首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We report the development of a new analytical system allowing the fully automated measurement of isotopic ratios in micrometer-sized particles by secondary ion mass spectrometry (SIMS) in a Cameca ims-6f ion microprobe. Scanning ion images and image processing algorithms are used to locate individual particles dispersed on sample substrates. The primary ion beam is electrostatically deflected to and focused onto each particle in turn, followed by a peak-jumping isotopic measurement. Automatic measurements of terrestrial standards indicate similar analytical uncertainties to traditional manual particle analyses (e.g., ∼3‰/amu for Si isotopic ratios). We also present an initial application of the measurement system to obtain Si and C isotopic ratios for ∼3300 presolar SiC grains from the Murchison CM2 carbonaceous chondrite. Three rare presolar Si3N4 grains were also identified and analyzed. Most of the analyzed grains were extracted from the host meteorite using a new chemical dissolution procedure. The isotopic data are broadly consistent with previous observations of presolar SiC in the same size range (∼0.5-4 μm). Members of the previously identified SiC AB, X, Y, and Z subgroups were identified, as was a highly unusual grain with an extreme 30Si enrichment, a modest 29Si enrichment, and isotopically light C. The stellar source responsible for this grain is likely to have been a supernova. Minor differences in isotopic distributions between the present work and prior data can be partially explained by terrestrial contamination and grain aggregation on sample mounts, though some of the differences are probably intrinsic to the samples. We use the large new SiC database to explore the relationships between three previously identified isotopic subgroups—mainstream, Y, and Z grains—all believed to originate in asymptotic giant branch stars. The isotopic data for Z grains suggest that their parent stars experienced strong CNO-cycle nucleosynthesis during the early asymptotic giant branch phase, consistent with either cool bottom processing in low-mass (M < 2.3M) parent stars or hot-bottom burning in intermediate-mass stars (M > 4M). The data provide evidence for a sharp threshold in metallicity, above which SiC grains form with much higher 12C/13C ratios than below. Above this threshold, the fraction of grains with relatively high 12C/13C decreases exponentially with increasing 29Si/28Si ratio. This result indicates a sharp increase in the maximum mass of SiC parent stars with decreasing metallicity, in contrast to expectations from Galactic chemical evolution theory.  相似文献   

3.
Study on presolar grains including diamond,silicon carbide,graphite,silicon nitrite(Si3N4),coundum and spinel isolated from meteorites is summarized in this paper.Except for nanometer-sized diamond,the other grains are micrometers to submicrometers in size.The presolar grains survived mainly in the fine-grained matrix of primitive chondrites and were isolated by chemical treatments.Diamond contains Xe isotopes(Xe-HL),typically produced in p-and r-processes,probably formed in supernovae.Mainstream silicon carbides are enriched in ^29,30Si and ^13C,but depleted in ^15N.They also contain various s-process products,consistent with calculations of AGB stars.Other silicon carbides exhibit much larger isotopic anomalies and are classified as groups X,Y,Z and AB.Among them,group X of SiC is characterized by enrichment of ^28Si and daughter isotopes of various short-lived nuclides,suggesting an origin from supernovae.Graphite can be divided into four density fractions with distince isotopic compositions.They may form in AGB stars,novae and supernovae,respctively,Si3N4 is similar to X-SiC in isotopic composition.Corundum is classified as four groups based on theid oxygen isotopic compositions.AGB and red giang stare are possible sources for the oxide.More comprehensive study of presolar grains,especially discovery of the other types of oxides and silicates,isotopic analyses of individual submicrometer-sized grains and distribution of presolar grains among various chemical groups and petropaphic types of chondrites will provide new information on nucleosynthesis,stellar evolution and formation of the solar nebula.  相似文献   

4.
Barium isotopic compositions of single 2.3-5.3 μm presolar SiC grains from the Murchison meteorite were measured by resonant ionization mass spectrometry. Mainstream SiC grains are enriched in s-process barium and show a spread in isotopic composition from solar to dominantly s-process. In the relatively coarse grain size fraction analyzed, there are large grain-to-grain variations of barium isotopic composition. Comparison of single grain data with models of nucleosynthesis in asymptotic giant branch (AGB) stars indicates that the grains most likely come from low mass carbon-rich AGB stars (1.5 to 3 solar masses) of about solar metallicity and with approximately solar initial proportions of r- and s-process isotopes. Measurements of single grains imply a wide variety of neutron-to-seed ratios, in agreement with previous measurements of strontium, zirconium and molybdenum isotopic compositions of single presolar SiC grains.  相似文献   

5.
We report the results of SIMS isotopic analyses of carbon, nitrogen, oxygen, and silicon made on 849 small (approximately 1 micrometer) individual silicon carbide grains from the Murchison meteorite. The isotopic compositions of the major elements carbon and silicon of most grains (mainstream) are similar to those observed in larger grain studies suggesting an AGB star origin of these grains. In contrast, the trace element nitrogen shows a clear dependency on grain size. 14N/15N ratios increase with decreasing grain size, suggesting different stellar sources for grains of different size. Typically observed 14N/15N ratios in the small grains of this study are approximately 2700, clearly larger than the values expected from model calculations of AGB stars. In addition to the three dredge-up episodes characteristic for the evolution of AGB stars, extra-mixing of CNO-processed matter in low mass AGB stars appears to be a promising possibility in order to explain the high 14N/15N ratios of the small circumstellar SiC grains. A small fraction of grains shows a silicon isotopic signature not observed in larger circumstellar SiC grains from Murchison. Their stellar origin is still uncertain. The minor type A, B, Y, and X grains were found to be present at a level of a percent, which is similar to their abundance in the larger-grain SiC separates from Murchison. Oxygen isotopic compositions are normal within the experimental uncertainties of several 10%, indicating that oxygen of stellar origin is rare or even absent in the SiC grains. We conclude that most of the oxygen is a contaminant which was introduced into the SiC grains after their formation, e.g., during sample processing in the laboratory. We identified a nitride grain, most likely Si3N4 with little carbon, with highly anomalous isotopic compositions (12C/13C = 157 +/- 33, 14N/15N = 18 +/- 1, delta 29 Si = -43 +/- 56%, delta 30 Si = -271 +/- 50%). The isotopic patterns of carbon, nitrogen, and silicon resemble those of the rare SiC X grains suggesting that these two rare constituents of circumstellar matter formed in the same type of stellar source, namely, Type II supernovae.  相似文献   

6.
We report results from NanoSIMS isotopic measurements on 37 presolar silicon carbide grains of type X which are believed to have formed in the ejecta of supernova explosions. Isotopic data were obtained for Si and Ca-Ti (all grains), C and N (two grains), and Ti (one grain). All X grains exhibit large enrichments in 28Si (up to 5× solar), in agreement with previously studied X grains. On a scale of 200 nm, the Si-isotopic ratios do not vary by more than the analytical uncertainties of several percent in all but one X grain. This implies that most X grains formed from well-mixed regions in supernova ejecta. X grain M9-68-3 is characterized by two regions with distinct Si- and Ti-isotopic signatures which may either represent two distinct grains or overgrowth of matter from two different mixtures in the supernova ejecta. Most of the Ca in the X grains is most likely contamination as indicated by close to normal 42Ca/40Ca ratios. Seven X grains show enhanced 44Ca/40Ca ratios of up to 6× the solar ratio. Spatial distributions of 44Ca excesses and Ti are positively correlated, giving strong support to the view that excesses in 44Ca are due to the decay of radioactive 44Ti. Inferred initial 44Ti/48Ti ratios are between 0.01 and 0.28 and are correlated with Si-isotopic ratios. Radiogenic 44Ca is widely distributed in six X grains. X grain M9-132-4 exhibits a pronounced heterogeneity in the distribution of radiogenic 44Ca and 48Ti as well as in 44Ti/48Ti, pointing to presence of a small Ti-rich subgrain or heterogeneous loss of Ca and Ti after grain formation. This grain has a unique Si-isotopic composition with 30Si/29Si = 2.2× the solar ratio and C- and N-isotopic compositions as typically observed in X grains.  相似文献   

7.
到目前为止从陨石中分离出的太阳系外物质有金刚石、碳化硅、石墨、Si3N4、刚玉及尖晶石等。除金刚石为纳米级大小外,其他为微米和次微米级颗粒。这些太阳系外物质主要存在于原始的球粒陨石的基质中,并通过化学分离的方法获得。金刚石携带分别由p-过程和r-过程产生的Xe同位素组分(Xe-HL),其源区可能提超新星。绝大部分碳化硅相对于太阳系物质富^29.30Si和^13C,贫^15N,并携带s-过程产生的各  相似文献   

8.
We report the isotopic composition of molybdenum in twenty-three presolar SiC grains from the Murchison meteorite which have been measured by resonant ionization mass spectrometry (RIMS). Relative to terrestrial abundance (and normalized to s-process-only 96Mo), the majority of the analyzed grains show strong depletions in the p-process isotopes 92Mo and 94Mo and the r-process isotope 100Mo. Sixteen of these grains have δ-values <−600% for these three isotopes. The observed isotopic patterns of Mo from mainstream SiC grains clearly reveal the signature of s-process nucleosynthesis. Three-isotope plots of all grain data (δiMo vs. δ92Mo) show strong linear correlations with characteristic slopes. This finding suggests mixing of solar-like material and pure s-process material in the parent stars. Comparison with evolutionary calculations of nucleosynthesis and mixing in red giants suggests that low-mass thermally-pulsed symptotic giant branch (TP-AGB) stars are the most likely site for the observed s-process nucleosynthesis.  相似文献   

9.
With a new type of ion microprobe, the NanoSIMS, we determined the oxygen isotopic compositions of small (<1μm) oxide grains in chemical separates from two CM2 carbonaceous meteorites, Murray and Murchison. Among 628 grains from Murray separate CF (mean diameter 0.15 μm) we discovered 15 presolar spinel and 3 presolar corundum grains, among 753 grains from Murray separate CG (mean diameter 0.45 μm) 9 presolar spinel grains, and among 473 grains from Murchison separate KIE (mean diameter 0.5 μm) 2 presolar spinel and 4 presolar corundum grains. The abundance of presolar spinel is highest (2.4%) in the smallest size fraction. The total abundance in the whole meteorite is at least 1 ppm, which makes spinel the third-most abundant presolar grain species after nanodiamonds (if indeed a significant fraction of them are presolar) and silicon carbide. The O-isotopic distribution of the spinel grains is very similar to that of presolar corundum, the only statistically significant difference being that there is a larger fraction of corundum grains with large 17O excesses (17O/16O > 1.5 × 10−3), which indicates parent stars with masses between 1.8 and 4.5 M.  相似文献   

10.
Silicon carbide (SiC) is a particularly interesting species of presolar grain because it is known to form on the order of a hundred different polytypes in the laboratory, and the formation of a particular polytype is sensitive to growth conditions. Astronomical evidence for the formation of SiC in expanding circumstellar atmospheres of asymptotic giant branch (AGB) carbon stars is provided by infrared (IR) studies. However, identification of the crystallographic structure of SiC from IR spectra is controversial. Since >95% of the presolar SiC isolated from meteorites formed around carbon stars, a determination of the structure of presolar SiC is, to first order, a direct determination of the structure of circumstellar SiC. We therefore determined the polytype distribution of presolar SiC from the Murchison CM2 carbonaceous meteorite using analytical and high-resolution transmission electron microscopy (TEM). High-resolution lattice images and electron diffraction of 508 individual SiC grains demonstrate that only two polytypes are present, the cubic 3C (β-SiC) polytype (79.4% of population by number) and the hexagonal 2H (α-SiC) polytype (2.7%). Intergrowths of these two polytypes are relatively abundant (17.1%). No other polytypes were found. A small population of one-dimensionally disordered SiC grains (0.9%), whose high density of stacking faults precluded classification as any polytype, was also observed. The presolar origin of 2H α-SiC is unambiguously established by tens-of-nanometers-resolution secondary ion mass spectroscopy (NanoSIMS). Isotopic maps of a TEM-characterized 2H α-SiC grain exhibit non-solar isotopic compositions of 12C/13C = 64 ± 4 and 14N/15N = 575 ± 24. These measurements are consistent with mainstream presolar SiC thought to originate in the expanding atmospheres of AGB carbon stars. Equilibrium condensation calculations together with inferred mineral condensation sequences predict relatively low SiC condensation temperatures in carbon stars. The laboratory observed condensation temperatures of 2H and 3C SiC are generally the lowest of all SiC polytypes and fall within the predictions of the equilibrium calculations. These points account for the occurrence of only 2H and 3C polytypes of SiC in circumstellar outflows. The 2H and 3C SiC polytypes presumably condense at different radii (i.e., temperatures) in the expanding stellar atmospheres of AGB carbon stars.  相似文献   

11.
We report the results of a study of 81 micrometer-sized presolar SiC grains in the size range 0.5-2.6 μm from the Murchison (CM2) carbonaceous chondrite. We describe a simple, nondestructive physical disaggregation technique used to isolate the grains while preserving them in their pristine state, as well as the scanning electron microscopy energy-dispersive X-ray mapping procedure used to locate them.Nine-tenths of the pristine SiCs are bounded by one or more planar surfaces consistent with cubic (3C polytype) crystal faces based on manifest symmetry elements. In addition, multiple polygonal depressions (generally <100 nm deep) are observed in more than half of these crystal faces, and these possess symmetries consistent with the structure of the 3C polytype of SiC. By comparison of these features with the surface features present on heavily etched presolar SiC grains from Murchison separate KJG, we show that the polygonal depressions on pristine grains are likely primary growth features. The etched SiCs have high densities of surface pits, in addition to polygonal depressions. If these pits are etched linear defects in the SiC, then defect densities are quite high (as much as 108 -109/cm2), about 103-104 times higher than in typical synthetic SiCs. The polygonal depressions on crystal faces of pristine grains, as well as the high defect densities, indicate rapid formation of presolar SiC.No other primary minerals are observed to be intergrown with or overgrown on the pristine SiCs, so the presence of overgrowths of other minerals cannot be invoked to account for the survival of presolar SiC in the solar nebula. We take the absence of other primary condensates to indicate that further growth or back-reaction with the gas became kinetically inhibited as the gas-phase densities in the expanding asymptotic giant branch (AGB) stellar atmospheres (in which most of the grains condensed) became too low. However, we did observe an oxygen peak in the X-ray spectra of most pristine grains, implying silica coatings of as much as several tens of nm thickness, perhaps due to oxidation of the SiC in the solar nebula.We see little or no evidence on the pristine grains of the surface sputtering or cratering that are predicted theoretically to occur in the interstellar medium (ISM) due to supernova shocks. A possible implication is that the grains may have been protected during their residence in the ISM by surface coatings, including simple ices. Residues of such coatings may indeed be present on some pristine SiCs, because many (60%) are coated with an apparently amorphous, possibly organic phase. However, at present we do not have sufficient data on the coatings to draw secure inferences as to their nature or origin.A few irregular pristine SiCs, either fragments produced by regolith gardening on the Murchison parent body or by grain-grain collisions in the ISM, were also observed.  相似文献   

12.
Presolar graphite spherules from the Murchison low-density separate KE3 contain a large number of internal TiC crystals that range in size from 15 to 500 nm. We have studied one such graphite grain in great detail by successive analyses with SEM, ims3f SIMS, TEM and NanoSIMS. Isotopic measurements of the ‘bulk’ particle in the ims3f indicate a supernova origin for this graphite spherule. The NanoSIMS measurements of C, N, O and Ti isotopes were performed directly on TEM ultramicrotome sections of the spherule, allowing correlated studies of the isotopic and mineralogical properties of the graphite grain and its internal crystals. We found isotopic gradients in 12C/13C and 16O/18O from the core of the graphite spherule to its perimeter, with the most anomalous compositions being present in the center. These gradients may be the result of isotopic exchange with isotopically normal material, either in the laboratory or during the particle’s history. No similar isotopic gradients were found in the 16O/17O and 14N/15N ratios, which are normal within analytical uncertainty throughout the graphite spherule. Due to an unusually high O signal, internal TiC crystals were easily located during NanoSIMS imaging measurements. It was thus possible to determine isotopic compositions of several internal TiC grains independent of the surrounding graphite matrix. These TiC crystals are significantly more anomalous in their O isotopes than the graphite, with 16O/18O ratios ranging from 14 to 250 (compared to a terrestrial value of 499). Even the most centrally located TiC grains show significant variations in their O isotopic compositions from crystal to crystal. Measurement of the Ti isotopes in three TiC grains found no variations among them and no large differences between the compositions of the different crystals and the ‘bulk’ graphite spherule. However, the same three TiC crystals vary by a factor of 3 in their 16O/18O ratios. It is not clear in what form the O is associated with the TiC grains and whether it is cogenetic or the result of surface reactions on the TiC grains before they accreted onto the growing graphite spherule. The presence of 44Ca from short-lived 44Ti (t1/2 = 60y) in one of the TiC subgrains confirms the identification of this graphite spherule as a supernova condensate.  相似文献   

13.
Low-density graphite spherules from the Murchison carbonaceous chondrite contain TiC grains and possess excess 28Si and 44Ca (from decay of short-lived 44Ti). These and other isotopic anomalies indicate that such grains formed by condensation from mixtures of ejecta from the interior of a core-collapse supernova with those from the exterior. Using homogenized chemical and isotopic model compositions of the eight main burning zones as end-members, Travaglio et al. (1999) attempted to find mixtures whose isotopic compositions match those observed in the graphite spherules, subject to the condition that the atomic C/O ratio = 1. They were partially successful, but this chemical condition does not guarantee condensation of TiC at a higher temperature than graphite, which is indicated by the spherule textures. In the present work, model compositions of relatively thin layers of ejecta within the main burning zones computed by Rauscher et al. (2002) for Type II supernovae of 15, 21 and 25 M? are used to construct mixtures whose chemical compositions cause equilibrium condensation of TiC at a higher temperature than graphite in an attempt to match the textures and isotopic compositions of the spherules simultaneously. The variation of pressure with temperature and the change in elemental abundances with time due to radioactive decay were taken into account in the condensation calculations. Layers were found within the main Ni, O/Ne, He/C and He/N zones that, when mixed together, simultaneously match the carbon, nitrogen and oxygen isotopic compositions, 44Ti/48Ti ratios and inferred initial 26Al/27Al ratios of the low-density graphite spherules, even at subsolar 12C/13C ratios. Due to the relatively large proportion of material from the Ni zone and the relative amounts of the two layers of the Ni zone required to meet these conditions, predicted 28Si excesses are larger than observed in the low-density graphite spherules, and large negative δ46Ti/48Ti, δ47Ti/48Ti, δ49Ti/48Ti and δ50Ti/48Ti are produced, in contrast to the observed normal δ46Ti/48Ti and δ47Ti/48Ti, large positive δ49Ti/48Ti and smaller positive δ50Ti/48Ti. Although better matches to the observed δ46Ti/48Ti, δ47Ti/48Ti and 28Si excesses can be found using much smaller amounts of Ni zone material and some Si/S zone material, it is very difficult to match simultaneously the Ti and Si isotopic compositions in any mixtures of material from these deep layers with He/C and He/N zone material, regardless of the condensation sequence. The occurrence of Fe-rich, Si-poor metal grains inside the graphite spherules does not have a satisfactory explanation.  相似文献   

14.
The isotopic compositions of titanium in eight grains of hibonite (CaAI12O19) from the carbonaceous chondrite Murchison have been determined by high precision secondary ion mass spectrometry using an ion microprobe. The titanium in the hibonites varies greatly in 50Ti, from about ?42 to +8 permil (relative to terrestrial) with smaller (up to 4 permil), but clearly resolvable, effects in 46Ti and 48Ti. These results complement ion probe measurements by Faheyet al. (1985) of a 100 permil excess of 50Ti in a hibonite grain from the carbonaceous chondrite Murray, and confirm the presence of widespread negative anomalies suggested by the results of Hutcheonet al. (1983) on hibonites from Murchison. The magnitude of these variations seems explicable only in terms of nucleogenic processes which produced extremely variable titanium isotopic abundances in the hibonite source materials. The hibonites evidently did not participate to the same extent as most material in the mixing and homogenisation processes that accompanied the formation and later evolution of the solar system. Thus, significant source materials of the hibonites may be the supernova condensates of Clayton (1978) and may support the concept of “chemical memory” (Clayton, 1978; Niemeyer and Lugmair, 1984).  相似文献   

15.
The volatilization kinetics of single crystal α-SiC, polycrystalline β-SiC, and SiO2 (cristobalite or glass) were determined in H2-CO2, CO-CO2, and H2-CO-CO2 gas mixtures at oxygen fugacities between 1 log unit above and 10 log units below the iron-wüstite (IW) buffer and temperatures in the range 1151 to 1501°C. Detailed sets of experiments on SiC were conducted at 2.8 and 6.0 log units below IW (IW-2.8 and IW-6.0) at a variety of temperatures, and at 1300°C at a variety of oxygen fugacities. Transmission electron microscopic and Rutherford backscattering spectroscopic characterization of run products shows that the surface of SiC exposed to IW-2.8 is characterized by a thin (<1 μm thick), continuous layer of cristobalite. SiC exposed to IW-6.0 lacks such a layer (or its thickness is <0.01 μm), although some SiO2 was found within pits and along incised grain boundaries.In H2-CO2 gas mixtures above ∼IW-3, the similarity of the SiC volatilization rate and of its dependence on temperature and fO2 to that for SiO2 suggests that SiC volatilization is controlled by volatilization of a SiO2 layer that forms on the surface of the SiC. With decreasing log fO2 from ∼IW-3 to ∼IW-6, the SiC volatilization rate is constant at constant temperature, whereas that for SiO2 increases. The independence of the SiC volatilization rate from the gas composition under these conditions suggests that the rate-controlling step is a solid-solid reaction at the internal SiC/SiO2 interface. For gas compositions more reducing than ∼IW-6, the SiC volatilization rate increases with decreasing fO2, with both bare SiC surfaces and perhaps silica residing in pits and along incised grain boundaries contributing to the overall reaction rate.If the volatilization mechanism and reaction rate in the solar nebula were the same as in our H2-CO2 experiments at IW-6.0, then estimated lifetimes of 1-μm-diameter presolar SiC grains range from several thousand years at ∼900°C, to ∼1 yr at 1100°C, ∼1 d at 1300°C, and ∼1 h at 1400°C. The corresponding lifetimes for 10-μm SiC grains would be an order of magnitude longer. If the supply of oxidants to surfaces of presolar SiC grains were rate limiting—for example, at T > 1100°C for Ptot= 10−6 atm and sticking coefficient = 0.01, then the calculated lifetimes would be about 10 yr for 10-μm-diameter grains, essentially independent of temperature. The results thus imply that presolar SiC grains would survive short heating events associated with formation of chondrules (minutes) and calcium-, aluminum-rich inclusions (days), but would have been destroyed by exposure to hot (≥900°C) nebular gases in less than several thousand years unless they were coated with minerals inert to reaction with a nebular gas.  相似文献   

16.
We have investigated the presolar grain inventories of two CR chondrites, QUE 99177 and MET 00426, which are less altered than most members of this meteorite group. Both meteorites contain high abundances of O-anomalous presolar grains, with concentrations of 220 ± 40 and 160 ± 30 ppm for QUE 99177 and MET 00426, respectively. The presolar grain inventories are dominated by ferromagnesian silicates with group 1 oxygen isotopic compositions, indicative of origins in low mass red giant or asymptotic giant branch stars. Grains with pyroxene-like compositions are somewhat more common than those with olivine-like compositions, but most grains are non-stoichiometric with compositions intermediate between these two phases, consistent with recent work suggesting that amorphous interstellar silicates have stoichiometries between olivine and pyroxene type silicates. Although structural data are not available, one grain contains only Si and O, and has a stoichiometry consistent with SiO2.Our presolar grains are much more Fe-rich than predicted by astronomical observations. Although secondary alteration may play a role in enhancing the Fe contents of presolar grains, it seems unlikely that the large and ubiquitous Fe enrichments observed in the grains from this study can be due only to secondary processing, particularly given the highly primitive nature of these two meteorites. Grain condensation in the stellar outflows where these grains formed likely proceeded under rapidly changing kinetic conditions that may have enhanced the incorporation of Fe into the grains over that expected based on equilibrium condensation theory.Both QUE 99177 and MET 00426 appear to contain unusually low abundances of oxide grains and have higher silicate/oxide ratios than other primitive meteorites analyzed to date. We explore various possibilities for this discrepancy, but note that most scenarios are not likely to result in the preferential destruction of oxides relative to silicates. Thus, the highest silicate/oxide ratios, such as those observed in the CR chondrites, should reflect the true initial proportions of presolar silicate and oxide grains in the parent molecular cloud from which the solar nebula evolved.  相似文献   

17.
We have developed a procedure that allows extraction of clean nanodiamond samples from primitive meteorites for isotopic analyses of trace elements on a timescale of just a week. This procedure includes microwave digestion and optimization of existing isolation techniques for further purification. Abundances of trace elements that are difficult to dissolve using standard procedures (e.g., Ir) are lower in the diamond residues prepared using the new technique. Accelerator mass spectrometry (AMS) was explored as a means for isotopic measurements. Results obtained on diamond fractions from Allende and Murchison show the need for suitable matrix-adjusted standards to correct for fractionation effects; nevertheless they allow putting an upper limit on the abundance of 198Pt-H in nanodiamonds of ∼1 × 1014 atoms/g. This limit is on the order of what can be expected from predictions of competing nucleosynthesis models and extrapolation of the apparently mass dependent abundance trend of the associated noble gases.Unfortunately, and unexpectedly, presolar silicon carbide is almost quantitatively dissolved during microwave digestion with HCl/HF/HNO3. Re-evaluation of the standard extraction technique, however, shows that it also may lead to severe loss of fine-grained SiC, a fact not commonly appreciated. A lower limit to SiC abundance in Murchison is 20 ppm, and previous conclusions that Murchison SiC is unusually coarse-grained compared to SiC in other primitive meteorites seem not to be warranted. Graphite and silicon nitride may survive and possibly can be separated after this step as suggested by a simulation experiment using terrestrial analog material, but the detailed behavior of meteoritic graphite requires further study.  相似文献   

18.
We report on the mineralogy, petrography, and in situ oxygen isotopic composition of twenty-five ultrarefractory calcium-aluminum-rich inclusions (UR CAIs) in CM2, CR2, CH3.0, CV3.1–3.6, CO3.0–3.6, MAC 88107 (CO3.1-like), and Acfer 094 (C3.0 ungrouped) carbonaceous chondrites. The UR CAIs studied are typically small, < 100 μm in size, and contain, sometimes dominated by, Zr-, Sc-, and Y-rich minerals, including allendeite (Sc4Zr3O12), and an unnamed ((Ti,Mg,Sc,Al)3O5) mineral, davisite (CaScAlSiO6), eringaite (Ca3(Sc,Y,Ti)2Si3O12), kangite ((Sc,Ti,Al,Zr,Mg,Ca,□)2O3), lakargiite (CaZrO3), warkite (Ca2Sc6Al6O20), panguite ((Ti,Al,Sc,Mg,Zr,Ca)1.8O3), Y-rich perovskite ((Ca,Y)TiO3), tazheranite ((Zr,Ti,Ca)O2−x), thortveitite (Sc2Si2O7), zirconolite (orthorhombic CaZrTi2O7), and zirkelite (cubic CaZrTi2O7). These minerals are often associated with 50–200 nm-sized nuggets of platinum group elements. The UR CAIs occur as: (i) individual irregularly-shaped, nodular-like inclusions; (ii) constituents of unmelted refractory inclusions – amoeboid olivine aggregates (AOAs) and Fluffy Type A CAIs; (iii) relict inclusions in coarse-grained igneous CAIs (forsterite-bearing Type Bs and compact Type As); and (iv) relict inclusions in chondrules. Most UR CAIs, except for relict inclusions, are surrounded by single or multilayered Wark-Lovering rims composed of Sc-rich clinopyroxene, ±eringaite, Al-diopside, and ±forsterite. Most of UR CAIs in carbonaceous chondrites of petrologic types 2–3.0 are uniformly 16O-rich (Δ17O ∼ −23‰), except for one CH UR CAI, which is uniformly 16O-depleted (Δ 17O ∼ −5‰). Two UR CAIs in Murchison have heterogeneous Δ17O. These include: an intergrowth of corundum (∼ ‒24‰) and (Ti,Mg,Sc,Al)3O5 (∼ 0‰), and a thortveitite-bearing CAI (∼ −20 to ∼ ‒5‰); the latter apparently experienced incomplete melting during chondrule formation. In contrast, most UR CAIs in metamorphosed chondrites are isotopically heterogeneous (Δ17O ranges from ∼ −23‰ to ∼ −2‰), with Zr- and Sc-rich oxides and silicates, melilite and perovskite being 16O-depleted to various degrees relative to uniformly 16O-rich (Δ17O ∼ −23‰) hibonite, spinel, Al-diopside, and forsterite. We conclude that UR CAIs formed by evaporation/condensation, aggregation and, in some cases, melting processes in a 16O-rich gas of approximately solar composition in the CAI-forming region(s), most likely near the protoSun, and were subsequently dispersed throughout the protoplanetary disk. One of the CH UR CAIs formed in an 16O-depleted gaseous reservoir providing an evidence for large variations in Δ17O of the nebular gas in the CH CAIs-forming region. Subsequently some UR CAIs experienced oxygen isotopic exchange during melting in 16O-depleted regions of the disk, most likely during the epoch of chondrule formation. In addition, UR CAIs in metamorphosed CO and CV chondrites, and, possibly, the corundum-(Ti,Mg,Sc,Al)3O5 intergrowth in Murchison experienced O-isotope exchange with aqueous fluids on the CO, CV, and CM chondrite parent asteroids. Thus, both nebular and planetary exchange with 16O-depleted reservoirs occurred.  相似文献   

19.
Low molecular weight monocarboxylic acids are the most abundant water soluble organic compounds in the Murchison and many other CM type carbonaceous chondrites. In this study, we examined the monocarboxylic acids in Murchison and EET96029.20 carbonaceous meteorites using a new sample preparation and introduction technique for gas chromatograph recently developed for volatile, water-soluble organic compounds: solid phase micro-extraction (SPME). We identified more than 50 monocarboxylic acids from Murchison compared with the 18 compounds reported previously. Formic acid, a known interstellar molecule, has been fully analyzed in these carbonaceous meteorites, with its δD value suggesting an interstellar origin. We determined both carbon and hydrogen isotopic ratios of individual monocarboxylic acids in Murchison, to better define the origins and genetic relationships of these compounds. The compound-specific isotopic data reveal a large enrichment in 13C (δ13C up to + 32.5) and particularly D (δD up to + 2024). The branched acids are substantially enriched in both 13C and D relative to the straight chain acids, with those branched acids containing a quaternary carbon showing the greatest isotopic enrichment. The isotopic difference may be attributed to variations in the different synthetic regimes or terrestrial input of straight chain acids.  相似文献   

20.
The silicon isotopic composition of dissolved silicon and suspended particulate matter (SPM) were systematically investigated in water samples from the mainstem of the Yellow River and 4 major tributaries. The SPM content of the Yellow River varied from 1.4 to 38,560 mg/L, averaging 3568 mg/L, and the δ30Si of suspended particulate matter (δ30SiSPM) varied from 0.3‰ to −0.4‰, averaging −0.02‰. The major factors affecting the SPM content and the δ30SiSPM values in the Yellow River were inferred to be the mineralogical, chemical and isotopic characteristics of the sediments from the Loess Plateau and a combination of the climate and the flow discharge of the river.The major ions in the Yellow River water were Na+, Ca2+, Mg2+, HCO3, SO42− and Cl. High salt concentration was observed in samples from the middle and lower reaches, likely reflecting the effects of evaporation and irrigation because the Na+, Mg2+, SO42− and K+ concentrations were correlated with the Cl concentration. The dissolved Si concentration (DSi) increased downstream, varying from 0.016 to 0.323 mM. The δ30Si of dissolved Si (δ30SiDiss) varied from 0.4‰ to 2.5‰, averaging 1.28‰. The major processes controlling the DSi and δ30SiDiss of the Yellow River are (a) the weathering of silicate rocks, (b) the formation of phytoliths in plants, (c) the evaporation of water from and the addition of meteoric water to the river system, which only affects concentrations, (d) the adsorption and desorption of aqueous monosilicic acid on iron oxide, and (e) the dissolution of phytoliths in soils.The DSi and δ30SiDiss values of global rivers vary spatially and temporally in response to changes in climate, chemical weathering intensity and biological activity. The moderately positive δ30SiDiss values observed in the Yellow River may be attributed to the higher rates of chemical weathering and biological activities that have been observed in this catchment in comparison with those of other previously studied catchments, excluding the Yangtze River. Human activities may also potentially influence chemical weathering and biological activities and affect the DSi and δ30SiDiss values of the major rivers of the world. Further river studies should be performed to gain a better understanding of the global Si isotope budget.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号