首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular simulations (energy minimizations and molecular dynamics) of an n-hexane soot model developed by Smith and co-workers (M. S. Akhter, A. R. Chughtai and D. M. Smith, Appl. Spectrosc., 1985, 39, 143; ref. 1) were performed. The MM+ (N. L. Allinger, J. Am. Chem. Soc., 1977, 395, 157; ref. 2) and COMPASS (H. Sun, J. Phys. Chem., 1998, 102, 7338; ref. 3) force fields were tested for their ability to produce realistic soot nanoparticle structure. The interaction of pyrene with the model soot was simulated. Quantum mechanical calculations on smaller soot fragments were carried out. Starting from an initial 2D structure, energy minimizations are not able to produce the observed layering within soot with either force field. Results of molecular dynamics simulations indicate that the COMPASS force field does a reasonably accurate job of reproducing observations of soot structure. Increasing the system size from a 683 to a 2732 atom soot model does not have a significant effect on predicted structures. Neither does the addition of water molecules surrounding the soot model. Pyrene fits within the soot structure without disrupting the interlayer spacing. Polycyclic aromatic hydrocarbons (PAH), such as pyrene, may strongly partition into soot and have slow desorption kinetics because the PAH-soot bonding is similar to soot–soot interactions. Diffusion of PAH into soot micropores may allow the PAH to be irreversibly adsorbed and sequestered so that they partition slowly back into an aqueous phase causing dis-equilibrium between soil organic matter and porewater.  相似文献   

2.
The postperovskite phase transition of Fe and Al-bearing MgSiO3 bridgmanite, the most aboundant mineral in the Earth's lower mantle, is believed to be a key to understanding seismological observations in the D″ layer, e.g., the discontinuous changes in seismic wave velocities. Experimentally reported phase transition boundaries of Fe and Al-bearing bridgmanite are currently largely controversial and generally suggest wide two-phase coexistence domains. Theoretical simulations ignoring temperature effects cannot evaluate correctly two-phase coexistence domains under high-temperature. We show high-pressure and high-temperature phase transition boundaries for various compositions with geophysically relevant impurities of Fe2+SiO3, Fe3+Fe3+O3, Fe3+Al3+O3, and Al3+Al3+O3 derived from the ab initio finite-temperature free energies calculated combining the internally consistent LSDA + U method and a lattice dynamics approach. We found that at ~ 2500 K, incorporations accompanied by Fe3+ expand the two-phase coexistence domains distinctly, implying that D″ seismic discontinuities likely arise from the phase transition of Fe2+-bearing bridgmanite.  相似文献   

3.
A model Suwannee fulvic acid (SFA [Leenheer, J.A., 1994. In: Baker, L.A. (Ed.), Chemistry of Dissolved Organic Matter in Rivers, Lakes and Reservoirs. Advances in Chemistry Series, vol. 237. American Chemical Society]) was energy minimized in various deprotonation states using semi-empirical methods. The structures were minimized in the isolated SFA phase and SFA with 60 water molecules to mimic the first solvation sphere. The relative energies of deprotonation were calculated at four carboxylic acid sites with Hartree-Fock (HF/6-31G(d)) and density functional theory (B3LYP/6-31G(d)) methods. Comparisons were made between the theoretical methods and states of solvation. Isolated and solvated models resulted in different relative deprotonation orders. The energy changes calculated for removing a H+ from a given carboxylic acid group as a function of overall model molecule charge are large enough to explain the large variations of carboxyl group pKas in dissolved natural organic matter. Analysis of the SFA structure as a function of molecular charge is also discussed.  相似文献   

4.
The compositions of coexisting hornblendes and biotites from amphibolite and granulite facies gneisses from the south coast of Western Australia were controlled by host rock composition, paragenesis, metamophic grade, pressure, and oxygen fugacity. The Mg/(Mg + Fe2+) and Mn/Fe2+ ratios in both minerals and possibly the Alvi contents of the hornblendes are related to host rock compositions. Metamorphic grade appears to influence, perhaps only indirectly, the Ti, Mn, and Fe3+ contents of both minerals and possibly the hornblende Ca content. The higher Ti and lower Mn contents of the granulite facies hornblendes and biotites are attributed to their coexistence with pyroxenes, whereas their lower Fe3+/(Fe2+ + Fe3+) ratios are probably due to lower oxygen fugacity in the granulite facies environment. Grade-related colour variations in both minerals were controlled by their Ti/Fe2+ and Fe3+/(Fe2+ + Fe3+ ratios. The relatively low Alvi contents of the hornblendes suggest low- to moderate-pressure metamorphism.Variations in element distribution coefficients are related to variations in mineral compositions rather than metamorphic grade. Thus KD(Aliv ?Si) is related to the Aliv andedenite alkali contents of the hornblendes, KD(Fe2+ ?Mg) to the distributions of Aliv ?Si and Alvi + Ti + Fe3+, KD(Mn) to the Mn contents of both minerals, and KD(Alvi) to the Alvi contents of the biotites.  相似文献   

5.
Molecular orbital calculations with HF/3-21G∗∗, HF/6-311+G∗∗, and MP2/6-311+G∗∗ basis sets (HF = Hartree-Fock approximation; MP2 = 2nd-order Møller-Plesset perturbation theory) have been performed on molecular clusters in the system acetate-aluminum-water. The results model the structures, energetics, and vibrational spectra of Al3+ and Al3+-acetate complexes in the aqueous phase. An octahedral to tetrahedral coordination change is predicted in the species Al3+ (OH)m · n (H2O) [where m + n = 6) as m increases from two to three. Calculated reaction energetics for aqueous Al3+-acetate complexation compare favorably with experimental enthalpies. In addition, the possible existence of more than one configuration for each Al` -acetate species was investigated. Theoretical vibrational spectra of the Al3+-acetate complexes provide predictions for the identification of Al3+-acetate species in aqueous solutions.  相似文献   

6.
《Applied Geochemistry》2000,15(2):133-139
The sorption of Yb3+, UO2+2, Zn2+, I and SeO2−3 onto Al2O3, Fe2O3 and SiO2 were determined by a batch technique in the presence and absence of fulvic acids. The effects of fulvic acid on sorption were compared. The existing general consensus, that humic substances tend to enhance metal cation sorption at low pH, reduce metal cation sorption at high pH and reduce inorganic anion sorption between pH values 3 to 10, was generally shown to be true. However, in this work many exceptions to the general consensus were found. The study indicated that the effect of humic substances on sorption of inorganic cations or anions depends not only on pH, but also on the nature of the oxide, the nature of humic substance, fractionation of the humic substance by sorption, the relative strength of complexes of both soluble and sorbed humic substances, the extent of surface coverage by humic substance, the initial concentration of humic substance and the inorganic electrolyte composition.  相似文献   

7.
The solubility and incorporation mechanisms of hydrogen in synthetic stishovite as a function of Al2O3 content have been investigated. Mechanisms for H incorporation in stishovite are more complex than previously thought. Most H in stishovite is incorporated via the Smyth et al. (Am Mineral 80:454–456, 1995) model, where H docks close to one of the shared O–O edges, giving rise to an OH stretching band in infrared (IR) spectra at 3,111–3,117 cm−1. However, careful examination of IR spectra from Al-stishovite reveals the presence of an additional OH band at 3,157–3,170 cm−1. All H is present on one site, with interstitial H both coupled to Al3+ substitutional defects on adjacent octahedral (Si4+) sites, and decoupled from other defects, giving rise to two distinct absorption bands. Trends in IR data as a function of composition are consistent with a change in Al incorporation mechanism in stishovite, with Al3+ substitution for Si4+ charge-balanced by oxygen vacancies at low bulk Al2O3 contents, and coupled substitution of Al3+ onto octahedral (Si4+) and interstitial sites at high bulk Al2O3 contents. Trends in OH stretching frequencies as a function of Al2O3 content suggest that any such change in Al incorporation mechanism could alter the effect that Al incorporation has on the compressibility of stishovite, as noted by Ono et al. (Am Mineral 87:1486–1489, 2002).  相似文献   

8.
The chemical interaction between fluorine and highly polymerized sodium aluminosilicate melts [Al/(Al+Si)= 0.125–0.250 on the join NaAlO2-SiO2] has been studied with Raman spectroscopy. Fluorine is dissolved to form F ions that are electrically neutralized with Na+ or Al3+. There is no evidence for association of fluorine with either Si4+ or Al3+ in four-fold coordination and no evidence of fluorine in six-fold coordination with Si4+ in these melt compositions. Upon solution of fluorine nonbridging oxygens are formed and are a part of structural units with nonbridging oxygen per tetrahedral cations (NBO/T) about 2 and 1. The proportions of these two depolymerized units in the melts increase systematically with increasing F/(F+O) at constant Al/(Al+Si) and with decreasing Al/(Al+Si) at constant F/(F+O). Depolymerization (increasing NBO/T) of silicate melts results from a fraction of aluminum and alkalies (in the present study; Na+) reacting to form fluoride complexes. In this process an equivalent amount of Na+ (orginally required for Al-3+charge-balance) or Al3+ (originally required Na+ to exist in tetrahedral coordination) become network-modifiers.The structural data have been used to develop a method for calculating the viscosity of fluorine-bearing sodium aluminosilicate melts at 1 atm. Where experimental viscosity data are available, the calculated and measured values are within 5% of each other.A method is also suggested by which the liquidus phase equilibria of fluorine-bearing aluminosilicate melts may be predicted. In accord with published experimental data it is suggested, for example, that — on the basis of the determined solubility mechanism of fluorine in aluminosilicate melts — with increasing fluorine content of feldspar-quartz systems, the liquidus boundaries between aluminosilicate minerals (e.g., feldspars) and quartz shift away from silica.  相似文献   

9.
The sorption of Cu(II) and Pb(II) to kaolinite-fulvic acid colloids was investigated by potentiometric titrations. To assess the possible interactions between kaolinite and fulvic acid during metal sorption, experimental sorption isotherms were compared with predictions based on a linear additivity model (LAM). Suspensions of 5 g L−1 kaolinite and 0.03 g L−1 fulvic acid in 0.01 M NaNO3 were titrated with Cu and Pb solutions, respectively. The suspension pH was kept constant at pH 4, 6, or 8. The free ion activities of Cu2+ and Pb2+ were monitored in the titration vessel using ion selective electrodes. Total dissolved concentrations of metals (by ICP-MS) and fulvic acid (by UV-absorption) were determined in samples taken after each titration step. The amounts of metals sorbed to the solid phase, comprised of kaolinite plus surface-bound fulvic acid, were calculated by difference. Compared to pure kaolinite, addition of fulvic acid to the clay strongly increased metal sorption to the solid phase. This effect was more pronounced at pH 4 and 6 than at pH 8, because more fulvic acid was sorbed to the kaolinite surface under acidic conditions. Addition of Pb enhanced the sorption of fulvic acid onto kaolinite at pH 6 and 8, but not at pH 4. Addition of Cu had no effect on the sorption of fulvic acid onto kaolinite. In the LAM, metal sorption to the kaolinite surface was predicted by a two-site, 1-pK basic Stern model and metal sorption to the fulvic acid was calculated with the NICA-Donnan model, respectively. The LAM provided good predictions of Cu sorption to the kaolinite-fulvic acid colloids over the entire range in pH and free Cu2+ ion activity (10−12 to 10−5). The sorption of Pb was slightly underestimated by the LAM under most conditions. A fractionation of the fulvic acid during sorption to kaolinite was observed, but this could not explain the observed deviations of the LAM predictions from the experimental Pb sorption isotherms.  相似文献   

10.
Iron sulfide oxidation and the chemistry of acid generation   总被引:3,自引:0,他引:3  
Acid mine drainage, produced from the oxidation of iron sulfides, often contains elevated levels of dissolved aluminum (AI), iron (Fe), and sulfate (SO4) and low pH. Understanding the interactions of these elements associated with acid mine drainage is necessary for proper solid waste management planning. Two eastern oil shales were leached using humidity cell methods. This study used a New Albany Shale (4.6 percent pyrite) and a Chattanooga Shale (1.5 percent pyrite). The leachates from the humidity cells were filtered, and the filtrates were analyzed for total concentrations of cations and anions. After correcting for significant solution species and complexes, ion activities were calculated from total concentrations. The results show that the activities of Fe3+, Fe2+, Al3+, and SO4 2− increased due to the oxidation of pyrite. Furthermore, the oxidation of pyrite resulted in a decreased pH and an increased pe+pH (redox-potential). The Fe3+ and Fe2+ activities appeared to be controlled by amorphous Fe(OH)3 solid phase above a pH of 6.0 and below pe+pH 11.0. The Fe3+, Fe2+, and SO4 2− activities reached saturation with respect to FeOHSO4 solid phase between pH 3.0 and 6.0 and below pe+pH 11.0 Below a pH of 3.0 and above a pe+pH of 11.0, Fe2+, Fe3+, and SO4 2− activities are supported by FeSO4·7H2O solid phase. Above a pH of 6.0, the Al3+ activity showed an equilibrium with amorphous Al(OH)3 solid phase. Below pH 6.0, Al3+ and SO4 2− activities are regulated by the AlOHSO4 solid phase, irrespective of pe+pH. The results of this study suggest that under oxidizing conditions with low to high leaching potential, activities of Al and Fe can be predicted on the basis of secondary mineral formation over a wide range of pH and redox. As a result, the long-term chemistry associated with disposal environments can be largely predicted (including trace elements).  相似文献   

11.
The incorporation and site preference of minor amounts (about 1 wt%) of Yb3+ in synthetic pyrope (Mg3Al2Si3O12) and grossular (Ca3Al2Si3O12) garnet were studied by X-ray Absorption Fine-Structure (XAFS) Spectroscopy. The measurements, performed in the temperature range 77–343 K at both Yb LI- and LIII-edges, demonstrate that Yb3+ enters the garnet structure and is located in the dodecahedral site in both samples. The coordination environment of Yb3+ in the two samples was compared to that of the X-site cation in end-member synthetic pyrope and grossular and in Yb3Al5O12 as determined by single-crystal X-ray diffraction. The local geometry around Yb3+ is different from that of Mg and Ca in the bulk of the garnet, and also from that of Yb3+ in Yb3Al5O12. Τhe XAFS results indicate that, (1) structural relaxation occurs around Yb3+ in the garnet structure; (2) the host garnet matrix exerts a major structural control on the incorporation of Yb3+, and (3) minor amounts of Yb3+ in garnet are located in structural sites and not in ill-defined defects. Received: 15 January 1998/ Revised, accepted: 21 July 1998  相似文献   

12.
Equilibrium chlorine-isotope (37Cl/35Cl) fractionations have been determined by using published vibrational spectra and force-field modeling to calculate reduced partition function ratios for Cl-isotope exchange. Ab initio force fields calculated at the HF/6-31G(d) level are used to estimate unknown vibrational frequencies of 37Cl-bearing molecules, whereas crystalline phases are modeled by published lattice-dynamics models. Calculated fractionations are principally controlled by the oxidation state of Cl and its bond partners. Molecular mass (or the absence of C-H bonds) also appears to play a role in determining relative fractionations among simple Cl-bearing organic species. Molecules and complexes with oxidized Cl (i.e., Cl0, Cl+, etc.) will concentrate 37Cl relative to chlorides (substances with Cl). At 298 K, ClO2 (containing Cl4+) and [ClO4] (containing Cl7+) will concentrate 37Cl relative to chlorides by as much as 27‰ and 73‰, respectively, in rough agreement with earlier calculations. Among chlorides, 37Cl will be concentrated in substances where Cl is bonded to +2 cations (i.e., FeCl2, MnCl2, micas, and amphiboles) relative to substances where Cl is bonded to +1 cations (such as NaCl) by ∼2 to 3‰ at 298 K; organic molecules with C-Cl bonds will be even richer in 37Cl (∼5 to 9‰ at 298 K). Precipitation experiments, in combination with our results, provide an estimate for Cl-isotope partitioning in brines and suggest that silicates (to the extent that their Cl atoms are associated with nearest-neighbor +2 cations analogous with FeCl2 and MnCl2) will have higher 37Cl/35Cl ratios than coexisting brine (by ∼2 to 3‰ at room temperature). Calculated fractionations between HCl and Cl2, and between brines and such alteration minerals, are in qualitative agreement with both experimental results and systematics observed in natural samples. Our results suggest that Cl-bearing organic molecules will have markedly higher 37Cl/35Cl ratios (by 5.8‰ to 8.5‰ at 295 K) than coexisting aqueous solutions at equilibrium. Predicted fractionations are consistent with the presence of an isotopically heavy reservoir of HCl that is in exchange equilibrium with Claq in large marine aerosols.  相似文献   

13.
Complete solid solutions with the ilmenite structure from pure MgSiO3 to 75% MgSiO3·25% Al2O3 have been synthesized in the pressure region between 240 and 300 kbar at 1000–1400°C in a diamond-anvil cell coupled with laser heating. The results suggest that complete solid solutions with the ilmenite structure might be formed between MgSiO3 and Al2O3 under high pressure-high temperature conditions. The lattice parameters for the ilmenite solid solutions between MgSiO3 and Al2O3 deviate from ideality in the same manner as those found by Berry and Combs along the FeVO3–Fe2O3 join. For the ordered A2+ B4+O3 ilmenite-type compounds, co is determined primarily by the size of the relatively large A2+ cation, whereas ao depends strongly on the radii of both A2+ and B4+ cations. Such systematics might account for the fact that co and ao for the ilmenite-type MgSiO3 are respectively smaller and larger than those for Al2O3. The lattice parameters ao and molar volumes for the A23+O3 corundum-type compounds and the disordered A2+B4+O3 ilmenites follow a different trend and are, therefore, readily distinguished from the ordered A2+B4+O3 ilmenites.  相似文献   

14.
Thai silicified woods were examined using electron probe microanalysis, yielding chemical data that characterised the samples into two groups: low and high silica contents (82—94 wt% and 94—98 wt%). The elements analysed in order of abundance include Si > Fe > Ca > Na > Al > Ti > K > Mg > Mn > Zr. Iron plays a major role in the colour range (red, orange, yellow, brown, grey and black) of the samples. Calcium is associated with Fe in the darker colours of the wood. Pseudo-crystallochemistry has been used for the substitution of trace elements for Si4+ in silica polymorphs. The atomic channels that run parallel to the c-axis of silica polymorphs or lattice defects, or even the charge balance for trivalent-ion substitution for Si4+, can accommodate monovalent ions (K+ and Na+). Vacant and atomic cavities, which are charged balanced by trivalent ions [Al3+ or Fe3+ substituting for Si4+], are commonly occupied by divalent ions (Ca2+, Mg2+ and Mn2+). Quadrivalent ions, Ti4+ and Zr4+ are non-structurally incorporated but form clusters of mineral inclusions in the samples. Several other trace-element contents are also in the form of mineral/fluid inclusions hosted in the woods.  相似文献   

15.
The crystal structure of a synthetic CaFe3+Al-SiO6 pyroxene (20 kb, 1,375° C) with unit cell dimensions a=9.7797(16), b=8.7819(14), c=5.3685(5) Å, =105.78(1), space group C2/c has been refined by the method of least squares to an R-factor of 0.025 based on 812 reflections measured on an automatic single crystal diffractometer. The octahedral M1 site is occupied by 0.82 Fe3+ and 0.18 Al3+. Within the tetrahedral T site, Si4+ (0.50), Al3+ (0.41) and Fe3+ (0.09) ions are completely disordered, although submicroscopic domains with short-range order are very likely. The octahedral site preference energy of the Fe3+ ions with respect to Al3+ ions in CaFe3+AlSiO6 is about 10 kcal/mole, which is much higher than that found in Y3Al x Fe5–2O12 garnets. Topologically the structure of CaFe3+AlSiO6 is intermediate between that of diopside and calcium Tschermak's pyroxene, CaAlAlSiO6. For CaM3+ AlSiO6 clinopyroxenes an increase in the size of the M1 octahedron is accompanied by an increase in the average M2-0, bridging T-0 and 03-03 distances and kinking of the tetrahedral chain.  相似文献   

16.
In the present work, a combination of various techniques is utilized for the study of nano-mineralogy and -geochemistry of high-grade karst-type bauxite (Al-rich and Fe-depleted samples; Al2O3 ca. 80 wt.%) from the Parnassos-Ghiona mines located in Greece. Initial characterization using PXRD and electron microscopy in microscale and mesoscale (SEM-EDS including STEM mode), proved the presence of “Fe-Cr-Ti-containing diaspore”, anatase and minor rutile. The study by means of 57Fe Mössbauer spectroscopy, in correlation with magnetic susceptibility measurements and, complemented, with Synchrotron-based spectroscopies at the microscale (SR micro-XRF and micro-XANES/-EXAFS), indicated that Fe3+, in contrast to [6]Cr3+, is not exclusively a component of the diaspore structure. While Cr3 + substitutes Al3 + in octahedral sites of diaspore ([6]Cr3+  [6]Al3+), the electron microscopy in nanoscale (TEM-EDS & EELS) revealed that Fe exists in the form of peculiar Fe3+-bearing nanominerals (most likely maghemite-type phases) between 25 and 45 nm in size, in addition to the Fe3+ ions substituting Al3+ in the diaspore structure. Moreover, it was proven that TiO2 polymorph mineral nanoparticles, particularly rounded anatase mesocrystals and nanocrystals and individual needle-shaped rutiles, are dispersed into the diaspore matrix. Thus, diaspore in the studied bauxite concerns -in fact- a distinct Fe3+-Cr3+-AlOOH low-T authigenic phase, demonstrated for the first time in literature. On the other hand, the observed TiO2 mineral nanoparticles (formed, together with diaspore, during diagenesis) and Fe nanominerals (formed during epigenesis) were hitherto unknown not only for the allochthonous karst-type bauxite deposits of Greece, but also for the overall bauxite deposits, worldwide.  相似文献   

17.
We have studied the polarized optical absorption and the EPR spectra of Ni-doped beryls grown by hydrothermal, flux and gas-transport methods, and chrysoberyl grown by the Czochralski and flux methods. In beryls, three groups of bands belonging to three various Ni centres were distinguished by analysis of the absorption band intensities. The first group, bands with maximums at 21740 (Ec), 17240 (E || c) and 9260 (E ⊥ + || c), 7140 (E || + ⊥ c) cm−1, are due to Ni3+ in octahedral Al3+ site. The second group is bands at 25640 (Ec), 22220 (E || c) and 13520 (E || + ⊥ c), 13160 (E ⊥+ || c) cm−1 and 8930 (E ⊥ + || c), 7460 (E || c) cm−1, which are caused by Ni2+ in octahedral Al3+ site. Weak wide bands at 17540 (E c), 15500 (E || c) cm−1 and 6580 (E || + ⊥ c), 5950 (E || c) cm−1 are related to Ni2+ in tetrahedral Be2+ site. The occurrence of Ni ions in Be2+ site is proved by the EPR spectra of 1VNi+ in γ-irradiated samples. According to the spectra of optical absorption of Ni-doped chrysoberyl, two types of Ni centres have been established: Ni3+ and Ni2+ ions in octahedral Al3+ sites. From the EPR spectra of the X-ray irradiated crystals BeAl2O4: Ni, it follows that 68% of Ni+ ions occupy octahedral Al3+ sites with mirror symmetry and 32% are in Al3+ sites with inversion symmetry. In the approximation of trigonal field with regard to Trees correction, the energy levels of Ni3+ and Ni2+ have been calculated in octahedral and tetrahedral coordination. There is good agreement between the obtained experimental and calculated data. The polarization dependence of the optical absorption bands is well explained in terms of the spin–orbit interaction.  相似文献   

18.

Polarized absorption spectra of natural piemontite (Ca1.802Mn 2+0.178 Mg0.025) (Mn 3+0.829 Fe 3+0.346 Al1.825) [(Si2.992Al0.008) O12OH], viridine (Al1.945Mn 3+0.033 Fe 3+0.063 Mg0.003) [O|Si0.970 O4], and kanonaite (Al1.291Mn 3+0.682 Fe 3+0.019 ) [O|Si1.006 O4] were measured at 295 and ca. 100 K. For piemontite, lowering the temperature resulted in a sharpening of broad bands in the 10 000–25 000 cm−1 region supporting their assignment to single ion Mn3+ in M3 non-centrosymmetric sites.

Alternatively, in kanonaite, temperature behaviour pointed to a slightly stronger influence of vibronic coupling on strong bands near 16 000 and 22 000 cm−1, which supported an interpretation of Mn3+ in nearly centrosymmetric M1 sites. Measurements at ca. 100 K show pronounced fine structure in the viridine spectra which is attributed to Fe3+. The ɛ values for Mn3+ spin-allowed bands in the three minerals lie in the range 18 to 227 [1·g-atom−1·cm−1].

For the same band and polarisation, ɛ values in Mn3+-bearing andalusite-type minerals viridine and kanonaite are the same, which indicates an absence of strong magnetic coupling effects between Mn3+ ions in the andalusite type structure down to ca. 100 K.

In silicates, the high ɛ values for Mn3+ spin-allowed bands, in comparison to those obtained for Fe2+ spin-allowed bands from sites of “similar distortion”, is attributed to a higher degree of covalency in the Mn3+-O bonds compared to the Fe2+-O bonds, as a result of the higher valence state of manganese.

  相似文献   

19.
Quantum mechanical calculations based on the density functional theory (DFT) are used to study the crystal structures of dioctahedral 2:1 phyllosilicates. The isomorphous cation substitution is investigated by exploring different substitutions of octahedral Al3+ by Mg2+ or Fe3+, tetrahedral substitution of Si4+ by Al3+, and different interlayer cations (IC) (Na+, K+, Ca2+, and Mg2+). Samples with different kinds of layer charges are studied: only tetrahedrally charged, only octahedrally charged, or mixed octahedral/tetrahedral charged. The effect of the relative arrangements of these substitutions on the lattice parameters and total energy is studied. The experimental observation of segregation tendency of Fe3+ and dispersion tendency of Mg2+ in the octahedral sheet is reproduced and explained with reference to the relative energies of the octahedral cation arrangements. These energies are higher than those due to the IC/tetrahedral and IC/octahedral relative arrangements. The tetrahedral and octahedral substitutions that generate charged layers also tend to be dispersed. The octahedral cation exchange potentials change with the IC-charge/ionic radius value.  相似文献   

20.
《Chemical Geology》1999,153(1-4):281-287
An empirical method is presented that allows the determination of the individual contributions of anions and cations to the effect of dissolved salts on hydrogen isotope fractionation in aqueous systems (isotope salt effect). The method is solely based on experimental data and does not involve the choice of arbitrary reference values or theoretical assumptions. Plotting experimental liquid–vapor D/H fractionation factors for aqueous solutions of sodium salts vs. O–D stretching frequencies of water molecules in the hydration shells of the anions shows an excellent linear correlation. The distance between this line and the pure water liquid–vapor fractionation data point in the same plot gives the cation contribution to the isotope salt effects. The anion contribution can then simply be derived as the difference between the total salt effect and the cation salt effect. The validity of the concept is demonstrated using precise literature data for the O–D stretching frequencies in the hydration shells of individual ions at 20°C [Bergström, P.A., 1991. Single ion hydration properties in aqueous solution: a quantitative infrared spectroscopic study. PhD Thesis. Uppsala University] and for the liquid–vapor hydrogen isotope fractionation between aqueous solutions and water vapor at the same temperature [Stewart, M.K., Friedman, I., 1975. Deuterium fractionation between aqueous salt solutions and water vapor. Journal of Geophysical Research 80, 3812–3818]. Within the limits of experimental uncertainties, the data set shows internal consistency. Cation salt effects, 1000 ln Γ at 20°C, are (in per mil per mole per liter, using the convention of Horita et al. [Horita, J., Cole, D.R., Wesolowski, D.J., 1993a. The activity–composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: II. Vapor–liquid water equilibration of mixed salt solutions from 50–100°C. Geochimica et Cosmochimica Acta 57, 4703–4711]): Na++0.7; K++0.7; Mg2++6.5; Ca2++1.8; Al3++12. The salt effect of H+ cannot be determined unequivocally. The combined effect of the fractionation of H+ itself plus its salt effect is +4.9. Anion effects are +1.4 for Cl, +2.7 for Br, +3.5 for I and −1.4 for SO42. Further single anion salt effects are being predicted as −1.8 for F, +4.9 for NO3, +6.9 for ClO4 and +5.4 for the triflate ion (CF3SO3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号