首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we use a coupled biological/physical model to synthesize and understand observations taken during the US JGOFS Arabian Sea Process Study (ASPS). Its physical component is a variable-density, -layer model; its biological component consists of a set of advective–diffusive equations in each layer that determine nitrogen concentrations in four compartments, namely, nutrients, phytoplankton, zooplankton, and detritus. Solutions are compared to time series and cruise sections from the ASPS data set, including observations of mixed-layer thickness, chlorophyll concentrations, inorganic nitrogen concentrations, particulate nitrogen export flux, zooplankton biomass, and primary production. Through these comparisons, we adjust model parameters to obtain a “best-fit” main-run solution, identify key biological and physical processes, and assess model strengths and weaknesses.Substantial improvements in the model/data comparison are obtained by: (1) adjusting the turbulence-production coefficients in the mixed-layer model to thin the mixed layer; (2) increasing the detrital sinking and remineralization rates to improve the timing and amplitude of the model's export flux; and (3) introducing a parameterization of particle aggregation to lower phytoplankton concentrations in coastal upwelling regions.With these adjustments, the model captures many key aspects of the observed physical and biogeochemical variability in offshore waters, including the near-surface DIN and phytoplankton P concentrations, mesozooplankton biomass, and primary production. Nevertheless, there are still significant model/data discrepancies of P for most of the cruises. Most of them can be attributed to forcing or process errors in the physical model: inaccurate mixed-layer thicknesses, lack of mesoscale eddies and filaments, and differences in the timing and spatial extent of coastal upwelling. Relatively few are clearly related to the simplicity of the biological model, the model's overestimation of coastal P being the most obvious example. Overall, we conclude that future efforts to improve biogeochemical models of the Arabian Sea should focus on improving their physical component, ensuring that it represents the ocean's physical state as closely as possible. We believe that this conclusion applies to coupled biogeochemical modeling efforts in other regions as well.  相似文献   

2.
Biogeochemical ocean-atmosphere transfers in the Arabian Sea   总被引:2,自引:2,他引:2  
Transfers of some important biogenic atmospheric constituents, carbon dioxide (CO2), methane (CH4), molecular nitrogen (N2), nitrous oxide (N2O), nitrate , ammonia (NH3), methylamines (MAs) and dimethylsulphide (DMS), across the air–sea interface are investigated using published data generated mostly during the Arabian Sea Process Study (1992–1997) of the Joint Global Ocean Flux Study (JGOFS). The most important contribution of the region to biogeochemical fluxes is through the production of N2 and N2O facilitated by an acute, mid-water deficiency of dissolved oxygen (O2); emissions of these gases to the atmosphere from the Arabian Sea are globally significant. For the other constituents, especially CO2, even though the surface concentrations and atmospheric fluxes exhibit extremely large variations both in space and time, arising from the unique physical forcing and associated biogeochemical environment, the overall significance in terms of their global fluxes is not much because of the relatively small area of the Arabian Sea. Distribution and air–sea exchanges of some of these constituents are likely to be greatly influenced by alterations of the subsurface O2 field forced by human-induced eutrophication and/or modifications to the regional hydrography.  相似文献   

3.
A three-dimensional ocean biogeochemical model of the tropical Atlantic Ocean was run for more than half a century (1949–2000) in order to characterize the ocean biogeochemical response to variable forcing over this period. The seasonal cycle in the equatorial upwelling zone agrees reasonably well with observations and other published simulations but underestimates phytoplankton biomass under strong upwelling conditions. Away from the equator, modelled nutrient flux and biological production are maximal in each hemisphere's winter season, and appear to be proximately forced by evaporative cooling and wind stirring rather than by Ekman upwelling. The fraction of the total variance associated with the seasonal cycle is considerably smaller for modelled biogeochemical fields than for sea-surface temperature over this long simulation, and much of the biogeochemical variance is associated with interdecadal changes. The model results suggest that the tropical Atlantic became more productive following the Pacific climate shift of 1976 and remained so until about 1989. Summer surface nitrate concentrations during the 1990s were lower than those in the 1980s. The relationship between the equatorial and off-equatorial regimes may have changed following the 1976 event, with equatorial variability dominating the basin-wide variance patterns after 1976.  相似文献   

4.
When considering physical mechanisms for decadal-timescale climate variability in the North Pacific, it is useful to describe in detail the expected response of the ocean to the chaotic atmospheric forcing. The expected response to this white-noise forcing includes strongly enhanced power in the decadal frequency band relative to higher frequencies, pronounced changes in basin-wide climate that resemble regime shifts, preferred patterns of spatial variability, and a depth-dependent profile that includes variability with a standard deviation of 0.2–0.4°C over the top 50–100 m. Weak spectral peaks are also possible, given ocean dynamics. Detecting coupled ocean–atmosphere modes of variability in the real climate system is difficult against the spectral and spatial structure of this ‘null-hypothesis’ of how the ocean and atmosphere interact, especially given the impossibility of experimentally decoupling the ocean from the atmosphere. Turning to coupled ocean–atmosphere models to address this question, a method for identifying coupled modes by using models of increasing physical complexity is illustrated. It is found that a coupled ocean–atmosphere mode accounts for enhanced variability with a time scale of 20 years/cycle in the Kuroshio extension region of the model's North Pacific. The observed Pacific Decadal Oscillation (PDO) has many similarities to the expected noise-forced response and few similarities to the model's coupled ocean–atmosphere variability. However, model deficiencies and some analyses of observations by other workers indicate that the possibility that part of the PDO arises from a coupled ocean–atmosphere mode cannot be ruled out.  相似文献   

5.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We have developed and run a model with sufficiently high resolution (9 km and 45 levels) and a large enough spatial domain to allow for realistic representation of flow through the narrow and shallow straits in the northern Bering Sea. This is potentially important for quantification of long-term mean and time-dependent ocean circulation, and water mass and property exchanges between the Pacific and Arctic Oceans. Over a 23 year interval (1979–2001), mean transport through Bering Strait is estimated to be 0.65 Sv. Comparison of our model results with published observations indicates that ocean circulation is not only variable at seasonal to interdecadal scales but it is also responsive to short-term atmospheric forcing. One of such events occurred during the winter of 2000–2001 with reversed oceanic flow in some areas and much reduced sea-ice cover. Analyses of eddy kinetic energy fields identify some high biological productivity regions of the Chirikov Basin coincident with persistent high energy (up to 2700 cm2 s−2 in the surface layer and up to 2600 cm2 s−2 at mid-depth) throughout the annual cycle. Model output in the Bering Strait region is validated against several time series of moored observations of water mass properties. Comparison with shipboard observations of near-bottom salinity from late winter through autumn indicates that the model reasonably represents the major water-mass properties in the region. The modeled vertical water-column structure in the northern Bering Sea allows increased understanding of the mechanisms of water transformation and transport northward through Bering Strait into the Chukchi and Beaufort Seas. We conclude that the long-term model results for the northern Bering Sea provide important insights into the ocean circulation and fluxes and they are a useful frame of reference for limited observations that are short-term and/or cover only a small geographic region.  相似文献   

7.
判定局地海-气相互作用的特征对海-气耦合模式中应用哪种形式的“强迫模拟”具有重要指导作用。本文根据海表热通量异常与海表温度异常及海表温度变率之间的相关关系,对全球大洋季节内尺度上的海-气相互作用特征进行了综合分析。结果表明:(1)南、北半球亚热带地区海-气相互作用的特征主要表现为大气对海洋的强迫,且在夏季(北半球为6—8月,南半球为12—翌年2月)强迫作用的范围最大,冬季强迫作用的范围最小;(2)赤道中、东太平洋及赤道大西洋地区海-气相互作用的特征全年表现为海洋对大气的强迫,印度洋索马里沿岸、阿拉伯海以及孟加拉湾地区仅在6—8月表现出海洋强迫大气的现象,而孟加拉湾则在9—11月表现为大气强迫海洋;(3)45°N(S)以上的高纬度地区海表温度的异常和变率无法用局地热通量的交换来解释,这是因为该区域海表温度的变化主要由平流等海洋内部动力过程决定,因此海-气之间在季节内尺度上的相互作用不明显。在某些海区,季节内尺度上的海-气相互作用关系与季节以上时间尺度的这种关系可能会有明显不同。  相似文献   

8.
The collection of articles in this volume reviewing eastern tropical Pacific oceanography is briefly summarized, and updated references are given. The region is an unusual biological environment as a consequence of physical characteristics and patterns of forcing – including a strong and shallow thermocline, the ITCZ and coastal wind jets, equatorial upwelling, the Costa Rica Dome, eastern boundary and equatorial current systems, low iron input, inadequate ventilation of subthermocline waters, and dominance of ENSO-scale temporal variability. Remaining unanswered questions are presented.  相似文献   

9.
10.
Atmospheric forcing of the eastern tropical Pacific: A review   总被引:1,自引:8,他引:1  
The increase in marine, land surface, atmospheric and satellite data during recent decades has led to an improved understanding of the air–sea interaction processes in the eastern tropical Pacific. This is also thanks to extensive diagnoses from conceptual and coupled ocean–atmosphere numerical models. In this paper, mean fields of atmospheric variables, such as incoming solar radiation, sea level pressure, winds, wind stress curl, precipitation, evaporation, and surface energy fluxes, are derived from global atmospheric data sets in order to examine the dominant features of the low level atmospheric circulations of the region. The seasonal march of the atmospheric circulations is presented to depict the role of radiative forcing on atmospheric perturbations, especially those dominating the atmosphere at low levels.In the tropics, the trade winds constitute an important north–south energy and moisture exchange mechanism (as part of the low level branch of the Hadley circulation), that determines to a large extent the precipitation distribution in the region, i.e., that associated with the Inter-Tropical Convergence Zone (ITCZ). Monsoonal circulations also play an important role in determining the warm season precipitation distribution over the eastern tropical Pacific through a large variety of air–sea–land interaction mechanisms. Westward traveling waves, tropical cyclones, low latitude cold air intrusions, and other synoptic and mesoscale perturbations associated with the ITCZ are also important elements that modulate the annual rainfall cycle. The low-level jets of the Gulf of California, the Intra-Americas Sea (Gulf of Mexico and Caribbean Sea) and Chocó, Colombia are prominent features of the eastern tropical Pacific low-level circulations related to sub-regional and regional scale precipitation patterns. Observations show that the Intra-Americas Low-Level Jet intensity varies with El Niño/Southern Oscillation (ENSO) phases, however its origin and role in the westward propagation and development of disturbances that may hit the eastern tropical Pacific, such as easterly waves and tropical cyclones, are still unclear. Changes in the intensity of the trade winds in the Caribbean Sea and the Gulf of Mexico (associated with eastern tropical Pacific wind jets) exert an important control on precipitation by means of wind–topography interactions. Gaps in the mountains of southern Mexico and Central America allow strong wind jets to pass over the continent imprinting a unique signal in sea surface temperatures and ocean dynamics of the eastern tropical Pacific.The warm pools of the Americas constitute an important source of moisture for the North American Monsoon System. The northeastern tropical Pacific is a region of intense cyclogenetic activity, just west of the coast of Mesoamerica. Over the oceanic regions, large-scale properties of key variables such as precipitation, moisture, surface energy fluxes and wind stress curl are still uncertain, which inhibits a more comprehensive view of the region and stresses the importance of regional field experiments. Progress has been substantial in the understanding of the ocean and atmospheric dynamics of the eastern tropical Pacific, however, recent observational evidence such as that of a shallow meridional circulation cell in that region, in contrast to the classic concept of the Hadley-type deep meridional circulation, suggests that more in situ observations to validate theories are still necessary.This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   

11.
The north-western Alboran Sea is a highly dynamic region in which the hydrological processes are mainly controlled by the entrance of the Atlantic Jet (AJ) through the Strait of Gibraltar. The biological patterns of the area are also related to this variability in which atmospheric pressure distributions and wind intensity and direction play major roles. In this work, we studied how changes in atmospheric forcing (from high atmospheric pressure over the Mediterranean to low atmospheric pressure) induced alterations in the physical and biogeochemical environment by re-activating coastal upwelling on the Spanish shore. The nursery area of European anchovy (Engraulis encrasicolus) in the NW Alboran Sea, confirmed to be the very coastal band around Malaga Bay, did not show any drastic change in its biogeochemical characteristics, indicating that this coastal region is somewhat isolated from the rest of the basin. Our data also suggests that anchovy distribution is tightly coupled to the presence of microzooplankton rather than mesozooplankton. Finally, we use detailed physical and biological information to evaluate a hydrological-biogeochemical coupled model with a specific hydrological configuration to represent the Alboran basin. This model is able to reproduce the general circulation patterns in the region forced by the AJ movements only including two variable external forcings; atmospheric pressure over the western Mediterranean and realistic wind fields.  相似文献   

12.
The paper evaluates atmospheric reanalysis as possible forcing of model simulations of the ocean circulation inter-annual variability in the Gulf of Lions in the Western Mediterranean Sea between 1990 and 2000. The sensitivity of the coastal atmospheric patterns to the model resolution is investigated using the REMO regional climate model (18 km, 1 h), and the recent global atmospheric reanalysis ERA40 (125 km, 6 h). At scales from a few years to a few days, both atmospheric data sets exhibit a very similar weather, and agreement between REMO and ERA40 is especially good on the seasonal cycle and at the daily variability scale. At smaller scales, REMO reproduces more realistic spatio-temporal patterns in the ocean forcing: specific wind systems, particular atmospheric behaviour on the shelf, diurnal cycle, sea-breeze. Ocean twin experiments (1990–1993) clearly underline REMO skills to drive dominant oceanic processes in this microtidal area. Finer wind patterns induce a more realistic circulation and hydrology of the shelf water: unique shelf circulation, upwelling, temperature and salinity exchanges at the shelf break. The hourly sampling of REMO introduces a diurnal forcing which enhances the behaviour of the ocean mixed layer. In addition, the more numerous wind extremes modify the exchanges at the shelf break: favouring the export of dense shelf water, enhancing the mesoscale variability and the interactions of the along slope current with the bathymetry.  相似文献   

13.
The seasonal variability of tropical cyclones (CTCs) generated over the South China Sea (SCS) from 1948 to 2003 is analyzed. It peaks in occurrence in August and few generate in late winter (from January to March). The seasonal activity is attributed to the variability of atmosphere and ocean environments associated with the monsoon system. It is found that the monsoonal characteristics of the SCS basically determine the region of tropical cyclone (TC) genesis in each month.  相似文献   

14.
Climate fluctuations, or modes, are largely manifested in terms of coherent, large-scale (3000 km) patterns of anomalous sea-level pressure or geopotential height at various altitudes. It is worthwhile to investigate how these modes relate to the specific processes associated with atmospheric forcing of the ocean, in this case for the southeast Bering Sea. This approach has been termed “downscaling.” Climate-scale patterns in this study are derived from covariance-based empirical orthogonal functions (EOFs) of low-pass filtered (10-day cut-off) 700-mb geopotential height fields for 1958–1999. By design, this EOF analysis elicits sets of patterns for characterizing the variability in the large-scale atmospheric circulation centered on the Bering Sea. Four modes are considered for each of three periods, January–March, April–May, and June–July. These modes are compared with atmospheric circulation patterns formed by compositing 700-mb height anomalies based on the individual elements constituting the local forcing, i.e. the surface heat and momentum fluxes.In general, different aspects of local forcing are associated with different climate modes. In winter, the modes dominating the forcing of sea-ice include considerable interannual variability, but no discernible long-term trends. A prominent shift did occur around 1977 in the sign of a winter mode resembling the Pacific North American pattern; this mode is most significantly related to the local wind-stress curl. In spring, forcing of currents and stratification are related to the two leading climate modes, one resembling the North Pacific (NP) pattern and one reflecting the strength of the Aleutian low; both exhibit long-term trends with implications for the Bering Sea. In summer, an NP-like mode and a mode featuring a center over the Bering Sea include long-term trends with impacts on surface heating and wind mixing, respectively. Rare events, such as a persistent period of strong high pressure or a major storm, also can dominate the summer Bering Sea forcing in particular years.  相似文献   

15.
On a global basis, a very large fraction (>50%) of the mass flux from land to the marine environment enters from tropical rivers. A broad range of processes active in the adjacent coastal ocean determines the fate of this material. The tropical setting causes many of the coastal processes to be fundamentally distinct from those operating in temperate and polar regions. Therefore, their operation cannot necessarily be understood by extrapolation from empirical observations at higher latitudes. Other coastal processes are influenced by the extremely large water, particulate, and solute discharges from tropical rivers. Further complexity is added by the diverse range of geographic settings through which tropical rivers flow and into which they empty. In summary, coastal—ocean processes in the wet tropics are: globally important, fundamentally different than at higher latitudes, and diverse in operation. Many recent advances have been made in the understanding of the tropical coastal ocean, and it is hoped these will continue into the future. Such understanding is important for predicting processes of river—ocean interaction and terrestrial fluxes to the global ocean, which affect and are affected by human populations. It also can be combined with knowledge of temperate and polar settings to provide a comprehensive understanding of the coastal ocean.  相似文献   

16.
The relationship between physical forcing and biological response observed in the Arabian Sea for the years 1978–1986 were examined. Spatial and temporal patterns of variability in a climatological time-series of three possible physical forcing parameters and CZCS-derived phytoplankton pigment concentration during the annual cycle were quantified using single and joint empirical orthogonal function (EOF) and singular-value decomposition (SVD) analyses. Monthly composites of the NASA regional pigment data were interpolated to fill data voids and binned corresponding to the physical flux data. Nearly all the spatial-temporal analyses consistently partitioned a large portion of the variability using only 1 or 2 dominant modes and indicated a lag in the timing of the peak pigment concentration behind the maxima in physical forcing. In all cases, major modes of variability resembled the Southwest Monsoon pattern, with the Northeast Monsoon contributing very little to the total variance and covariance. The Joint EOF and SVD analyses incorporated subtle features surrounding the peak Southwest Monsoon phenomena. Correlation maps of the joint EOF analysis depicted differences in spatial variability of pigment concentration associated with stress and curl, showing areas of curl-driven upwelling distinct from coastal upwelling, with possible off-shore advection of the curl-induced high pigment waters.  相似文献   

17.
In the Weddell Sea during the winters of 1974–1976 a significant opening in the sea-ice cover occurred in the vicinity of a large bathymetric feature — the Maud Rise seamount. The event is commonly referred to as the Weddell Polynya. Aside from such a large-scale, relatively persistent polynya in the Weddell Sea, transient, small-scale polynya can also appear in the sea-ice cover at various times throughout the winter and at various locations with respect to the Maud Rise. The underlying causes for the occurrence of such transient polynya have not been unambiguously identified. We hypothesize that variations in the mean ocean currents are one major contributor to such variability in the sea-ice cover. Analysis of the sea-ice equations with certain idealized patterns of ocean currents serving as forcing is shown to lead to Ekman transports of sea ice favorable to the initiation of transient polynya. Aside from the actual spatial pattern of the idealized ocean currents, many other factors need also be taken into account when looking at such transient polynya. Two other such factors discussed are variations in the sea-ice thickness field and the treatment of the sea-ice rheology. Simulations of a sea-ice model coupled to a dynamical ocean model show that the interaction of (dynamical) oceanic currents with large-scale topographic features, such as the Maud Rise, does lead to the formation of transient polynya, again through Ekman transport effects. This occurs because the seamount has a dynamic impact on the three-dimensional oceanic flow field all the way up through the water column, and hence on the near surface ocean currents that are in physical contact with the sea ice. Further simulations of a sea-ice model coupled to a dynamic ocean model and forced with atmospheric buoyancy fluxes show that transient polynya can be enhanced when atmospheric cooling provides a positive feedback mechanism allowing preferential open-ocean convection to occur. The convection, which takes hold at sites where transient polynya have been initiated by sea-ice–ocean stress interaction, has an enhancing effect arising from the convective access to warmer, deeper waters. To investigate all of these effects in a hierarchical manner we use a primitive equation coupled sea-ice–ocean numerical model configured in a periodic channel domain with specified atmospheric conditions. We show that oceanic flow variability can account for temporal variability in small-scale, transient polynya and thus point to a plausible mechanism for the initiation of large-scale, sustained polynya such as the Weddell Polynya event of the mid 1970s.  相似文献   

18.
ENSO variability and the eastern tropical Pacific: A review   总被引:3,自引:0,他引:3  
El Niño-Southern Oscillation (ENSO) encompasses variability in both the eastern and western tropical Pacific. During the warm phase of ENSO, the eastern tropical Pacific is characterized by equatorial positive sea surface temperature (SST) and negative sea level pressure (SLP) anomalies, while the western tropical Pacific is marked by off-equatorial negative SST and positive SLP anomalies. Corresponding to this distribution are equatorial westerly wind anomalies in the central Pacific and equatorial easterly wind anomalies in the far western Pacific. Occurrence of ENSO has been explained as either a self-sustained, naturally oscillatory mode of the coupled ocean–atmosphere system or a stable mode triggered by stochastic forcing. Whatever the case, ENSO involves the positive ocean–atmosphere feedback hypothesized by Bjerknes. After an El Niño reaches its mature phase, negative feedbacks are required to terminate growth of the mature El Niño anomalies in the central and eastern Pacific. Four requisite negative feedbacks have been proposed: reflected Kelvin waves at the ocean western boundary, a discharge process due to Sverdrup transport, western Pacific wind-forced Kelvin waves, and anomalous zonal advections. These negative feedbacks may work together for terminating El Niño, with their relative importance being time-dependent.ENSO variability is most pronounced along the equator and the coast of Ecuador and Peru. However, the eastern tropical Pacific also includes a warm pool north of the equator where important variability occurs. Seasonally, ocean advection seems to play an important role for SST variations of the eastern Pacific warm pool. Interannual variability in the eastern Pacific warm pool may be largely due to a direct oceanic connection with the ENSO variability at the equator. Variations in temperature, stratification, insolation, and productivity associated with ENSO have implications for phytoplankton productivity and for fish, birds, and other organisms in the region. Long-term changes in ENSO variability may be occurring and are briefly discussed. This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific.  相似文献   

19.
热带大西洋年际和年代际变率的时空结构模拟   总被引:10,自引:3,他引:10       下载免费PDF全文
使用美国夏威夷大学发展的中等复杂程度海洋模式(IOM)在给定表面强迫条件下模拟了热带大西洋上层海洋年际和年代际变率的时空结构.利用NCEP的41a(1958~1998年)逐月平均表面资料作为强迫场,积分海洋模式41a作为控制试验,并利用模式分别做动量(风应力)通量和热量通量无异常变化的平行试验,与控制试验作比较.对3组试验模拟上层海洋变率状况的比较,并按年际和年代际时间尺度分别分析,揭示表面风应力和热通量异常对海表面温度和温跃层深度变化的影响,并比较了其影响的相对重要性.结果表明模式成功地模拟出了热带大西洋上层海洋的变率.模式模拟的海表面温度年际变化主要表现为弱ENSO型,年代际变化表现为南、北大西洋变化相反的偶极子型.在年际时间尺度上,热力强迫和动力强迫对海表温度变化都有贡献,其中赤道外海表面温度异常(SSTA)变化主要由热通量异常引起,而近赤道SSTA的变化主要由动量异常强迫引起.在年代际时间尺度上,热通量强迫的作用远比动量强迫重要.模式不仅能够模拟SST在年际和年代际时间尺度上的变率,还能够模拟温跃层深度在年际和年代际时间尺度上的变率.年际和年代际时间尺度上,温跃层深度的变率主要由动量异常决定,热通量异常强迫的贡献很小.  相似文献   

20.
Observations of the western Arabian Sea over the last decade have revealed a rich filamentary eddy structure, with large horizontal SST gradients in the ocean, developing in response to the southwest monsoon winds. This summertime oceanic condition triggers an intense mesoscale coupled interaction, whose overall influence on the longer-term properties of this ocean remains uncertain. In this study, a high-resolution regional coupled model is employed to explore this feedback effect on the long-term dynamical and thermodynamical structure of the ocean.The observed relationship between the near-surface winds and mesoscale SSTs generate Ekman pumping velocities at the scale of the cold filaments, whose magnitude is the order of 1 m/day in both the model and observations. This additional Ekman-driven velocity, induced by the wind-eddy interaction, accounts for approximately 10–20% of oceanic vertical velocity of the cold filaments. This implies that Ekman pumping arising from the mesoscale coupled feedback makes a non-trivial contribution to the vertical structure of the upper ocean and the evolution of mesoscale eddies, with obvious implications for marine ecosystem and biogeochemical variability.Furthermore, SST features associated with cold filaments substantially reduce the latent heat loss. The long-term latent heat flux change due to eddies in the model is approximately 10–15 W/m2 over the cold filaments, which is consistent with previous estimates based on short-term in situ measurements. Given the shallow mixed layer, this additional surface heat flux warms the cold filament at the rate of 0.3–0.4 °C/month over a season with strong eddy activity, and 0.1–0.2 °C/month over the 12-year mean, rendering overall low-frequency modulation of SST feasible. This long-term mixed layer heating by the surface flux is approximately ±10% of the lateral heat flux by the eddies, yet it can be comparable to the vertical heat flux. Potential dynamic and thermodynamic impacts of this observed air–sea interaction on the monsoons and regional climate are yet to be quantified given the strong correlation between the Somalia upwelling SST and the Indian summer monsoons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号