首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Four or five sets of ab initio models, including Unrestricted Hartree Fock (UHF) and hybrid Density Functional Theory (DFT) are calculated for each species in a series of aqueous ferric aquo-chloro complexes: , , , FeCl3(H2O)3, FeCl3(H2O)2, , FeCl5H2O2−, , ) in order to determine the relative isotopic fractionation among the complexes, to compare the results of different models for the same complexes, to examine factors that influence the magnitude of the isotopic fractionation, and to compare bond-partner-driven fractionation with redox-driven fractionation.Relative to , all models show a nearly linear decrease in 56Fe/54Fe as the number of Cl ions per Fe3+ ion increases, with slopes of −0.8‰ to −1.0‰ per Cl at 20 °C. At 20 °C, 1000 ln β (β = 56Fe/54Fe reduced partition function ratio relative to a dissociated Fe atom) values range from 8.93‰ to 9.73‰ for , 8.04-9.12‰ for , 7.61-8.73‰ for , 7.14-8.25‰ for , and 3.09-4.41‰ for . The fractionation between and ranges from 1.5‰ to 2.6‰, depending on the model; this is comparable in magnitude to fractionation effects due to Fe3+/Fe2+ redox reactions. β values from the UHF models are consistently higher than those from the hybrid DFT models.Isotopic fractionation is shown to be sensitive to differences in ligand bond stiffness (above), coordination number, bond length, and the frequency of the asymmetric Fe-X stretching vibrational mode, as predicted by previous theoretical studies. Complexes with smaller coordination numbers have higher 1000 ln β (7.46‰, 5.25‰, and 3.48‰ for , ,, respectively, from the B3LYP/6-31G(d) model). Species with the same number of chlorides but fewer waters also show the effect of coordination number on 1000 ln β: (7.46‰ vs. 7.05‰ for FeCl3(H2O)2 vs. FeCl3(H2O)3 and 5.25‰ vs. 4.94‰ for vs. FeCl5H2O2− with the B3LYP/6-31G(d) model). As more Fe-Cl bonds substitute for Fe-OH2 bonds (with a resulting decrease in β), the lengths of the Fe-Cl bonds and the Fe-O bonds increase.Preliminary modeling of shows an Fe3+/Fe2+ fractionation of 3.2‰ for the B3LYP/6-31G(d) model, in agreement with previous studies. The addition of an explicit outer hydration sphere of 12 H2O molecules to models of improves agreement with measured vibrational frequencies and bond lengths; 1000 ln β increases by 0.8-1.0‰. An additional hydration sphere around increases 1000 ln β by only 0.1‰.Isotopic fractionations predicted for this simple system imply that ligands present in an aqueous iron environment are potentially important drivers of fractionation, and suggest that significant fractionation effects are likely in other aqueous systems containing sulfides or organic ligands. Fractionation effects due to both speciation and redox must be considered when interpreting iron isotope fractionations in the geological record.  相似文献   

2.
Olivine/melt partitioning of ΣFe, Fe2+, Mg2+, Ca2+, Mn2+, Co2+, and Ni2+ has been determined in the systems CaO-MgO-FeO-Fe2O3-SiO2 (FD) and CaO-MgO-FeO-Fe2O3-Al2O3-SiO2 (FDA3) as a function of oxygen fugacity (fO2) at 0.1 MPa pressure. Total iron oxide content of the starting materials was ∼20 wt%. The fO2 was to used to control the Fe3+/ΣFe (ΣFe: total iron) of the melts. The Fe3+/ΣFe and structural roles of Fe2+ and Fe3+ were determined with 57Fe resonant absorption Mössbauer spectroscopy. Changes in melt polymerization, NBO/T, as a function of fO2 was estimated from the Mössbauer data and existing melt structure information. It varies by ∼100% in melts coexisting with olivine in the FDA3 system and by about 300% in the FD system in the Fe3+/ΣFe range of the experiments (0.805-0.092). The partition coefficients ( in olivine/wt% in melt) are systematic functions of fO2 and, therefore, NBO/T of the melt. There is a -minimum in the FDA3 system at NBO/T-values corresponding to intermediate Fe3+/ΣFe (0.34-0.44). In the Al-free system, FD, where the NBO/T values of melts range between ∼1 and ∼2.9, the partition coefficients are positively correlated with NBO/T (decreasing Fe3+/ΣFe). These relationships are explained by consideration of solution behavior in the melts governed by Qn-unit distribution and structural changes of the divalent cations in the melts (coordination number, complexing with Fe3+, and distortion of the polyhedra).  相似文献   

3.
Ammoniojarosite [(NH4,H3O)Fe3(OH)6(SO4)2], a poorly soluble basic ferric sulfate, was produced by microbiological oxidation of ferrous sulfate at pH 2.0-3.0 over a range of concentrations (5.4-805 mM) and temperatures (22-65 °C). Ammoniojarosites were also produced by chemical (abiotic) procedures in parallel thermal (36-95 °C) experiments. At 36 °C, schwertmannite [ideally Fe8O8(OH)6(SO4)] was the only solid product formed at <10 mM concentrations. Between 11.5 and 85.4 mM , a mixed product of ammoniojarosite and schwertmannite precipitated, as identified by X-ray diffraction. In excess of 165 mM , ammoniojarosite was the only solid phase produced. An increase in the incubation temperature using thermoacidophiles at 45 and 65 °C accelerated the formation of ammoniojarosite in culture solutions containing 165 mM . Both the biogenic and chemical ammoniojarosites were yellow (2Y-4Y in Munsell hue), low surface area (<1 m2/g), well crystalline materials with average co and ao unit cell parameters of 17.467 ± 0.048 Å and 7.330 ± 0.006 Å, respectively. Strong positive correlations were observed between unit cell axial ratios (co/ao) and increasing synthesis temperature in both biotic and abiotic systems. All samples were N deficient compared to stoichiometric ammoniojarosite, and both chemical and X-ray data indicated partial replacement of by H3O+ to form solid solutions with 0.14-0.24 mole H3O+ per formula unit. The morphology of the biogenic jarosites included aggregated discs, pseudo-cubic crystals and botryoidal particles, whereas the chemical specimens prepared at 36-95 °C were composed of irregular crystals with angular edges. Morphological information may thus be useful to evaluate environmental parameters and mode of formation. The data may also have application in predicting phase boundary conditions for Fe(III) precipitation in biogeochemical processes and treatment systems involving acid sulfate waters.  相似文献   

4.
NaCl solubility in gaseous carbon dioxide has been measured in the pressure range from 30 to 70 MPa at 623 and 673 K. Our originally-designed high pressure apparatus allows in situ sampling of a portion of the fluid phase for chemical analysis. The results indicate that the solubility of NaCl increases with both temperature and pressure, and is about 4-5 orders of magnitude higher than saturated NaCl pressure values at the same temperature conditions (6.02 × 10−12 at 623 K and 1.51 × 10−10 at 673 K). It is also 1-2 orders of magnitude greater than predictions according to the Equation of State of the ternary H2O-CO2-NaCl system by Duan, Moeller and Weare [Duan, Z., Moller, N., and Weare, J. H. (1995) Equation of state for the NaCl-H2O-CO2 system: prediction of phase equilibria and volumetric properties. Geochim. Cosmochim. Acta59, 2869] and has the opposite pressure dependence. The activity values of NaCl in the vapor phase, calculated from the experiments (with pure molten NaCl as a standard state in the vapor), have been fitted to the Darken Quadratic Formalism: , where, xNaCl,v is mole the fraction of NaCl in the vapor phase, , , where P is the pressure in MPa and T the absolute temperature. Caution should be exerted while extrapolating this empirical equation far beyond the experimental P-T-compositional range.  相似文献   

5.
Copper partitioning in a melt-vapor-brine-magnetite-pyrrhotite assemblage   总被引:4,自引:0,他引:4  
The effect of sulfur on the partitioning of Cu in a melt-vapor-brine ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 140 MPa, fO2 = nickel-nickel oxide (NNO), logfS2=-3.0 (i.e., on the magnetite-pyrrhotite curve at NNO), logfH2S=-1.3 and logfSO2=-1. All experiments were vapor + brine saturated. Vapor and brine fluid inclusions were trapped in silicate glass and self-healed quartz fractures. Vapor and brine are dominated by NaCl, KCl and HCl in the S-free runs and NaCl, KCl and FeCl2 in S-bearing runs. Pyrrhotite served as the source of sulfur in S-bearing experiments. The composition of fluid inclusions, glass and crystals were quantified by laser-ablation inductively coupled plasma mass spectrometry. Major element, chlorine and sulfur concentrations in glass were quantified by using electron probe microanalysis. Calculated Nernst-type partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-free system. The partition coefficients (±2σ) for Cu between melt-vapor, melt-brine and vapor-brine are , , and , respectively, in the S-bearing system. Apparent equilibrium constants (±1σ) describing Cu and Na exchange between vapor and melt and brine and melt were also calculated. The values of are 34 ± 21 and 128 ± 29 in the S-free and S-bearing runs, respectively. The values of are 33 ± 22 and60 ± 5 in the S-free and S-bearing runs, respectively. The data presented here indicate that the presence of sulfur increases the mass transfer of Cu into vapor from silicate melt. Further, the nearly threefold increase in suggests that Cu may be transported as both a chloride and sulfide complex in magmatic vapor, in agreement with hypotheses based on data from natural systems. Most significantly, the data demonstrate that the presence of sulfur enhances the partitioning of Cu from melt into magmatic volatile phases.  相似文献   

6.
The speciation of cobalt (II) in Cl and H2S-bearing solutions was investigated spectrophotometrically at temperatures of 200, 250, and 300 °C and a pressure of 100 bars, and by measuring the solubility of cobaltpentlandite at temperatures of 120-300 °C and variable pressures of H2S. From the results of these experiments, it is evident that CoHS+ and predominate in the solutions except at 150 °C, for which the dominant chloride complex is CoCl3. The logarithms of the stability constant for CoHS+ show moderate variation with temperature, decreasing from 6.24 at 120 °C to 5.84 at 200 °C, and increasing to 6.52 at 300 °C. Formation constants for chloride species increase smoothly with temperature and at 300°C their logarithms reach 8.33 for , 6.44 for CoCl3, 4.94 to 5.36 for , and 2.42 for CoCl+. Calculations based on the composition of a model hydrothermal fluid (Ksp-Mu-Qz, KCl = 0.25 m, NaCl = 0.75 m, ΣS = 0.3 m) suggest that at temperatures ?200 °C, cobalt occurs dominantly as CoHS+, whereas at higher temperatures the dominant species is .  相似文献   

7.
A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H2O-CO2-NaCl-CaCO3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H+, Na+, Ca2+, , Ca(OH)+, OH, Cl, , , CO2(aq) and CaCO3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T-P-m range, hence calcite solubility, CO2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data.One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility.The functionality of pH value, alkalinity, CO2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl(aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.  相似文献   

8.
The effect of sulfur dissolved as sulfide (S2−) in silicate melts on the activity coefficients of NiO and some other oxides of divalent cations (Ca, Cr, Mn, Fe and Co) has been determined from olivine/melt partitioning experiments at 1400 °C in six melt compositions in the system CaO-MgO-Al2O3-SiO2 (CMAS), and in derivatives of these compositions at 1370 °C, obtained from the six CMAS compositions by substituting Fe for Mg (FeCMAS). Amounts of S2− were varied from zero to sulfide saturation, reaching 4100 μg g−1 S in the most sulfur-rich silicate melt. The sulfide solubilities compare reasonably well with those predicted from the parameterization of the sulfide capacity of silicate melts at 1400 °C of O’Neill and Mavrogenes (2002), although in detail systematic deviations indicate that a more sophisticated model may improve the prediction of sulfide capacities.The results show a barely discernible effect of S2− in the silicate melt on Fe, Co and Ni partition coefficients, and also surprisingly, a tiny but resolvable effect on Ca partitioning, but no detectable effect on Cr, Mn or some other lithophile incompatible elements (Sc, Ti, V, Y, Zr and Hf). Decreasing Mg# of olivine (reflecting increasing FeO in the system) has a significant influence on the partitioning of several of the divalent cations, particularly Ca and Ni. We find a remarkably systematic correlation between and the ionic radius of M2+, where M = Ca, Cr, Mn, Fe, Co or Ni, which is attributable to a simple relationship between size mismatch and excess free energies of mixing in Mg-rich olivine solid solutions.Neither the effect of S2− nor of Mg#ol is large enough by an order of magnitude to account for the reported variations of obtained from electron microprobe analyses of olivine/glass pairs from mid-ocean ridge basalts (MORBs). Comparing these MORB glass analyses with the Ni-MgO systematics of MORB from other studies in the literature, which were obtained using a variety of analytical techniques, shows that these electron microprobe analyses are anomalous. We suggest that the reported variation of with S content in MORB is an analytical artifact.Mass balance of melt and olivine compositions with the starting compositions shows that dissolved S2− depresses the olivine liquidus of haplobasaltic silicate melts by 5.8 × 10−3 (±1.3 × 10−3) K per μg g−1 of S2−, which is negligible in most contexts. We also present data for the partitioning of some incompatible trace elements (Sc, Ti, Y, Zr and Hf) between olivine and melt. The data for Sc and Y confirm previous results showing that and decrease with increasing SiO2 content of the melt. Values of average 0.01 with most falling in the range 0.005-0.015. Zr and Hf are considerably more incompatible than Ti in olivine, with and about 10−3. The ratio / is well constrained at 0.611 ± 0.016.  相似文献   

9.
Os equilibrium solubilities were determined at 1350 °C over a wide range of oxygen fugacities (−12 < log fO2 < −7) applying the mechanically assisted equilibration technique (MAE) at 105 Pa (= 1 bar). Os concentrations in the glass samples were analysed using ID-NTIMS. Additional LA-ICP-MS and SEM analyses were performed to detect, visualize and analyse the nature and chemistry of “nanonuggets.” Os solubilities determined range at a constant temperature of 1350 °C from 0.63 ± 0.04 to 37.4 ± 1.16 ppb depending on oxygen fugacity. At the highest oxygen fugacities, Os3+ can be confirmed as the main oxidation state of Os. At low oxygen fugacities (below log fO2 = −8), samples are contaminated by nanonuggets which, despite the MAE technique, were still not removed entirely from the melt. However, the present results indicate that applying MAE technology does reduce the amount of nanonuggets present significantly, resulting in the lowest Os solubility results reported to date under these experimental conditions, and extending the experimentally accessible range of fO2 for these studies to lower values. Calculated metal/silicate melt partition coefficients are therefore higher compared to previous studies, making Os more siderophile. Neglecting the as yet unknown temperature dependence of the Os metal/silicate melt partition coefficient, extrapolation of the obtained Os solubilities to conditions for core-mantle equilibrium, results in a , while metallic alloy/silicate melt partition coefficients range from 1.4 × 106 to 8.6 × 107, in agreement with earlier findings. Therefore remains too high by 2-4 orders of magnitude to explain the Os abundance in the Earth’s mantle as result of core-mantle equilibrium during core formation.  相似文献   

10.
Density-functional electronic structure calculations are used to compute the equilibrium constants for 26Mg/24Mg and 44Ca/40Ca isotope exchange between carbonate minerals and uncomplexed divalent aquo ions. The most reliable calculations at the B3LYP/6-311++G(2d,2p) level predict equilibrium constants K, reported as 103ln (K) at 25 °C, of −5.3, −1.1, and +1.2 for 26Mg/24Mg exchange between calcite (CaCO3), magnesite (MgCO3), and dolomite (Ca0.5Mg0.5CO3), respectively, and Mg2+(aq), with positive values indicating enrichment of the heavy isotope in the mineral phase. For 44Ca/40Ca exchange between calcite and Ca2+(aq) at 25 °C, the calculations predict values of +1.5 for Ca2+(aq) in 6-fold coordination and +4.1 for Ca2+(aq) in 7-fold coordination. We find that the reduced partition function ratios can be reliably computed from systems as small as and embedded in a set of fixed atoms representing the second-shell (and greater) coordination environment. We find that the aqueous cluster representing the aquo ion is much more sensitive to improvements in the basis set than the calculations on the mineral systems, and that fractionation factors should be computed using the best possible basis set for the aquo complex, even if the reduced partition function ratio calculated with the same basis set is not available for the mineral system. The new calculations show that the previous discrepancies between theory and experiment for Fe3+-hematite and Fe2+-siderite fractionations arise from an insufficiently accurate reduced partition function ratio for the Fe3+(aq) and Fe2+(aq) species.  相似文献   

11.
The transport and deposition of copper in saline hydrothermal fluids are controlled by the stability of copper(I) complexes with ligands such as chloride. Despite their role in the formation of most hydrothermal copper deposits, the nature and stability of Cu(I) chloride complexes in highly saline brines remains controversial. We present new X-ray absorption data (P = 600 bar, T = 25-400 °C, salinity up to 17.2 m Cl), which indicate that the linear (x = 1, 2) complexes are stable up to supercritical conditions. Distorted trigonal planar complexes predominate at room temperature and at high salinity (>3 m LiCl): subtle changes in the XANES spectrum with increasing salinity may reflect geometric distortions of this complex. Similar changes were observed in UV-Vis data [Liu, W., Brugger, J., McPhail, D.C., Spiccia, L., 2002. A spectrophotometric study of aqueous copper(I) chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochim. Cosmochim. Acta66, 3615-3633], and were erroneously interpreted as a new species, . Our XAS data and ab-initio XANES calculations show that this tetrahedral species is not present to any significant degree in our solutions. The stability of the complexe decreases with increasing temperature; under supercritical conditions and in brines under magmatic-hydrothermal conditions (e.g., 15.58 m Cl, 400 °C, 600 bar), only the linear Cu(I) chloride complexes were observed. This result and the instability of the complex are also consistent with the recent ab-initio molecular dynamic calculations of Sherman [Sherman D. M.(2007) Complexation of Cu+ in hydrothermal NaCl brines: ab-initio molecular dynamics and energetics. Geochim. Cosmochim. Acta71, 714-722]. This study illustrates the power of the quantitative nature of XANES and EXAFS measurements for deciphering the speciation of weak transition metal complexes up to magmatic-hydrothermal conditions.The systematic XANES data are used to retrieve the formation constant for at 150 °C, which is in good agreement with the reinterpretation of the UV-Vis data of Liu et al. (Liu et al., 2002). At high temperatures (?400 °C), the solubility of chalcopyrite in equilibrium with hematite-magnetite-pyrite and K-feldspar-muscovite-quartz calculated with the new properties is lower than that calculated using the previous model, and the calculated solubilities are at the lower end of the range of values measured in brine inclusions from porphyry copper systems.  相似文献   

12.
The solubility of crystalline Mg(OH)2(cr) was determined by measuring the equilibrium H+ concentration in water, 0.01-2.7 m MgCl2, 0.1-5.6 m NaCl, and in mixtures of 0.5 and 5.0 m NaCl containing 0.01-0.05 m MgCl2. In MgCl2 solutions above 2 molal, magnesium hydroxide converted into hydrated magnesium oxychloride. The solid-liquid equilibrium of Mg2(OH)3Cl·4H2O(cr) was studied in 2.1-5.2 m MgCl2. Using known ion interaction Pitzer coefficients for the system Mg-Na-H-OH-Cl-H2O (25°C), the following equilibrium constants at I = 0 are calculated:
  相似文献   

13.
Synthesis, characterization and thermochemistry of a Pb-jarosite   总被引:1,自引:0,他引:1  
The enthalpy of formation from the elements of a well-characterized synthetic Pb-jarosite sample corresponding to the chemical formula (H3O)0.74Pb0.13Fe2.92(SO4)2(OH)5.76(H2O)0.24 was measured by high temperature oxide melt solution calorimetry. This value ( = −3695.9 ± 9.7 kJ/mol) is the first direct measurement of the heat of formation for a lead-containing jarosite. Comparison to the thermochemical properties of hydronium jarosite and plumbojarosite end-members strongly suggests the existence of a negative enthalpy of mixing possibly related to the nonrandom distribution of Pb2+ ions within the jarosite structure. Based on these considerations, the following thermodynamic data are proposed as the recommended values for the enthalpy of formation from the elements of the ideal stoichiometric plumbojarosite Pb0.5Fe3(SO4)2(OH)6:  = −3118.1 ± 4.6 kJ/mol,  = −3603.6 ± 4.6 kJ/mol and S° = 376.6 ± 4.5 J/(mol K). These data should prove helpful for the calculation of phase diagrams of the Pb-Fe-SO4-H2O system and for estimating the solubility product of pure plumbojarosite. For illustration, the evolution of the estimated solubility product of ideal plumbojarosite as a function of temperature in the range 5-45 °C was computed (Log(Ksp) ranging from −24.3 to −26.2). An Eh-pH diagram is also presented.  相似文献   

14.
The electrical conductivities of aqueous solutions of Li2SO4 and K2SO4 have been measured at 523-673 K at 20-29 MPa in dilute solutions for molalities up to 2 × 10−2 mol kg−1. These conductivities have been fitted to the conductance equation of Turq, Blum, Bernard, and Kunz with a consensus mixing rule and mean spherical approximation activity coefficients. In the temperature interval 523-653 K, where the dielectric constant, ε, is greater than 14, the electrical conductance data can be fitted by a solution model which includes ion association to form , , and , where M is Li or K. The adjustable parameters of this model are the first and second dissociation constants of the M2SO4. For the 673 K and 300 kg m−3 state point where the Coulomb interactions are the strongest (dielectric constant, ε = 5), models with more extensive association give good fits to the data. In the case of the Li2SO4 model, including the multi-ion associate, , gave an extremely good fit to the conductance data.  相似文献   

15.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

16.
The influence on olivine/melt transition metal (Mn, Co, Ni) partitioning of substitution in the tetrahedral network of silicate melt structure has been examined at ambient pressure in the 1450-1550 °C temperature range. Experiments were conducted in the systems NaAlSiO4-Mg2SiO4- SiO2 and CaAl2Si2O8-Mg2SiO4-SiO2 with about 1 wt% each of MnO, CoO, and NiO added. These compositions were used to evaluate how, in silicate melts, substitution and ionization potential of charge-balancing cations affect activity-composition relations in silicate melts and mineral/melt partitioning.The exchange equilibrium coefficient, , is a positive and linear function of melt Al/(Al + Si) at constant degree of melt polymerization, NBO/T. The is negatively correlated with the ionic radius, r, of the M-cation and also with the ionization potential (Z/r2, Z = electrical charge) of the cation that serves to charge-balance Al3+ in tetrahedral coordination in the melts. The activity coefficient ratio, (γM/γMg)melt, is therefore similarly correlated.These melt composition relationships are governed by the distribution of Al3+ among coexisting Q-species in the peralkaline (depolymerized) melts coexisting with olivine. This distribution controls Q-speciation abundance, which, in turn, controls (γM/γMg)melt and . The relations between melt structure and olivine/melt partitioning behavior lead to the suggestion that in natural magmatic systems mineral/melt partition coefficients are more dependent on melt composition and, therefore, melt structure the more alkali-rich and the more felsic the melt. Moreover, mineral/melt partition coefficients are more sensitive to melt composition the more highly charged or the smaller the ionic radius of the cation of interest.  相似文献   

17.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

18.
Porphyry-type ore deposits sometimes contain fluid inclusion compositions consistent with the partitioning of copper and gold into vapor relative to coexisting brine at the depositional stage. However, this has not been reproduced experimentally at magmatic conditions. In an attempt to determine the conditions under which copper and gold may partition preferentially into vapor relative to brine at temperatures above the solidus of granitic magmas, we performed experiments at 800 °C, 100 MPa, oxygen fugacity () buffered by Ni-NiO, and fixed at either 3.5 × 10−2 by using intermediate solid solution-pyrrhotite, or 1.2 × 10−4 by using intermediate solid solution-pyrrhotite-bornite. The coexisting vapor (∼3 wt.% NaCl eq.) and brine (∼68 wt.% NaCl eq.) were composed initially of NaCl + KCl + HCl + H2O, with starting HCl set to <1000 μg/g in the aqueous mixture. Synthetic vapor and brine fluid inclusions were trapped at run conditions and subsequently analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Our experiments demonstrate that copper and gold partitioned strongly into the magmatic volatile phase(s) (MVP) (i.e., vapor or brine) relative to a silicate melt over the entire imposed range of . Nernst style partition coefficients between coexisting brine (b) and melt (m), Db/m (±1σ), range from 3.6(±2.2) × 101 to 4(±2) × 102 for copper and from 1.2(±0.6) × 102 to 2.4(±2.4) × 103 for gold. Partition coefficients between coexisting vapor (v) and melt, Dv/m range from 2.1 ± 0.7 to 18 ± 5 and 7(±3) × 101 to 1.6(±1.6) × 102 for copper and gold, respectively. Partition coefficients for all experiments between coexisting brine and vapor, Db/v (±1σ), range from 7(±2) to 1.0(±0.4) × 102 and 1.7(±0.2) to 15(±2) for copper and gold, respectively. Observed average Db/v at an of 1.2 × 10−4 were elevated, 95(±5) and 15 ± 1 for copper and gold, respectively, relative to those at the higher of 3.5 × 10−2 where Db/v were 10(±5) for copper and 7(±6) for gold. Thus, there is an inverse relationship between the and the Db/v for both copper and gold with increasing resulting in a decrease in the Db/v signifying increased importance of the vapor phase for copper and gold transport. This suggests that copper and gold may complex with volatile S-species as well as Cl-species at magmatic conditions, however, none of the experiments of our study at 800 °C and 100 MPa had a Db/v ? 1. We did not directly determine speciation, but infer the existence of some metal-sulfur complexes based on the reported data. We suggest that copper and gold partition preferentially into the brine in most instances at or above the wet solidus. However, in most systems, the mass of vapor is greater than the mass of brine, and vapor transport of copper and gold may become more important in the magmatic environment at higher , lower , or near the critical point in a salt-water system. A Db/v ? 1 at subsolidus hydrothermal conditions may also occur in response to changes in temperature, , , and/or acidity.Additionally, both copper and gold were observed to partition into intermediate solid solution and bornite much more strongly than into vapor, brine or silicate melt. This suggests that, although vapor and brine are both efficient at removing copper and gold from a silicate melt, the presence of Cu-Fe sulfides can sequester a substantial portion of the copper and gold contained within a silicate melt if the Cu-Fe sulfides are abundant.  相似文献   

19.
Over the last decade, a significant research effort has focused on determining the feasibility of sequestering large amounts of CO2 in deep, permeable geologic formations to reduce carbon dioxide emissions to the atmosphere. Most models indicate that injection of CO2 into deep sedimentary formations will lead to the formation of various carbonate minerals, including the common phases calcite (CaCO3), dolomite (CaMg(CO3)2), magnesite (MgCO3), siderite (FeCO3), as well as the far less common mineral, dawsonite (NaAlCO3(OH)2). Nevertheless, the equilibrium and kinetics that control the precipitation of stable carbonate minerals are poorly understood and few experiments have been performed to validate computer codes that model CO2 sequestration.In order to reduce this uncertainty we measured the solubility of synthetic dawsonite according to the equilibrium: , from under- and oversaturated solutions at 50-200 °C in basic media at 1.0 mol · kg−1 NaCl. The solubility products (Qs) obtained were extrapolated to infinite dilution to obtain the solubility constants (. Combining the fit of these values and fixing  at 25 °C, which was derived from the calorimetric data of Ferrante et al. [Ferrante, M.J., Stuve, J.M., and Richardson, D.W., 1976. Thermodynamic data for synthetic dawsonite. U.S. Bureau of Mines Report Investigation, 8129, Washington, D.C., 13p.], the following thermodynamic parameters for the dissolution of dawsonite were calculated at 25 °C: , and . Subsequently, we were able to derive values for the Gibbs energy of formation (, enthalpy of formation ( and entropy ( of dawsonite. These results are within the combined experimental uncertainties of the values reported by Ferrante et al. (1976). Predominance diagrams are presented for the dawsonite/boehmite and dawsonite/bayerite equilibria at 100 °C in the presence of a saline solution with and without silica-containing minerals.  相似文献   

20.
The volatization of Rhenium (Re) from melts of natural basalt, dacite and a synthetic composition in the CaO-MgO-Al2O3-SiO2 system has been investigated at 0.1 MPa and 1250-1350 °C over a range of fO2 conditions from log fO2 = −10 to −0.68. Experiments were conducted using open top Pt crucibles doped with Re and Yb. Analysis of quenched glasses by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) normal to the melt/gas interface showed concentration profiles for Re, to which a semi-infinite one-dimensional diffusion model could be applied to extract diffusion coefficients (D). The results show Re diffusivity in basalt at 1300 °C in air is log DRe = −7.2 ± 0.3 cm2/s and increases to log DRe = −6.6 ± 0.3 cm2/s when trace amounts of Cl were added to the starting material. At fO2 conditions below the nickel-nickel oxide (NNO) buffer Re diffusivity decreases to and to in dacitic melt. In the CMAS composition, . The diffusivity of Re is comparable to Ar and CO2 in basalt at 500 MPa favoring its release as a volatile. Our results support the contention that subaerial degassing is the cause of lower Re concentrations in arc-type and ocean island basalts compared to mid-ocean ridge basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号