首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half of the heavy elements with mass number A>70 and all of the actinides in the solar system are believed to have been produced in the r-process. We have studied the r-process in supernovae for production of heavy elements beyond A=40 with the newest mass values available. The supernovae envelopes at a temperature >109 K and neutron density of 1024 cm−3 are considered to be one of the most potential sites for the r-process. We investigate the r-process in a site-independent, classical approach which assumes a chemical equilibrium between neutron captures and photodisintegrations followed by a β-flow equilibrium. We have studied the r-process path corresponding to temperatures ranging from 1.0×109 K to 3.0×109 K and neutron density ranging from 1020 cm−3 to 1030 cm−3. The primary goal of the r-process calculations is to fit the global abundance curve for solar system r-process isotopes by varying time dependent parameters such as temperature and neutron density. This method aims at comparing the calculated abundances of the stable isotopes with observation. The abundances obtained are compared with supernova explosion condition and found in good agreement. The elements obtained along the r-process path are compared with the observed data at all the above temperature and density range.  相似文献   

2.
A compact structure of a low-mass Type I presupernovae is assumed to be an essential feature of the hydrodynamical problem dealing with the supernova Type I (SNI) envelope outbursts. This structure is characterized by a degenerate carbon-oxygen core, which suffers a thermonuclear explosion of carbon fuel (M 0≃1.40M ), and by a compact lowmass envelope (M e ≲0.1M ) with external radiusR e≃109 cm. The parameters, of this hydrostatic envelope are specified and then, for a relatively small explosion energy, ofW 0≃(2–10)×1049 erg, hydrodynamic problem of the envelope ejection is solved numerically. This energy comes from neutrino-induced detonative carbon burning. The resulting structure of the SNI atmosphere expanding with the velocity gradient can be employed for an interpretation of the observed SNI spectra. In accordance with our previous papers, the SNI light curves are considered to occur due to an additional slow (with time-scale 106–107 s) release of the bulk of the SNI energy,W≃1051, erg. The slow energy release does not, however, affect the structure of the outermost expanding layers of the envelope which are responsible for the SNI spectra. A short (Δt≃10−2 s) burst of soft (2–10 keV) X-rays with total radiated energy of about 1040 erg is found to appear 10–20 days before the SNI optical maximum.  相似文献   

3.
Some thermonuclear X-ray bursters exhibit a high-frequency (about 300 Hz or more) brightness modulation at the rising phase of some bursts. These oscillations are explained by inhomogeneous heating of the surface layer on a rapidly rotating neutron star due to the finite propagation speed of thermonuclear burning. We suggest and substantiate a mechanism of this propagation that is consistent with experimental data. Initially, thermonuclear ignition occurs in a small region of the neutron star surface layer. The burning products rapidly rise and spread in the upper atmospheric layers due to turbulent convection. The accumulation of additional matter leads to matter compression and ignition at the bottom of the layer. This determines the propagation of the burning front. To substantiate this mechanism, we use the simplifying assumptions about a helium composition of the neutron star atmosphere and its initial adiabatic structure with a density of 1.75 × 108 g cm−3 at the bottom. 2D numerical simulations have been performed using a modified particle method in the adiabatic approximation.  相似文献   

4.
We numerically solved the two-dimensional axisymmetric hydrodynamic problem of the explosion of a low-mass neutron star in a circular orbit. In the initial conditions, we assumed a nonuniform density distribution in the space surrounding the collapsed iron core in the form of a stationary toroidal atmosphere that was previously predicted analytically and computed numerically. The configuration of the exploded neutron star itself was modeled by a torus with a circular cross section whose central line almost coincided with its circular orbit. Using an equation of state for the stellar matter and the toroidal atmosphere in which the nuclear statistical equilibrium conditions were satisfied, we performed a series of numerical calculations that showed the propagation of a strong divergent shock wave with a total energy of ~0.2×1051 erg at initial explosion energy release of ~1.0×1051 erg. In our calculations, we rigorously took into account the gravitational interaction, including the attraction from a higher-mass (1.9M) neutron star located at the coordinate origin, in accordance with the rotational explosion mechanism for collapsing supernovae. We compared in detail our results with previous similar results of asymmetric supernova explosion simulations and concluded that we found a lower limit for the total explosion energy.  相似文献   

5.
We investigate the influence of the following parameters on the crust properties of strange stars: the strange quark mass (m s), the strong coupling constant (αc) and the vacuum energy density (B). It is found that the mass density at the crust base of strange stars cannot reach the neutron drip density. For a conventional parameter set of m s=200 MeV, B 1/4 = 145 MeV and αc = 0.3, the maximum density at the crust base of a typical strange star is only 5.5 × 1010 gcm-3, and correspondingly the maximum crust mass is 1.4 ×10-6 M. Subsequently, we present the thermal structure and the cooling behavior of strange stars with crusts of different thickness, and under different diquark pairing gaps. Our work might provide important clues for distinguishing strange stars from neutron stars.  相似文献   

6.
We report the detection of series of close type I X-ray bursts consisting of two or three events with a recurrence time much shorter than the characteristic (at the observed mean accretion rate) time of matter accumulation needed for a thermonuclear explosion to be initiated on the neutron star surface during the JEM-X/INTEGRAL observations of several X-ray bursters. We show that such series of bursts are naturally explained in the model of a spreading layer of accreting matter over the neutron star surface in the case of a sufficiently high (? ? 1 × 10?9 M yr?1) accretion rate (corresponding to a mean luminosity L tot ? 1 × 1037erg s?1). The existence of triple bursts requires some refinement of the model—the importance of a central ring zone is shown. In the standard model of a spreading layer no infall of matter in this zone is believed to occur.  相似文献   

7.
The population synthesis method is used to study the possibility of explaining the appreciable fraction of the intergalactic type-Ia supernovae (SN Ia), 20 −15 +12 %, observed in galaxy clusters (Gal-Yam et al. 2003) when close white dwarf binaries merge in the cores of globular clusters. In a typical globular cluster, the number of merging double white dwarfs does not exceed ∼10−13 per year per average cluster star in the entire evolution time of the cluster, which is a factor of ∼3 higher than that in a Milky-Way-type spiral galaxy. From 5 to 30% of the merging white dwarfs are dynamically expelled from the cluster with barycenter velocities up to 150 km s−1. SN Ia explosions during the mergers of double white dwarfs in dense star clusters may account for ∼1% of the total rate of thermonuclear supernovae in the central parts of galaxy clusters if the baryon mass fraction in such star clusters is ∼0.3%.  相似文献   

8.
The properties of superdense matter in neutron star (NS) cores control NS thermal states by affecting the efficiency of neutrino emission from NS interiors. To probe these properties we confront the theory of thermal evolution of NSs with observations of their thermal radiation. Our observational basis includes cooling isolated NSs (INSs) and NSs in quiescent states of soft X-ray transients (SXTs). We find that the data on SXTs support the conclusions obtained from the analysis of INSs: strong proton superfluidity with T cp max ≳109 K should be present, while mild neutron superfluidity with T cn max ≈2×(108−−109) K is ruled out in the outer NS core. Here T cn max  and T cp max  are the maximum values of the density dependent critical temperatures of neutrons and protons. The data on SXTs suggest also that: (i) cooling of massive NSs is enhanced by neutrino emission more powerful than the emission due to Cooper pairing of neutrons; (ii) mild neutron superfluidity, if available, might be present only in inner cores of massive NSs. In the latter case SXTs would exhibit dichotomy, i.e. very similar SXTs may evolve to very different thermal states.   相似文献   

9.
The absorption effects at the soft X-ray and hard ultraviolet wavelengths due to some model abundance of intergalactic carbon material have been investigated for different cosmologies. Even though the local density, 2 × 109 <ϱ 0 = 1.0 × 10−34 g cm−3 of the absorbing component of the intergalactic material in the form of carbon is not adequate for the thermalization of the discrete background radiation, the amount of absorption in the X-rays up to the Hubble radius is not negligible.  相似文献   

10.
The energy density of Vaidya-Tikekar isentropic superdense star is found to be decreasing away from the center, only if the parameter K is negative. The most general exact solution for the star is derived for all negative values of K in terms of circular and inverse circular functions. Which can further be expressed in terms of algebraic functions for K = 2-(n/δ)2 < 0 (n being integer andδ = 1,2,3 4). The energy conditions 0 ≤ p ≤ αρc 2, (α = 1 or 1/3) and adiabatic sound speed conditiondp dρ ≤ c 2, when applied at the center and at the boundary, restricted the parameters K and α such that .18 < −K −2287 and.004 ≤ α ≤ .86. The maximum mass of the star satisfying the strong energy condition (SEC), (α = 1/3) is found to be3.82 Mq· at K=−2/3, while the same for the weak energy condition (WEC), (α =1) is 4.57 M_ atK=−>5/2. In each case the surface density is assumed to be 2 × 1014 gm cm-3. The solutions corresponding to K>0 (in fact K>1) are also made meaningful by considering the hypersurfaces t= constant as 3-hyperboloid by replacing the parameter R 2 by −R2 in Vaidya-Tikekar formalism. The solutions for the later case are also expressible in terms of algebraic functions for K=2-(n/δ2 > 1 (n being integer or zero and δ =1,2,3 4). The cases for which 0 < K < 1 do not possess negative energy density gradient and therefore are incapable of representing any physically plausible star model. In totality the article provides all the physically plausible exact solutions for the Buchdahl static perfect fluid spheres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The model of a presupernova’s carbon-oxygen (C-O) core with an initial mass of 1.33 M , an initial carbon abundance X C (0) =0.27, and a mean rate of increase in mass of 5 × 10?7 M yr?1 through accretion in a binary system evolved from the central density and temperature ρc=109 g cm?3 and T c=2.05 × 108K, respectively, by forming a convective core and its subsequent expansion to an explosive fuel ignition at the center. The evolution and explosion equations included only the carbon burning reaction 12C+12C with energy release corresponding to the complete conversion of carbon and oxygen (at the same rate as that of carbon) into 56Ni. The ratio of mixing length to convection-zone size αc was chosen as the parameter. Although the model assumptions were crude, we obtained an acceptable (for the theory of supernovae) pattern of explosion with a strong dependence of its duration on αc. In our calculations with sufficiently large values of this parameter, αc=4.0 × 10?3 and 3.0×10?3, fuel burned in the regime of prompt detonation. In the range 2.0×10?3≥αc≥3.0×10?4, there was initially a deflagration with the generation of model pulsations whose amplitude gradually increased. Eventually, the detonation regime of burning arose, which was triggered from the model surface layers (with m ? 1.33 M ) and propagated deep into the model up to the deflagration front. The generation of model pulsations and the formation of a detonation front are described in detail for αc=1.0 × 10?3.  相似文献   

12.
It is hypothesized that thermonuclear burning of the matter from the envelope of a massive compact star accreting onto a hot neutron star produced by spherically symmetric collapse of a stellar iron core can proceed in oscillation mode (much as is the case during thermal explosions of carbon-oxygen cores in lower mass stars). Local density oscillations near the neutron-star surface can generate shock waves; in these shocks, the electron-positron plasma is stratified from the remaining matter, and shells of an expanding relativistic fireball with an oscillation time scale in cosmological gamma-ray bursts (GRBs) of ~10?2 s are formed. It is pointed out that the GRB progenitors can be nonrotating massive Wolf-Rayet (WR) stars whose collapse, according to observational data, can proceed without any substantial envelope ejection.  相似文献   

13.
WASP-33 is a fast rotating, main sequence star which hosts a hot Jupiter moving along a retrograde and almost polar orbit with semi-major axis a=0.02 au and eccentricity provisionally set to e=0. The quadrupole mass moment J2*J_{2}^{\star} and the proper angular momentum S of the star are 1900 and 400 times, respectively, larger than those of the Sun. Thus, huge classical and general relativistic non-Keplerian orbital effects should take place in such a system. In particular, the large inclination Ψ of the orbit of WASP-33b to the star’s equator allows to consider the node precession [(W)\dot]\dot{\Omega} and the related time variation dt d /dt of the transit duration t d . The WASP-33b node rate due to J2*J_{2}^{\star} is 9×109 times larger than the same effect for Mercury induced by the Sun’s oblateness, while the general relativistic gravitomagnetic node precession is 3×105 times larger than the Lense-Thirring effect for Mercury due to the Sun’s rotation. We also consider the effect of the centrifugal oblateness of the planet itself and of a putative distant third body X. The magnitudes of the induced time change in the transit duration are of the order of 3×10−6,2×10−7,8×10−9 for J2*J_{2}^{\star}, the planet’s rotational oblateness and general relativity, respectively. A yet undiscovered planet X with the mass of Jupiter orbiting at more than 1 au would induce a transit duration variation of less than 4×10−9. A conservative evaluation of the accuracy in measuring dt d /dt over 10 yr points towards ≈10−8. The analysis presented here will be applicable also to other exoplanets with similar features if and when they will ne discovered.  相似文献   

14.
The excess of the rate of type I X-ray bursts over that expected when the matter fallen between bursts completely burns out in a thermonuclear explosion which is observed in bursters with a high persistent luminosity (4 × 1036 ? LX ? 2 × 1037 erg s?1) is explained in terms of the model of a spreading layer of matter coming from the accretion disk over the neutron star surface. In this model the accreting matter settles to the stellar surface mainly in two high-latitude ring zones. Despite the subsequent spreading of matter over the entire star, its surface density in these zones turns out to be higher than the average one by 2–3 orders of magnitude, which determines the predominant ignition probability. The multiple events whereby the flame after the thermonuclear explosion in one ring zone (initial burst) propagates through less densematter to another zone and initiates a second explosion in it (recurrent burst) make a certain contribution to the observed excess of the burst rate. However, the localized explosions of matter in these zones, after which the burning in the zone rapidly dies out without affecting other zones, make a noticeably larger contribution to the excess of the burst rate over the expected one.  相似文献   

15.
We propose a model for the bolometric light curve of a type-Ia supernova (SN Ia) that explodes in a dense circumstellar (CS) envelope. Our modeling of the light curves for SN 2002ic and SN 1997cy shows that the densities of the CS envelopes around both supernovae at a radius of ~7×1015 cm are similar, while the characteristic ejection time for this envelope around SN 1997cy does not exceed 600 yr. We analyze two possible evolutionary scenarios that could lead to the explosion of a SN Ia inside a dense C S hydrogen envelope: accretion onto a CO white dwarf in a symbiotic binary and the evolution of a single star with an initial mass of about 8M. If the hypothesis of a SN Ia explosion in a dense CS envelope is correct for SN 2002ic and SN 1997cy, then we must assume that the the rapid loss of the red-supergiant envelope in several hundred years and the subsequent explosion of the CO white dwarf are synchronized by some physical mechanism. This mechanism may be related to the contraction of the white dwarf as it approaches the Chandrasekhar limit. We show that the formation of a (super-)Chandrasekhar mass due to the merger of a CO white dwarf and the CO core of a red supergiant followed by a supernovae explosion is unlikely, since this mechanism does not provide the required synchronization of the rapid mass loss and the explosion.  相似文献   

16.
The peculiar combination of a relatively short pulse period and a relatively weak surface dipole magnetic field strength of binary radio pulsars finds a consistent explanation in terms of (i) decay of the surface dipole component of neutron-star magnetic fields on a timescale of (2–5) × 106 yr, in combination with (ii) spin-up of the rotation of the neutron star during a subsequent mass-transfer phase. The four known binary radio pulsars appear to fall into two different categories. Two of them, PSR 0655 + 64 and PSR 1913 + 16, have short orbital periods (<25 h) and high mass functions, indicating companion masses 0.7M⊙ (∼1 (± 0.3) M⊙ and 1.4 M⊙, respectively). The other two, PSR 0820 + 02 and PSR 1953 + 29, have long orbital periods (117d), nearly circular orbits, and low, almost identical mass functions of about 3×10-3 M⊙, suggesting companion masses of about 0.3M⊙. It is pointed out that these two classes of systems are expected to be formed by the later evolution of binaries consisting of a neutron star and a normal companion star, in which the companion was (considerably) more massive than the neutron star, or less massive than the neutron star, respectively. In the first case the companion of the neutron star in the final system will be a massive white dwarf, in a circular orbit, or a neutron star in an eccentric orbit. In the second case the final companion to the neutron star will be a low-mass (∼ 0.3 M⊙) helium white dwarf in a wide and nearly circular orbit. In systems of the second type the neutron star was most probably formed by the accretion-induced collapse of a white dwarf. This explains in a natural way why PSR 1953 + 29 has a millisecond rotation period and PSR 0820 + 02 has not. Among the binary models proposed for the formation of the 1.5-millisecond pulsar, the only ones that appear to be viable are those in which the companion disappeared by coalescence with the neutron star. In such models the companion may have been a red dwarf of mass 0.03M⊙, a neutron star, or a massive (>0.7M⊙) white dwarf. Only in the last-mentioned case is a position of the pulsar close to the galactic plane a natural consequence. In the first-mentioned case the progenitor system most probably was a cataclysmic-variable binary in which the white dwarf collapsed by accretion.  相似文献   

17.
Optical CCD imaging with Hα and [SII] filters and spectroscopic observations of the galactic supernova remnant G85.9-0.6 have been performed for the first time. The CCD image data are taken with the 1.5 m Russian-Turkish Telescope (RTT150) at TüBİTAK National Observatory (TUG) and spectral data are taken with the Bok 2.3 m telescope on Kitt Peak, AZ. The images are taken with narrow-band interference filters Hα, [SII] and their continuum. [SII]/Hα ratio image is performed. The ratio obtained from [SII]/Hα is found to be ∼0.42, indicating that the remnant interacts with HII regions. G85.9-0.6 shows diffuse-shell morphology. [SII]λ λ6716/6731 average flux ratio is calculated from the spectra, and the electron density N e is obtained to be 395 cm−3. From [OIII]/Hβ ratio, shock velocity has been estimated, pre-shock density of n c =14 cm−3, explosion energy of E=9.2×1050 ergs, interstellar extinction of E(BV)=0.28, and neutral hydrogen column density of N(HI)=1.53×1021 cm−2 are reported.  相似文献   

18.
We have constructed the bolometric light curve of SN 1993J based on UBVRI(JHK) photometric data obtained from various sources and assumingA V = 0 and a distance modulus of 27.6. Effective temperatures and photosphere radius at various times have been obtained from detailed blackbody fits. The bolometric light curve shows two maxima. The short rise time to the second maximum, and the luminosities at the minimum and the second maximum are used to constrain the properties of the progenitor star. The total mass of the hydrogen envelope MH, in the star is found to be ≲ 0.2 M at the time of explosion, and the explosion ejected about 0.05 M of Ni56. Thin hydrogen envelope combined with a sufficient presupernova luminosity suggest that the exploding star was in a binary with a probable period range of 5yr ≤P orb 11yr.  相似文献   

19.
The general-relativistic Ohm’s law for a two-component plasma which includes the gravitomagnetic force terms even in the case of quasi-neutrality has been derived. The equations that describe the electromagnetic processes in a plasma surrounding a neutron star are obtained by using the general relativistic form of Maxwell equations in a geometry of slow rotating gravitational object. In addition to the general-relativistic effect first discussed by Khanna and Camenzind (Astron. Astrophys. 307:665, 1996) we predict a mechanism of the generation of azimuthal current under the general relativistic effect of dragging of inertial frames on radial current in a plasma around neutron star. The azimuthal current being proportional to the angular velocity ω of the dragging of inertial frames can give valuable contribution on the evolution of the stellar magnetic field if ω exceeds 2.7×1017(n/σ) s−1 (n is the number density of the charged particles, σ is the conductivity of plasma). Thus in general relativity a rotating neutron star, embedded in plasma, can in principle generate axial-symmetric magnetic fields even in axisymmetry. However, classical Cowling’s antidynamo theorem, according to which a stationary axial-symmetric magnetic field can not be sustained against ohmic diffusion, has to be hold in the general-relativistic case for the typical plasma being responsible for the rotating neutron star.  相似文献   

20.
We consider the evolutionary scenarios for close binaries that lead to the formation of semidetached systems in which a white dwarf can accumulate the Chandrasekhar mass through mass accretion from its companion, a main sequence star or a subgiant of mass M ~ 2M. Such dwarfs probably explode as type-Ia supernovae or collapse to form a neutron star. The population synthesis method is used to analyze the dependence of the model rate of these events in the Galaxy on the common envelope parameter, the mass transfer rate, and the response of a main-sequence star to helium accretion at an intermediate evolutionary stage. The rate of explosions in semidetached systems of this type in the Galaxy was found to be no higher than ?0.2×10?3 yr?1, which is less than 10% of the lower level for the empirically estimated SNe Ia rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号