in silicate glasses and melts even at low temperature and it is inferred that this reaction is an active step for migration of water. However, direct jumps of H2O molecules from one cavity within the silicate network to another one can not be excluded. Thus, we favour a model in which water migrates by the interconversion reaction and, possibly, small sequences of direct jumps of H2O molecules. In this model, immobilization of water results from dissociation of the OH pairs. Assuming that the frequency of the interconversion reaction is faster than that of diffusive jumps, OH pairs and water molecules can be treated as a single diffusing species having an effective diffusion coefficient . The shape of curves of Dwater versus water content implies that increases with water content. The change from linear to exponential dependence of Dwater between 2 and 3 wt % water is attributed to the influence of the dissociation reaction at low water content and to the modification of the melt structure by incorporation of OH groups. Received: 26 March 1996 / Accepted: 23 August 1996  相似文献   

11.
Mineral inclusions in pyrope crystals from Garnet Ridge in the Navajo Volcanic Field on the Colorado Plateau are investigated in this study with emphasis on the oxide minerals. Each pyrope crystal is roughly uniform in composition except for diffusion halos surrounding some inclusions. The pyrope crystals have near constant Ca:Fe:Mg ratios, 0.3 to 5.7 wt% Cr2O3, and 20 to 220 ppm H2O. Thermobarometric calculations show that pyrope crystals with different Cr contents formed at different depths ranging from 50 km (where T ≈ 600 °C and P = 15 kbar) to 95 km (where T ≈ 800 °C and P = 30 kbar) along the local geotherm. In addition to previously reported inclusions of rutile, spinel and ilmenite, we discovered crichtonite series minerals (AM21O38, where A = Sr, Ca, Ba and LREE, and M mainly includes Ti, Cr, Fe and Zr), srilankite (ZrTi2O6), and a new oxide mineral, carmichaelite (MO2−x(OH)x, where M = Ti, Cr, Fe, Al and Mg). Relatively large rutile inclusions contain a significant Nb (up to 2.7 wt% Nb2O5), Cr (up to ∼6 wt% Cr2O3), and OH (up to ∼0.9 wt% H2O). The Cr and OH contents of rutile inclusions are positively related to those of pyrope hosts, respectively. Needle- and blade-like oxide inclusions are commonly preferentially oriented. Composite inclusions consisting mainly of carbonate, amphibole, phlogopite, chlorapatite, spinel and rutile are interpreted to have crystallized from trapped fluid/melt. These minerals in composite inclusions commonly occur at the boundaries between garnet host and large silicate inclusions of peridotitic origin, such as olivine, enstatite and diopside. The Ti-rich oxide minerals may constitute a potential repository for high field strength elements (HFSE), large ion lithophile elements and light rare earth elements (LREE) in the upper mantle. The composite and exotic oxide inclusions strongly suggest an episode of metasomatism in the depleted upper mantle beneath the Colorado Plateau, contemporaneous with the formation of pyrope crystals. Our observations show that mantle metasomatism may deplete HFSE in metasomatic fluids/melts. Such fluids/melts may subsequently contribute substantial trace elements to island arc basalts, providing a possible mechanism for HFSE depletion in these rocks. Received: 20 December 1997 / Accepted: 15 October 1998  相似文献   

12.
Fluid inclusions have been studied in three pegmatite fields in Galicia, NW Iberian Peninsula. Based on microthermometry and Raman spectroscopy, eight fluid systems have been recognized. The first fluid may be considered to be a pegmatitic fluid which is represented by daughter mineral (silicates)-rich aqueous inclusions. These inclusions are primary and formed above 500 °C (dissolution of daughter minerals). During pegmatite crystallization, this fluid evolved to a low-density, volatile-rich aqueous fluid with low salinity (93% H2O; 5% CO2; 0.5% CH4; 0.2% N2; 1.3% NaCl) at minimum P–T conditions around 3 ± 0.5 kbar and 420 °C. This fluid is related to rare-metal mineralization. The volatile enrichment may be due to mixing of magmatic fluids and fluids equilibrated with the host rock. A drop in pressure from 3 ± 0.5 to 1 kbar at a temperature above 420 °C, which may be due to the transition from predominantly lithostatic to hydrostatic pressure, is recorded by two-phase, water-rich inclusions with a low-density vapour phase (CO2, CH4 and N2). Another inclusion type is represented by two-phase, vapour-rich inclusions with a low-density vapour phase (CO2, CH4 and N2), indicating a last stage of decreasing temperature (360 °C) and pressure (around 0.5 kbar), probably due to progressive exhumation. Finally, volatile (CO2)-rich aqueous inclusions, aqueous inclusions (H2O-NaCl) and mixed-salt aqueous inclusions with low Th, are secondary in charac- ter and represent independent episodes of hydrothermal fluid circulation below 310 °C and 0.5 kbar. Received: 14 October 1999 / Accepted: 5 October 1999  相似文献   

13.
The Bleikvassli massive sulfide ore deposit is hosted by Proterozoic pelitic, quartzofeldspathic, and amphibolitic rocks of the Uppermost Allochthon of the Scandinavian Caledonides. Staurolite-garnet-biotite and kyanite-staurolite-biotite assemblages indicate that metamorphism reached the kyanite zone of the amphibolite facies. Geothermobarometry was conducted on rocks in and around the deposit using a variety of silicate and sulfide calibrations. Temperature determinations are most reliant on the garnet-biotite exchange reaction, with analyses obtained from 259 garnet rims and adjacent biotite. Results from nine calibrations of the garnet-biotite geothermometer are considered, but compositional limitations of many calibrations involving high Ca and Mn contents in garnet and AlVI and Ti in biotite make many of the coexisting mineral pairs unsuitable. Average temperatures calculated from the two calibrations that most closely address the garnet-biotite compositions observed at Bleikvassli are 584 °C ± 49 °C and 570 °C ± 40 °C. The application of two calibrations of the garnet-staurolite geothermometer on a limited number of samples yields 581 °C ± 2 °C and 589 °C ± 12 °C, assuming a H2O=0.84, based upon calculations of the modal proportions of gaseous species. Pressure determinations are less constrained. Phengite and plagioclase-biotite-garnet-muscovite geobarometers give average pressures of approximately 5.0 kbar and 8.5 ± 1.2 kbar, respectively. Pressures obtained from the sphalerite-hexagonal pyrrhotite-pyrite barometer average 7.7 ± 1.0 kbar. In consideration of these results, the peak metamorphic conditions at the Bleikvassli deposit are estimated to be 580 °C and 8 kbar. Received: 18 June 1997 / Accepted: 14 May 1998  相似文献   

14.
 One well-defined OH Raman band at 3651 ± 1 cm−1 and one weak feature near 3700 ± 5 cm−1 are recognized for the hydrous γ-phase of Mg2SiO4. Like the hydrous β-phase, the H2O content in the γ-phase shifts most of the corresponding silicate modes towards lower frequencies. Variations in Raman spectra of the hydrous γ-phase were investigated up to about 200 kbar at room temperature and in the range 81–873 K at atmospheric pressure. Unlike the anhydrous γ-phase, which remains intact up to at least 873 K, the hydrous γ-phase sometimes converts to a defective forsterite structure above 800 K. Although the hydrous γ-phase remains intact up to at least 800 K, Raman signals of the OH bands disappear completely above 423 K. The Raman frequency of the well-defined OH band decreases linearly with increasing temperature between 81 and 423 K. In the region of the silicate vibrations, the Raman frequencies of the two most intense bands increase nonlinearly with increasing pressure, and decrease with increasing temperature. The frequencies for all other weak bands, however, decreased linearly with increasing temperature. The latter most likely reflects the larger scatter of the data for the weak bands. Received: 27 April 2001 / Accepted: 12 September 2001  相似文献   

15.
Experimental studies of the element distribution between carbonatite melts and hydrous fluids are hampered by the fact that neither the fluid nor the melt can be isochemically quenched in conventional high-pressure vessels. In order to overcome this problem, we used a double-capsule technique to separate immiscible fluid and melt phases during and after the runs. The inner platinum capsules were charged with carbonate mixtures (CaCO3, MgCO3 and Na2CO3) and placed inside the outer capsules charged with distilled water and diamond powder. The latter was used as an inert trap for solids precipitating from the fluid on quenching. Carbonate melt and hydrous fluid equilibrated through a small hole left in the upper end of the inner capsule. The runs were performed in rapid-quench cold-seal pressure vessels at 0.1–0.2 GPa and 700–900 °C in the two-phase (fluid + melt) stability region. Both quenched melt and quenched fluid were dissolved in dilute HCl and analysed by inductively coupled plasma atomic emission spectroscopy. The results show that under all conditions investigated, fluid/melt partition coefficients for Ca and Mg are similar and several times smaller than those for Na. At 0.1 GPa and a water/carbonatite ratio of 1 (by weight), the partition coefficients are DNa = 0.35 ± 0.02, DCa = 0.09 ± 0.02, and DMg = 0.13 ± 0.01. Between 700 and 900 °C, the effect of temperature on partitioning is negligible. However, DNa increases significantly with decreasing water/carbonatite ratio in the system. Our data show that the release of a hydrous fluid enriched in sodium and simultaneous crystallisation of calcite can transform an alkaline, vapour-saturated carbonatite melt into a body of pure calcite surrounded by zones of sodium metasomatism. Thus, it is quite possible that carbonate magmas with substantial amounts of alkalies were common parental liquids of plutonic carbonatites. Received: 6 May 1999 / Accepted: 31 August 1999  相似文献   

16.
We have conducted high pressure (to 3 kbar), water saturated melting experiments on an andesite (62 wt% SiO2) and a basaltic andesite (55 wt% SiO2) from western Mexico. A close comparison between the experimental phase assemblages and their compositions, and the phenocryst assemblages of the lavas, is found in water saturated liquids, suggesting that the CO2 content was minimal in the fluid phase. Thus the historic lavas from Volcan Colima (with phenocrysts of orthopyroxene, augite, plagioclase, and hornblende) were stored at a temperature between 950–975 °C, at a pressure between 700–1500 bars, and with a water content of 3.0–5.0 wt%. A hornblende andesite (spessartite) from Mascota, of nearly identical composition but with only amphibole phenocrysts, had a similar temperature but equilibrated at a minimum of 2000 bars pressure with a dissolved water content of at least 5.5 wt% in the liquid. Experiments on the basaltic andesite show that the most common natural phenocryst assemblages (olivine, ±augite, ±plagioclase) could have precipitated at temperatures from 1000–1150 °C, in liquids with a wide range of dissolved water content (∼2.0–6.0 wt%) and a corresponding pressure range. A lava of the same bulk composition with phenocrysts of hornblende, olivine, plagioclase, and augite is restricted to temperatures below 1000 °C and pressures below 2500 bars, corresponding to <5.5 wt% water in the residual liquid. Although there is some evidence for mixing in the andesites (sporadic olivine phenocrysts), the broad theme of the history of both lava types is that the phenocryst assemblages for both the andesitic magmas and basaltic andesitic magmas are generated from degassing and reequilibration on ascent of initially hydrous parents containing greater than 6 wt% water. Indeed andesitic magmas could be related to a basaltic andesite parent by hornblende-plagioclase fractionation under the same hydrous conditions. Received: 10 December 1996 / Accepted: 21 August 1997  相似文献   

17.
Phase equilibria in the ternary system H2O-CO2-NaCl were studied at 800 °C and 9 kbar in internally heated gas pressure vessels using a modified synthetic fluid inclusion technique. The low rate of quartz overgrowth along the `b' and `a' axes of quartz crystals was used to avoid fluid inclusion formation during heating, prior to attainment of equilibrium run conditions. The density of CO2 in the synthetic fluid inclusions was calibrated using inclusions in the binary H2O-CO2 system synthesised by the same method and measured on the same heating-freezing stage. In the two-phase field, two types of fluid inclusions with different densities of CO2 were observed. Using mass balance calculations, these inclusions are used to constrain the miscibility gap and the orientation of two-phase tie-lines in the H2O-CO2-NaCl system at 800 °C and 9 kbar. The equation of state of Duan et al. (1995) approximately describes the P-T section of the ternary system up to about 40 wt% of NaCl. At higher NaCl concentrations the measured solubility of CO2 in the brine is much smaller than predicted by the EOS. A “salting out” effect must be added to the equation of state to include coulomb interaction in the model of Anderko and Pitzer (1993) and Pitzer and Jiang (1996). The new experimental data together with published data up to 5 kbar (Shmulovich et al. 1995) encompass practically all subsolidus crustal P-T conditions. A feature of the new experimental results is the large compositional range in the H2O-CO2-NaCl system occupied by the stability fields of halite + CO2-rich fluid ± H2O-NaCl brine. The prediction of halite stability in equilibrium with CO2-rich fluid in deep-crustal rocks is supported by recent petrological and fluid inclusion studies of granulites. Received: 29 June 1998 / Accepted: 17 March 1999  相似文献   

18.
Melt and fluid inclusions were investigated in six quartz phenocryst samples from the igneous rocks of the extrusive (ignimbrites and rhyolites) and subvolcanic (granite porphyries) facies of the Lashkerek Depression in the Kurama mining district, Middle Tien Shan. The method of inclusion homogenization was used, and glasses from more than 40 inclusions were analyzed on electron and ion microprobes. The chemical characteristics of these inclusions are typical of silicic magmatic melts. The average composition is the following (wt %): 72.4 SiO2, 0.06 TiO2, 13.3 Al2O3, 0.95 FeO, 0.03 MnO, 0.01 MgO, 0.46 CaO, 3.33 Na2O, 5.16K2O, 0.32 F, and 0.21 Cl. Potassium strongly prevails over sodium in all of the inclusions (K2O/Na2O averages 1.60). The average total of components in melt inclusions from five samples is 95.3 wt %, which indicates a possible average water content in the melt of no less than 3–4 wt %. Water contents of 2.0 wt % and 6.6 wt % were determined in melt inclusions from two samples using an ion microprobe. The analyses of ore elements in the melt inclusions revealed high contents of Sn (up to 970 ppm), Th (19–62 ppm, 47 ppm on average), and U (9–26 ppm, 18 ppm on average), but very low Eu contents (0.01 ppm). Melt inclusions of two different compositions were detected in quartz from a granite porphyry sample: silicate and chloride, the latter being more abundant. In addition to Na and K chlorides, the salt inclusions usually contain one or several anisotropic crystals and an opaque phase. The homogenization temperatures of the salt inclusions are rather high, from 680 to 820°C. In addition to silicate inclusions with homogenization temperatures of 820–850°C, a primary fluid inclusion of aqueous solution with a concentration of 3.7 wt % NaCl eq. and a very high density of 0.93 g/cm3 was found in quartz from the ignimbrite. High fluid pressure values of 6.5–8.3 kbar were calculated for the temperature of quartz formation. These estimates are comparable with values obtained by us previously for other regions of the world: 2.6–4.3 kbar for Italy, 3.7 kbar for Mongolia, 3.3–8.7 kbar for central Slovakia, and 3.3–9.6 kbar for eastern Slovakia. Unusual melt inclusions were investigated in quartz from another ignimbrite sample. In addition to a gas phase and transparent glass, they contain spherical Feoxide globules (81.2 wt % FeO) with high content of SiO2 (9.9 wt %). The globules were dissolved in the silicate melt within a narrow temperature range of 1050–1100°C, and the complete homogenization of the inclusions was observed at temperatures of 1140°C or higher. The combined analysis of the results of the investigation of these inclusions allowed us to conclude that immiscible liquids were formed in the high-temperature silicic magma with the separation of iron oxide-dominated droplets.  相似文献   

19.
The polymorphic relations for Mg3(PO4)2 and Mg2PO4OH have been determined by reversed experiments in the temperature-pressure (T-P) range 500–1100 °C, 2–30 kbar. The phase transition between the low-pressure phase farringtonite and Mg3(PO4)2-II, the Mg analogue of sarcopside, is very pressure dependent and was tightly bracketed between 625 °C, 7 kbar and 850 °C, 9 kbar. The high-temperature, high-pressure polymorph, Mg3(PO4)2-III, is stable above 1050 °C at 10 kbar and above 900 °C at 30 kbar. The low-pressure stability of farringtonite is in keeping with its occurrence in meteorites. The presence of iron stabilizes the sarcopside-type phase towards lower P. From the five Mg2PO4OH polymorphs only althausite, holtedahlite, β-Mg2PO4OH (the hydroxyl analogue of wagnerite) and ɛ-Mg2PO4OH were encountered. Relatively speaking, holtedahlite is the low-temperature phase (<600 °C), ɛ-Mg2PO4OH the high-temperature, low-pressure phase and β-Mg2PO4OH the high-temperature, high-pressure phase, with an intervening stability field for althausite which extends from about 3 kbar at 500 °C to about 12 kbar at 800 °C. Althausite and holtedahlite are to be expected in F-free natural systems under most geological conditions; however, wagnerite is the most common Mg-phosphate mineral, implying that fluorine has a major effect in stabilizing the wagnerite structure. Coexisting althausite and holtedahlite from Modum, S. Norway, show that minor fluorine is strongly partitioned into althausite (KD F/OH≈ 4) and that holtedahlite may incorporate up to 4 wt% SiO2. Synthetic phosphoellenbergerite has a composition close to (Mg0.90.1)2Mg12P8O38H8.4. It is a high-pressure phase, which breaks down to Mg2PO4OH + Mg3(PO4)2 + H2O below 8.5 kbar at 650 °C, 22.5 kbar at 900 °C and 30 kbar at 975 °C. The stability field of the phosphate end-member of the ellenbergerite series extends therefore to much lower P and higher T than that of the silicate end-members (stable above 27 kbar and below ca. 725 °C). Thus the Si/P ratio of intermediate members of the series has a great barometric potential, especially in the Si-buffering assemblage with clinochlore + talc + kyanite + rutile + H2O. Application to zoned ellenbergerite crystals included in the Dora-Maira pyrope megablasts, western Alps, reveals that growth zoning is preserved at T as high as 700–725 °C. However, the record of attainment of the highest T and/or of decreasing P through P-rich rims (1 to 2 Si pfu) is only possible in the presence of an additional phosphate phase (OH-bearing or even OH-dominant wagnerite in these rocks), otherwise the trace amounts of P in the system remain sequestered in the core of Si-rich crystals (5 to 8 Si pfu) and can no longer react. Received: 7 April 1995 / Accepted: 12 November 1997  相似文献   

20.
The temperature dependence of water solubility in enstatite   总被引:3,自引:0,他引:3  
The solubility of water in pure enstatite was measured on samples synthesized under water-saturated conditions at 15 kbar and temperatures ranging from 700 to 1,100°C. Polarized FTIR measurements on millimetre-sized, clear crystals showed that water solubility increases strongly with temperature, from 101 ppm by weight at 700°C to 269 ppm by weight at 1,100°C. The position and shape of the infrared bands hardly changes with temperature, with one notable exception: a band close to 3,380 cm–1 is present in samples synthesized between 700 and 1,000°C, while this band is absent from samples synthesized at 1,100°C. This effect appears to be very reproducible and points towards a slight change in the crystal structure of enstatite between 1,000 and 1,100°C at 15 kbar. The water solubility data of this study as well as those of Rauch and Keppler (Contrib Mineral Petrol 143:525–536, 2002) can be reproduced by the equation where K is water solubility, is water fugacity, A is 0.01354 ppm/bar, Vsolid=12.1 cm3/mol is the volume change of enstatite during incorporation of water, and H1 bar=-4,563 J/mol is the reaction enthalpy at 1 bar. This equation predicts the following behaviour of water solubility in enstatite as a function of pressure and temperature: (1) water solubility increases with pressure up to a maximum around 80 kbar; (2) water solubility decreases with temperature at 1 bar; and (3) water solubility increases with temperature between 10 and 100 kbar. If the observed temperature dependence for enstatite were representative for other upper mantle minerals as well, it would have the following implications: (1) Lateral temperature gradients in the upper mantle could cause major variations in water contents at the same depth; in particular, hot mantle plumes may scavenge water from the surrounding shallow upper mantle. (2) The scavenging of water by hot plumes could be a major factor in increasing the mobility of plumes. (3) The predicted temperature dependence of water solubility at the base of the upper mantle may allow plumes to bypass the transition zone water filter postulated by Bercovici and Karato (Nature 425:39–44, 2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号