首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Various aquatic plants from Lake Qinghai, the largest inland saline lake in China, and terrestrial plants from the surrounding area were investigated for the distribution of n-alkanes and their δD values. The n-alkanes in the samples range from C15 to C33 with C preference index (CPI) values of 4.0–29.7. The n-C23 or n-C25 alkane is the dominant compound in the aquatic submerged plants. The aquatic emergent and terrestrial plants have an abundance maximum at n-C27, n-C29 or n-C31. The average chain length (ACL) values, ranging from 26.0 to 29.6, are closely related to the plant species. The n-alkanes from the aquatic plants have mean δD values of −169‰ to −121‰ and those from the terrestrial plants values of −173‰ to −109‰. The H isotopic composition (δD) and fractionation differ significantly among the plants studied. Comparison shows that additional evaporative enrichment of the lake water associated with saline lakes and humidity influence the δD values of the n-alkanes in aquatic and terrestrial plants, respectively. The mean δD values of n-alkanes in the plants decrease with increasing ACL value. The n-alkanes from the different types of plants are more depleted in D relative to environmental water and those from aquatic plants (with a mean value of −143‰) have a greater isotopic fractionation than terrestrial plants (mean value −113‰).  相似文献   

2.
We measured molecular distributions and compound-specific hydrogen (δD) and stable carbon isotopic ratios (δ13C) of mid- and long-chain n-alkanes in forest soils, wetland peats and lake sediments within the Dorokawa watershed, Hokkaido, Japan, to better understand sources and processes associate with delivery of terrestrial organic matter into the lake sediments. δ13C values of odd carbon numbered C23-C33n-alkanes ranged from −37.2‰ to −31.5‰, while δD values of these alkanes showed a large degree of variability that ranged from −244‰ to −180‰. Molecular distributions in combination with stable carbon isotopic compositions indicate a large contribution of C3 trees as the main source of n-alkanes in forested soils whereas n-alkanes in wetland soil are exclusively derived from marsh grass and/or moss. We found that the n-alkane δD values are much higher in forest soils than wetland peat. The higher δD values in forest samples could be explained by the enrichment of deuterium in leaf and soil waters due to increased evapotranspiration in the forest or differences in physiology of source plants between wetland and forest. A δ13C vs. δD diagram of n-alkanes among forest, wetland and lake samples showed that C25-C31n-alkanes deposited in lake sediments are mainly derived from tree leaves due to the preferential transport of the forest soil organic matter over the wetland or an increased contribution of atmospheric input of tree leaf wax in the offshore sites. This study demonstrates that compound-specific δD analysis provides a useful approach for better understanding source and transport of terrestrial biomarkers in a C3 plant-dominated catchment.  相似文献   

3.
To constrain seasonal changes in the long-range atmospheric transport of land-derived lipid biomarker compounds, we investigated the compound-specific stable isotopic composition of marine aerosol n-alkanes collected from 1990 to 1993 at a remote island, Chichi-Jima (27°04′N, 142°13′E), in the western North Pacific. Compound-specific isotope analysis revealed, in particular, strong seasonal changes in the δ13C values of the C29 and C31n-alkanes (biomarkers for higher plants). Lighter δ13C values were observed in winter (typically −32 to −34‰), with a transition to heavier values in summer (typically −28 to −31‰). Using a mixing equation and typical end members for C3 and C4 plants, we found that this is due to relative increases in the contributions from C4 plants in the summer season. Using backward air-mass trajectory analyses, it was shown that the Asian continent was the major source region for C3 plant material during winter/spring, whereas Indonesia/Australia and possibly the Americas were the major source regions for C4 material during the summer/autumn. Also observed was an enhanced atmospheric transport of n-alkanes from C4 plants in 1991 summer/autumn during a strong El Nino event, which was associated with forest and bushfires in Indonesia and Australia. In addition to providing information on contemporary processes, this study also provides a base for future paleoclimatological work in ocean sediments.  相似文献   

4.
The distributions of n-alkanes and their hydrogen isotopic composition (δD) in surface and core sediments from the saline Qinghai Lake were measured to assess whether or not biological source information was recorded in the δD values of n-alkanes. The results indicate that the n-alkane distributions between shallow water surface and core sediments were similar, and closer to those of terrestrial herbaceous plants from the Qinghai Lake surrounding areas, rather than the aquatic plants living in the lake. The n-alkanes in the surface and core sediments had similar mean δD values, ranging from −185‰ to −133‰ and −163‰ to −142‰, respectively. The mean δD values of n-alkanes in the sediments showed that the even n-alkanes were heavier in D compared with the odd homologues.  相似文献   

5.
We measured hydrogen isotope compositions (δD) of high-molecular-weight n-alkanes (C27-C33) from grasses grown in greenhouses and collected from the US Great Plains. In both cases, n-alkanes from C4 grasses are enriched in D by more than 20‰ relative to those from C3 grasses. The apparent enrichment factor (εC29-GW) between C29n-alkane and greenhouse water is −165 ± 12‰ for C3 grasses and −140 ± 15‰ for C4 grasses. For samples from the Great Plains, δD values of C29n-alkanes range from −280 to −136‰, with values for C4 grasses ca. 21‰ more positive than those for C3 grasses from the same site. Differences in C3 and C4 grass n-alkane δD values are consistent with the shorter interveinal distance in C4 grass leaves, and greater back-diffusion of enriched water from stomata to veins, than in C3 grass leaves. Great Plains’ grass n-alkane isotopic ratios largely reflect precipitation δD values. However, the offset or apparent fractionation between n-alkanes and precipitation is not uniform and varies with annual precipitation and relative humidity, suggesting climatic controls on lipid δD values. The dryer sites exhibit smaller absolute apparent fractionation indicative of D-enrichment of source waters through transpiration and/or soil evaporation. To explore the relationship between climate and n-alkane δD values, we develop three models. (1) The ‘direct analog’ model estimates δDC29 values simply by applying the apparent enrichment factors, εC29-GW, observed in greenhouse grasses to precipitation δD values from the Great Plains. (2) The ‘leaf-water’ model uses a Craig-Gordon model to estimate transpirational D-enrichment for both greenhouse and field sites. The transpiration-corrected enrichment factors between C29 and bulk leaf-water, εC29-GW, calculated from the greenhouse samples (−181‰ for C3 and −157‰ for C4) are applied to estimate δDC29 values relative to modeled bulk leaf-water δD values. (3) The ‘soil- and leaf-water’ model estimates the combined effects of soil evaporation, modeled by analogy with a flow-through lake, and transpiration on δDC29 values. Predictions improve with the addition of the explicit consideration of transpiration and soil evaporation, indicating that they are both important processes in determining plant lipid δD values. D-enrichment caused by these evaporative processes is controlled by relative humidity, suggesting that important climatic information is recorded in leaf wax n-alkane δD values. Calibration studies such as this one provide a baseline for future studies of plant-water-deuterium systematics and form the foundation for interpretation of plant wax hydrogen isotope ratios as a paleo-aridity proxy.  相似文献   

6.
This study investigates the extent of post-depositional alteration of δD values of n-alkyl lipids, isoprenoids, and kerogen isolated from a continuous 450 m core that covers the transition from thermally immature to early mature sediments in the lacustrine Kissenda Formation, Lower Cretaceous, Gabon Basin. Large variations in δD values (up to 40‰ for nC17 and up to 30‰ for nC29 alkanes as well as up to 10‰ for kerogen) in closely spaced samples are evident throughout the core and remain preserved even at the bottom of the section. δD values of individual n-alkanes show a slight overall D-enrichment with depth, and a general trend of increasing δD values with increasing n-alkane chain length characterizes all samples, particularly in those below 600 m depth. Hydrogen isotopic compositions of kerogen samples overlap with those of n-alkanes throughout the section. δD values of pristane and phytane are more negative than those of nC17 alkane by as much as 120‰ at shallow depths but increase dramatically and approach δD values of nC17 alkane in the samples closest to the oil window. Integration of analytical and computational results indicates that: (1) n-alkanes and isoprenoids have the potential to preserve the original biological signal before the onset of oil generation; (2) isomeric and structural rearrangements taking place at the beginning stages of oil generation do not influence significantly the δD values of n-alkanes and kerogen. However, these processes have a major effect on the isotopic composition of isoprenoids, causing isotopic D-enrichment up to 90‰.  相似文献   

7.
The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and δ13CTC values ranging from −28.7‰ to +2.3‰. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (δ13CTOC: −28.9‰ to −21.5‰) and variations in δ13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important—as yet unidentified—reservoir for dissolved organic carbon (DOC) from seawater.  相似文献   

8.
Hydrocarbon distributions and stable isotope ratios of carbonates (δ13Ccar, δ18Ocar), kerogen (δ13Cker), extractable organic matter (δ13CEOM) and individual hydrocarbons of Liassic black shale samples from a prograde metamorphic sequence in the Swiss Alps were used to identify the major organic reactions with increasing metamorphic grade. The studied samples range from the diagenetic zone (<100°C) to amphibolite facies (∼550°C). The samples within the diagenetic zones (<100 and 150°C) are characterized by the dominance of C<20n-alkanes, suggesting an origin related with marine and/or bacterial inputs. The metamorphic samples (200 to 550°C) have distributions significantly dominated by C12 and C13n-alkanes, C14, C16 and C18n-alkylcyclopentanes and to a lesser extend C15, C17 and C21n-alkylcyclohexanes. The progressive 13C-enrichment (up to 3.9‰) with metamorphism of the C>17n-alkanes suggests the occurrence of cracking reactions of high molecular weight compounds. The isotopically heavier (up to 5.6) C<17n-alkanes in metamorphic samples are likely originated by thermal degradation of long-chain homologous with preferential release of isotopically light C1 and C2 radicals. The dominance of specific even C-number n-alkylcyclopentanes suggests an origin related to direct cyclization mechanism (without decarboxylation step) of algal or bacterial fatty acids occurring in reducing aqueous metamorphic fluid conditions. The regular increase of the concentrations of n-alkylcycloalkanes vs. C>13n-alkanes with metamorphism suggests progressive thermal release of kerogen-linked fatty acid precursors and degradation of n-alkanes. Changes of the steroid and terpenoid distributions are clearly related to increasing metamorphic temperatures. The absence of 18α(H)-22,29,30-trisnorneohopane (Ts), the occurrence of 17β(H)-trisnorhopane, 17β(H), 21α(H)-hopanes in the C29 to C31 range and 5α(H),14α(H),17α(H)-20R C27, C29 steranes in the low diagenetic samples (<100°C) are characteristic of immature bitumens. The higher thermal stress within the upper diagenetic zone (150°C) is marked by the presence of Ts, the disappearance of 17β(H)-trisnorhopane and thermodynamic equilibrium of the 22S/(22S + 22R) homohopane ratios. The increase of the ααα-sterane 20S/(20S + 20R) and 20R ββ/(ββ + αα) ratios (from 0.0 to 0.55 and from 0.0 to 0.40, respectively) in the upper diagenetic zone indicates the occurrence of isomerization reactions already at <150°C. However, the isomerization at C-20 (R → S) reaches thermodynamic equilibrium values already at the upper diagenesis (∼150°C) whereas the epimerisation at C-14 and C-17 (αα → ββ) arrives to constant values in the lower anchizone (∼200°C). The ratios Ts vs. 17α(H)-22,29,30-trisnorneohopane [(Ts/(Ts + Tm)] and 18α(H)-30-norneohopane (C29Ts) vs. 17α(H),21β(H)-30-norhopane [C29Ts/(C29Ts + C29)] increase until the medium anchizone (200 to 250°C) from 0.0 to 0.96 and from 0.0 to 0.44, respectively. An opposite trend towards lower values is observed in the higher metamorphic samples.The occurrence of specific hydrocarbons (e.g., n-alkylcyclopentanes, cadalene, hydrogenated aromatic compounds) in metamorphic samples points to kerogen degradation reactions most probably occurring in the presence of water and under reducing conditions. The changes of hydrocarbon distributions and carbon isotopic compositions of n-alkanes related to metamorphism suggest that the organic geochemistry may help to evaluate the lowest grades of prograde metamorphism.  相似文献   

9.
We investigated the influence of thermal maturity on the hydrogen isotope ratios of sedimentary hydrocarbons to prove that the isotope ratio of hydrocarbons mirrors paleoclimate signatures. δD values from n-alkanes and acyclic isoprenoids of two sediment sections (Kupferschiefer [KS], 258 Ma, and Posidonienschiefer [PS], 184 Ma) with different maturation history were investigated. Both covered thermal maturity from 0.48 to 1.3 Rc (vitrinite reflectance and reflectance calculated from MPI1). Sediment burial up to 4500 m caused thermal maturation of organic matter in the KS horizon from the Early Zechstein basin of Poland, whereas contact metamorphic thermal maturation originated in the Early Toarcian PS (Posidonienschiefer) of the North German Vlotho Massif. The δD values of the extracted n-alkanes positively correlate with thermal maturity in the KS (y = 56‰ × MPI1[x] − 160‰ [VSMOW]) and in the PS (y = 104‰ × MPI1[x] − 200‰ [VSMOW]). The δD values of isoprenoids (i.e., pristane, phytane) were even more enriched with increasing maturity (y = 179‰ × MPI1[x] − 341‰ [VSMOW] in the KS; y = 300‰ × MPI1[x] − 415‰ [VSMOW] in PS).These results explain why isotope ratios of n-alkanes and isoprenoids in mature sediments are generally enriched in D and do not have the expected isotopic difference between n-alkanes and isoprenoids of ∼190‰. Moreover, the correlation between sediment maturity parameters and δD values suggests that after correction the δD values of n-alkanes can be used to reconstruct climate and environment in the geological past.  相似文献   

10.
Lake sediments generally contain a mixture of terrestrial and aquatic source inputs, and determining the major inputs is important for understanding geological records in paleoenvironment and paleoclimate research. In this study we describe the distribution of n-alkanes and n-fatty acids (FAs) in representative modern plants from around Lake Qinghai. We found a significant difference in the average length of n-FA carbon chains (ACL Fa16–32) in terrestrial (23.3) and aquatic plants (18.6). The results reveal that ACL Fa16–32 may essentially serve as a proxy for evaluating the major source inputs to lake sediments. Assessment of surface sediments from the lake showed that the FAs originated from a mixture of inputs, with the aquatic source input predominant at most sites. Additionally, the δD values of sediment mid-chain n-acids (C22) showed a relationship with the ACL Fa16–32 proxy: an increased Fa ACL corresponded to more negative hydrogen isotope ratio values. We suggest that different sources should be considered and ACL Fa16–32 could be a potential calibration proxy before using δD values to extract reliable isotopic information from lake water. More attention should be paid to source inputs and their relationship to other geochemical proxies in future studies of lake sediments.  相似文献   

11.
We present a systematic study of chain-length distributions and D/H ratios of n-alkyl lipids (both n-alkanes and n-alkanoic acids) in a wide range of terrestrial and aquatic plants around and in Blood Pond, Massachusetts, USA. The primary goal is to establish a model to quantitatively assess the aquatic plant inputs of the mid-chain length n-alkyl lipids to lake sediments and to determine the average hydrogen isotopic ratios of these lipids in different plants. Our results show that middle-chain n-alkyl lipids (C21-C23n-alkanes and C20-C24n-alkanoic acids) are exceptionally abundant in floating and submerged aquatic plants, in contrast to the dominance of long-chain n-alkyl lipids (C27-C31n-alkanes and C26-C32n-alkanoic acids) in other plant types, which are consistent with previously published data from Mountain Kenya and the Tibetan Plateau. Combining available data in different environmental settings allows us to establish statistically robust model distributions of n-alkyl lipids in floating/submerged macrophytes relative to other plant types. Based on the model distributions, we established a multi-source mixing model using a linear algebra approach, in order to quantify the aquatic inputs of mid-chain n-alkyl lipids in lake sediments. The results show that ∼97% of the mid-chain n-alkyl lipids (C23n-alkane and C22n-acid (behenic acid)) in Blood Pond sediments are derived from floating and submerged macrophytes. In addition, D/H ratios of C22n-acid and C23n-alkane in the floating and submerged plants from Blood Pond display relatively narrow ranges of variation (−161 ± 16‰ and −183 ± 18‰, respectively). Our study demonstrates that mid-chain n-alkyl lipids such as C23n-alkane and C22n-acid could be excellent recorders of past lake water isotopic ratios in lakes with abundant floating and submerged macrophyte inputs.  相似文献   

12.
We measured δD values of long chain n-alkanes isolated from 30 surface soil samples along two elevation transects on the Tibetan Plateau differing in precipitation regime and water source. The East Asian Monsoon precipitation dominates the wetter regime on the eastern slope (from 1230 to 4300 m) of Gongga Shan on the eastern Tibetan Plateau. Precipitation from the Polar Westerlies dominates the drier region on the slope from 1900 to 5000 m in the West Kunlun Shan on the northwestern Tibetan Plateau. The decrease in δD value with elevation in the wetter region greatly exceeded that in drier region by, −1.9 ± 0.1‰/100 m and −1.4 ± 1.0‰/100 m respectively. The apparent fractionation between leaf wax and precipitation εwax-p values in the wetter region (ca. −164‰) were more negative than those in drier region (ca. −125‰ above 3200 m).We also measured δD values in leaves of six common living trees (values from −287‰ to −193‰) from Gongga Shan, ranging from about 2900-4200 m. The abundance-weighted average values of the n-alkanes (δDwax) show a strong reverse correlation with sample source elevation (R2 0.78 for soils from Gongga Shan; R2 0.85 for soils from West Kunlun Shan above 3200 m), suggesting that n-alkane δDwax faithfully records the precipitation δD and that the isotopic altitude effect of precipitation controls δDwax altitudinal gradients in the mountains. The data show a fairly strong monotonic dependency of n-alkane δD values on elevation for the eastern Plateau, but a complex relationship between n-alkane δD values and elevation for the northwestern Plateau. The δDwax values at sites below 3200 m from the Kunlun Shan area exhibit an unexpected positive correlation with elevation. The study confirms the potential for using sediment δDwax values to reconstruct paleo-elevation in wetter regions, but suggests caution in applying the approach to dry regions. Our results also show it is essential to consider the intricacy of the pattern of atmospheric circulation and water sources and their influence on the lapse rate of δD values with elevation.  相似文献   

13.
Leaf waxes (i.e., n-alkyl lipids or n-alkanes) are land-plant biomarkers widely used to reconstruct changes in climate and the carbon isotopic composition of the atmosphere. There is little information available, however, on how the production of leaf waxes by different kinds of plants might influence the abundance and isotopic composition of n-alkanes in sedimentary archives. This lack of information increases uncertainty in interpreting n-alkyl lipid abundance and δ13C signals in ancient settings. We provide here n-alkyl abundance distributions and carbon isotope fractionation data for deciduous and evergreen angiosperm and gymnosperm leaves from 46 tree species, representing 24 families. n-Alkane abundances are significantly higher in angiosperms than gymnosperms; many of the gymnosperm species investigated did not produce any n-alkanes. On average, deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms. Although differences between angiosperms and gymnosperms dominate the variance in n-alkane abundance, leaf life-span is also important, with higher n-alkane abundances in longer-lived leaves. n-Alkanol abundances covary with n-alkanes, but n-alkanoic acids have similar abundances across all plant groups. Isotopic fractionation between leaf tissue and individual alkanes (εlipid) varies by as much as 10‰ among different chain lengths. Overall, εlipid values are slightly lower (−4.5‰) for angiosperm than for gymnosperm (−2.5‰) n-alkanes. Angiosperms commonly express slightly higher Δleaf (photosynthetic discrimination) relative to gymnosperms under similar growth conditions. As a result, angiosperm n-alkanes are expected to be generally 3-5‰ more depleted in 13C relative to gymnosperm alkanes for the same locality. Differences in n-alkane production indicate the biomarker record will largely (but not exclusively) reflect angiosperms if both groups were present, and also that evergreen plants will likely be overrepresented compared with deciduous ones. We apply our modern lipid abundance patterns and εlipid results to constrain the magnitude of the carbon isotope excursion (CIE) at the onset of the Paleocene-Eocene Thermal Maximum (55.8 Ma). When Bighorn Basin (WY) sediment n-alkanes are interpreted in context of floral changes and modern n-alkane production estimates for angiosperms and gymnosperms, the CIE is greater in magnitude (−5.6‰) by ∼1‰ compared to previous estimates that do not take into account n-alkane production.  相似文献   

14.
During the last decade, compound-specific hydrogen isotope analysis of plant leaf-wax and sedimentary n-alkyl lipids has become a promising tool for paleohydrological reconstructions. However, with the exception of several previous studies, there is a lack of knowledge regarding possible effects of early diagenesis on the δD values of n-alkanes. We therefore investigated the n-alkane patterns and δD values of long-chain n-alkanes from three different C3 higher plant species (Acer pseudoplatanus L., Fagus sylvatica L. and Sorbus aucuparia L.) that have been degraded in a field leaf litterbag experiment for 27 months.We found that after an initial increase of long-chain n-alkane masses (up to ∼50%), decomposition took place with mean turnover times of 11.7 months. Intermittently, the masses of mid-chain n-alkanes increased significantly during periods of highest total mass losses. Furthermore, initially high odd-over-even predominances (OEP) declined and long-chain n-alkane ratios like n-C31/C27 and n-C31/C29 started to converge to the value of 1. While bulk leaf litter became systematically D-enriched especially during summer seasons (by ∼8‰ on average over 27 months), the δD values of long-chain n-alkanes reveal no systematic overall shifts, but seasonal variations of up to 25‰ (Fagus, n-C27, average ∼13‰).Although a partly contribution by leaf-wax n-alkanes by throughfall cannot be excluded, these findings suggest that a microbial n-alkane pool sensitive to seasonal variations of soil water δD rapidly builds up. We propose a conceptual model based on an isotope mass balance calculation that accounts for the decomposition of plant-derived n-alkanes and the build-up of microbial n-alkanes. Model results are in good agreement with measured n-alkane δD results. Since microbial ‘contamination’ is not necessarily discernible from n-alkane concentration patterns alone, care may have to be taken not to over-interpret δD values of sedimentary n-alkanes. Furthermore, since leaf-water is generally D-enriched compared to soil and lake waters, soil and water microbial n-alkane pools may help explain why soil and sediment n-alkanes are D-depleted compared to leaves.  相似文献   

15.
We conducted an extensive survey of hydrogen-isotopic compositions (D/H ratios) of diverse sedimentary lipids from the Santa Barbara Basin (SBB), offshore southern California. The main goal of this survey was to assess the diversity of D/H ratios in lipids from marine sediments, in order to provide a more detailed understanding of relevant biological and geochemical factors impacting lipid isotopic variability. A total of 1182 individual δD values are reported from two stations in SBB, one located in the suboxic basin depocenter and the other on the fully oxic flank of the basin. Sediments collected from the basin depocenter span a depth of ∼2.5 m and reach the methanogenic zone. Lipids that were analyzed include n-alkanes, n-alkanols and alkenols, short- and long-chain fatty acids, linear isoprenoids, steroids, and hopanoids, and exhibit several systematic patterns. First, there are no significant differences in δD values between the two sampling locations, nor with increasing depth for most lipids, indicating that degradation does not influence sedimentary lipid δD values. Second, relatively large differences in δD values among differing molecular structures are observed in all samples. n-Alkyl lipids of probable marine origin have typical δD values between −150 and −200‰, those from terrestrial leaf waxes and aquatic plants range from −80 to −170‰, while petroleum n-alkanes are typically −90 to −150‰. Third, lipids inferred to derive from bacteria (branched fatty acids and hopanols) living at the sediment surface or in the water column tend to be D-enriched relative to similar algal products by 30‰ or more. At the same time, several other lipids have δD values that decrease strongly with depth, presumably as a result of in situ production by anaerobic bacteria. This dichotomy in isotopic compositions of bacterial lipids is inconsistent with a nearly constant D/H fractionation during lipid biosynthesis, and likely reflects significant variations associated with metabolism.  相似文献   

16.
Based on paleoclimatic reconstructions using various proxies, the Holocene Climate Optimum (10.5–6 ka) has been characterized as a warmer and wetter period in most of East Asia. The summer monsoons associated with the East Asian Monsoon evidently intensified and extended further inland from the Pacific Ocean, a source region of moisture. A notable exception to this general pattern exists in northeast China, where less wet conditions are recorded. We determined molecular compositions of individual plant wax hydrocarbons and their hydrogen isotope compositions (δD values) in a radiocarbon-dated peat core recovered from the Hani marsh in Jilin Province (China) and confirmed that the temperature-dependent effective precipitation in northeast China decreased during the Holocene Climate Optimum. A combination of Paq, an indicator of the relative contribution of aquatic to terrestrial plants, and the difference in δD between low (C23, C25 and C27) and high molecular weight (C31) n-alkanes in the Hani peat bog indicates a dramatic change in vegetation from the deglaciation to the Holocene. No significant differences were observed between the δD values of low and high molecular weight n-alkanes with relatively high δD values and low Paq during the early Holocene, indicating that all n-alkanes were produced by evapotranspiration-sensitive terrestrial plants during that time. However, lower δD values of mid-chain n-alkanes (C23, C25 and C27) relative to the long chain n-alkane (C31), together with higher Paq values during the deglaciation (14–11 ka), suggest an increase in the contribution of aquatic plants and a higher water level during the period. The study demonstrates that northeast China was under a markedly wetter climate condition during the late deglaciation. For the 16 kyr record in the Hani peat sequence, we infer that moisture delivery by the East Asian Monsoon was relatively invariable in northeast China, but increased evaporation during the warmer Holocene Climate Optimum reduced the effective precipitation, defined by the balance between precipitation and evaporation.  相似文献   

17.
The most widely accepted origin of n-alkan-2-ones in peats is the microbial oxidation of the related n-alkanes and/or oxidative decarboxylation of fatty acids derived from plant input. The distributions of n-alkanes and n-alkan-2-ones in 48 samples from the Roñanzas 6000 cal. yr BP peat bog profile (N Spain) do not justify a single source. The n-alkan-2-ones typically dominate the n-alkanes, maximizing at C19 or C25/C27, whereas the n-alkanes maximized either at C23 or at C31/C33. The averaged δ13C values of the n-alkanes ranged from −32.3‰ to −33.1‰, but those of the n-alkan-2-ones were consistently higher (−29.2‰ to −29.9‰), suggesting a different, probably bacterial, source for the ketones.  相似文献   

18.
The carbon isotope composition (δ13C values) of long chain n-alkanes in lake sediments has been considered a reliable means of tracking changes in the terrigenous contribution of plants with C3 and C4 photosynthetic pathways. A key premise is that long chain leaf wax components used for isotope analysis are derived primarily from terrigenous higher plants. The role of aquatic plants in affecting δ13C values of long chain n-alkanes in lacustrine sediments may, however, have long been underestimated. In this study, we found that a large portion of long chain n-alkanes (C27 and C29) in nearshore sediments of the Lake Qinghai catchment was contributed by submerged aquatic plants, which displayed a relatively positive carbon isotope composition (e.g. −26.7‰ to −15.7‰ for C29) similar to that of terrestrial C4 plants. Thus, the use of δ13C values of sedimentary C27 and C29 n-alkanes for tracing terrigenous vegetation composition may create a bias toward significant overestimation/underestimation of the proportion of terrestrial C4 plants. For sedimentary C31, however, the contribution from submerged plants was minor, so that the δ13C values for C31 n-alkane in surface sediments were in accord with those of the modern terrestrial vegetation in the Lake Qinghai region. Moreover, we found that changes in the δ13C values of sedimentary C27 and C29 n-alkanes were closely related to water depth variation. Downcore analysis further demonstrated the significant influence of endogenous lipids in lake sediments for the interpretation of terrestrial C4 vegetation and associated environment/climate reconstruction. In conclusion, our results suggest that the δ13C values of sedimentary long chain n-alkanes (C27, C29 and C31) may carry different environmental signals. While the δ13C values of C31 were a reliable proxy for C4/C3 terrestrial vegetation composition, the δ13C values of C27 and C29 n-alkanes may have recorded lake ecological conditions and sources of organic carbon, which might be affected by lake water depth.  相似文献   

19.
Hydrogen isotopic composition of n-alkanes was measured in sediments from an excavated profile of the Early Cretaceous Yixian Formation in Liaoning Province, NE China, aiming to assess the significance of the δD value of n-alkanes in ancient lacustrine sediments as the indicator for determining the source inputs of organic matters and paleoclimatic conditions. The δD values of n-alkanes are in the range of − 250‰ to − 85‰ and display an obvious three-stage variation pattern through the profile, which is consistent with the distribution of the dominated n-alkanes and the profile of their δ13C values. The δD and δ13C values of n-alkanes suggest that short-chain n-alkanes are primarily derived from photosynthetic bacteria and algae; n-C29 and n-C31 are mainly originated from terrestrial higher plants; n-C28 and n-C30 may be derived from the same precursor but via the different biological mechanism of hydrogen isotopic fractionation; while the source inputs of medium-chain n-alkanes are more complicated, with n-C23 being derived from some specific algae or biosynthesized by various aquatic organisms. The paleoclimatic conditions are reconstructed via two approaches. The reconstructed hydrogen isotopic values of lake water and meteoric water (expressed as δDLW and δDMW, respectively) were at the intervals of − 51.8‰ to 17.0‰ and − 118.1‰ to − 43.5‰, respectively, indicating a general climate transition from semi-arid to arid. The calculated ΔδDLW-MW values vary from 37.0‰ to 89.1‰ and display a similar but a significant large-scale variation trend with the ΔδDC23  long (− 28.8‰ to 85.0‰; long represents long-chain n-alkanes) and ΔδDmid-long (− 15.4‰ to 43.4‰; mid represents medium-chain n-alkanes) values. The discrepancy may be attributed to the source input overlap for n-alkanes and the uncertainties of εwater/lipid values. The coupling of ΔδDC23  long, ΔδDmid-long and ΔδDLW-MW values with the paleoclimatic evidence indicates that the δD values of n-alkanes could be more sensitive to the change of paleoclimatic conditions.  相似文献   

20.
Two piston cores, one located far from the continents (The North Pacific Ocean: ES core), and another located comparatively closer to the continents (The Bering Sea: BOW-8a core) were investigated to reconstruct environmental changes on source land areas. The results show significant contribution of terrestrial organic matter to sediments in both cores. The δ13C values of n-C27, n-C29, and n-C31 alkanes in sediments from the North Pacific ES core show significant glacial to interglacial variation whereas those from the Bering Sea core do not. Variations of δ13C values of land plant n-alkanes are related to the environmental or vegetational changes in the source land areas. Environmental changes, especially, aridity, rainfall, and pCO2 during glacial/interglacial transitional periods can affect vegetation, and therefore C3 / C4 plant ratios, resulting in δ13C changes in the preserved land plant biomarkers. Maximum values of δ13C as well as maximum average chain length values of long chain n-alkanes in the ES core occur mostly at the interglacial to glacial transition zones reflecting a time lag related to incorporation of living organic matter into soil and transportation into ocean basins via wind and/or ability of C4 plants to adapt for a longer period before being replaced by C3 plants when subjected to gradual climatic changes. Irregular variations with no clear glacial to interglacial trends in the BOW-8a core may result from complex mixture of aerosols from westerly winds and riverine organic matter from the Bering Sea catchments. In addition, terrestrial organic matter entering the Bering Sea could originate from multiple pathways including eolian, riverine, and ice rafted debris, and possibly be disturbed by turbidity and other local currents which can induce re-suspension and re-sedimentation causing an obliterated time relation in the Bering Sea biomarker records.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号