首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss one of the possible origins of large-scale magnetic fields based on a continuous distribution of toroidal electric current flowing in the inner region of the disc around a Kerr black hole (BH) in the framework of general relativity. It turns out that four types of configuration of the magnetic connection (MC) are generated, i.e. MC of the BH with the remote astrophysical load (MCHL), MC of the BH with the disc (MCHD), MC of the plunging region with the disc (MCPD) and MC of the inner and outer disc regions (MCDD). It turns out that the Blandford–Znajek process can be regarded as one type of MC, i.e. MCHL. In addition, we propose a scenario for fitting the quasi-periodic oscillations in BH binaries based on MCDD associated with the magnetic reconnection.  相似文献   

2.
Summary Some aspects concerning the core-mass increase and the appearance and development of an intermediate semiconvective zone in helium-burning stars are discussed. An iterative method of computation of core increase and semiconvection is also presented. Details of this procedure are given with regard to the horizontal-branch stars of globular clusters.
Riassunto Sono presi in esame alcuni aspetti relativi all'aumento in massa del nucleo ed alla comparsa e sviluppo di una zona semiconvettiva intermedia in modelli di stelle con combustione centrale dell'elio. E'inoltre schematizzato il metodo iterativo di calcolo con particolare riferimento alle stelle di ramo orizzontale degli ammassi globulari.
  相似文献   

3.
Lepping  R.P.  Berdichevsky  D.B.  Burlaga  L.F.  Lazarus  A.J.  Kasper  J.  Desch  M.D.  Wu  C.-C.  Reames  D.V.  Singer  H.J.  Smith  C.W.  Ackerson  K.L. 《Solar physics》2001,204(1-2):285-303
The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the `Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14–16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than −300 nT. The very fast solar wind speed (≥ 1100 km s−1) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as ≈ 5 R E, much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force-free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MC1, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52×1020 Mx, which is about 5 times the typical magnetic flux estimated for other magnetic clouds in the WIND data over its first 4 years and is 17 times the flux of MC1. This large flux is due to both the strong axially-directed field of MC2 (46.8 nT on the axis) and the large radius (R 0=0.189 AU) of the flux tube. MC2's average speed is consistent with the expected transit time from a halo-CME to which it is apparently related.  相似文献   

4.
We report on the coronal hole (CH) influence on the 54 magnetic cloud (MC) and non-MC associated coronal mass ejections (CMEs) selected for studies during the Coordinated Data Analysis Workshops (CDAWs) focusing on the question if all CMEs are flux ropes. All selected CMEs originated from source regions located between longitudes 15E?–?15W. Xie, Gopalswamy, and St. Cyr (2013, Solar Phys., doi: 10.1007/s11207-012-0209-0 ) found that these MC and non-MC associated CMEs are on average deflected towards and away from the Sun–Earth line, respectively. We used a CH influence parameter (CHIP) that depends on the CH area, average magnetic field strength, and distance from the CME source region to describe the influence of all on-disk CHs on the erupting CME. We found that for CHIP values larger than 2.6 G the MC and non-MC events separate into two distinct groups where MCs (non-MCs) are deflected towards (away) from the disk center. Division into two groups was also observed when the distance to the nearest CH was less than 3.2×105 km. At CHIP values less than 2.6 G or at distances of the nearest CH larger than 3.2×105 km the deflection distributions of the MC and non-MCs started to overlap, indicating diminishing CH influence. These results give support to the idea that all CMEs are flux ropes, but those observed to be non-MCs at 1 AU could be deflected away from the Sun–Earth line by nearby CHs, making their flux rope structure unobservable at 1 AU.  相似文献   

5.
Integrated CCD BVR photometric measurements of Magellanic Cloud (MC) star clusters are described and summarized. The integrated colour-magnitude diagrams and colour-age relations for these systems imply that (a) the colour distribution of MC clusters is distinctly bi-modal (although this bi-modality is not simply explained as a distinction between young and old clusters), and (b) the MCs are probably not forming as many (if any) extremely massive clusters at the present as they did early in their lifetimes (i.e., 10 Gyr ago). Structurally, the MC clusters are seen to be intermediate between galactic globular and open clusters and their radial surface brightness profiles can generally be adequately fitted to single-mass King (1966) models (some exceptions do occur, however). Although the distribution of the derived structural parameters of young and old MC clusters are similar, they differ significantly from the distribution of structural parameters observed in intermediate-age clusters, suggesting that these structural properties do not evolve monotonically with time.Visiting astronomer at the Cerro Tololo Interamerican Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

6.
Although the dynamical evolution of magnetic clouds (MCs) has been one of the foci of interplanetary physics for decades, only few studies focus on the internal properties of large-scale MCs. Recent work by Wang et al. (J. Geophys. Res. 120, 1543, 2015) suggested the existence of the poloidal plasma motion in MCs. However, the main cause of this motion is not clear. In order to find it, we identify and reconstruct the MC observed by the Solar Terrestrial Relations Observatory (STEREO)-A, Wind, and STEREO-B spacecraft during 19?–?20 November 2007 with the aid of the velocity-modified cylindrical force-free flux-rope model. We analyze the plasma velocity in the plane perpendicular to the MC axis. It is found that there was evident poloidal motion at Wind and STEREO-B, but this was not clear at STEREO-A, which suggests a local cause rather than a global cause for the poloidal plasma motion inside the MC. The rotational directions of the solar wind and MC plasma at the two sides of the MC boundary are found to be consistent, and the values of the rotational speeds of the solar wind and MC plasma at the three spacecraft show a rough correlation. All of these results illustrate that the interaction with ambient solar wind through viscosity might be one of the local causes of the poloidal motion. Additionally, we propose another possible local cause: the existence of a pressure gradient in the MC. The significant difference in the total pressure at the three spacecraft suggests that this speculation is perhaps correct.  相似文献   

7.
The transfer of energy and angular momentum in the magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc is discussed based on a mapping relation derived by considering the conservation of magnetic flux with two basic assumptions: (i) the magnetic field on the horizon is constant, (ii) the magnetic field on the disc surface varies as a power law with the radial coordinate of the disc. The following results are obtained: (i) the transfer direction of energy and angular momentum between the BH and the disc depends on the position of a co-rotation radius relative to the MC region on the disc, which is eventually determined by the BH spin; (ii) the evolution characteristics of a rotating BH in the MC process without disc accretion are depicted in a parameter space, and a series of values of the BH spin are given to indicate the evolution characteristics; (iii) the efficiency of converting accreted mass into radiation energy of a BH–disc system is discussed by considering the coexistence of disc accretion and the MC process; (iv) the MC effects on disc radiation and the emissivity index are discussed and it is concluded that they are consistent with the recent XMM–Newton observation of the nearby bright Seyfert 1 galaxy MCG–6-30-15 with reference to a variety of parameters of the BH–disc system.  相似文献   

8.
The effects of the amount of sodium ions, their solar angles correlation, temperature and velocities, have been explained as consequences of the almost full penetration of the second mode of micrometeorite fluxes (M>10–8 g) across the Io atmosphere to its surface, whereas volcanism may satisfy only the amount of sodium.Conclusions about the formation of fine grains on the Io surface, unflooded by lava, are presented. Due to its large specific surface (m2 g–1) the interaction of this topsoil and the Io atmosphere is no less important than the lava-atmosphere interaction.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.From September 1979.  相似文献   

9.
Minor planets have been observed in the last few years for physical properties using photometry, polarimetry and IR-radiometry. Using the Faint Object Camera (FOC) of the Space Telescope (ST) it will be possible for the first time to observe a large number of asteroids with direct imaging systems.We propose to use the FOC with high resolution mode to examine minor planets with respect to (a) diameters and shapes, (b) surface and detail studies, (c) densities and (d) possible binary nature of selected asteroids.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

10.
Major, minor and trace element abundances have been determined by instrumental neutron activation analysis (INAA) in whole rock and plagioclase separates of Serra de Magé (SdM). The whole rock contains 52% normative plagioclase and its chondritic normalized REE abundance pattern shows a large Eu anomaly, dominated by the plagioclase REE distribution, and nearly unfractionated La-Sm and Sm-Lu abundances. The plagioclase separates contained ~ 6% pyroxenes and exhibited a typical plagioclase REE distribution. The REE abundances in the derivative equilibrium magmas from which SdM and Moore County (MC) plagioclases crystallized have been estimated from the plagioclase data and the plagioclase mineral/liquid partition coefficients. The REE distributions in possibly earlier parental magmas were calculated by assuming that various degrees of plagioclase and pigeonite (plagioclase/pigeonite = 1) fractional crystallization had been operative prior to the crystallization of SdM and MC. The calculated La/Sm and Sm/Yb ratios for the earlier magmas are essentially the same as the equilibrium magmas over a wide range (10–95%) of the assumed fractional crystallization. Considering the REE distributions and the Fe/Fe+Mg ratios, calculation shows that there is no simple genetic relationship between MC and SdM via fractional crystallization processes. A hypothesis for the derivation of these cumulate eucrites in the plutonic environment from residual diogenitic liquid, which was produced by the extensive partial melting of an eucritic source material followed by the crystallization of diogenite, also fails to account for the fractionated REE patterns calculated for the equilibrium and the possible parental magmas for either SdM or MC. Equilibrium non-modal partial melting calculations indicate that SdM and MC could be genetically related by a factor ~ 6 difference in the degrees of partial melting from a similar source material. However, this common source material which should contain > 30% high-Ca clinopyroxene and has a chondritic normalized La/Yb ~ 3, is different than that proposed for the non-cumulate eucrites.  相似文献   

11.
The characteristic features of particle motion in close binaries have been studied for sequences of evolutionary models with small or intermediate masses. The possible behaviour of the particle streams has been determined with regard to the change of systems with time as a result of mass-exchange between the two stellar components. A grid of values for the velocity and direction of ejection from the first Lagrangian point has been investigated. Among the various possibilities, impact of particles with one, or the other component, or orbits encircling the Main-Sequence star have been detailed. This latter possibility seems to lead to the formation of a disk-like structure around the Main-Sequence component. From the results obtained for semi-detached systems of both cases A and B of evolution it is found that the formation of disks is difficult in cases A, and in the early stages of the slow mass exchange in cases B.
Sommario Sono state studiate le caratteristiche principali delle traiettorie in sequenze di modelli evolutivi di sistemi binari stretti di massa totale piccola e intermedia. E' stato messo in evidenza l'andamento generale delle traiettorie in connessione con la variazione temporale delle proprietà dei sistemi binari dovuta allo scambio di massa tra le componenti. La velocità e la direzione iniziali di eiezione dal primo punto lagrangiano sono state variate con sistematicità in un ampio intervallo di valori. Tra le varie possibilità sono state messe in luce sia l'impatto con l'una o l'altra delle componenti sia la formazione di orbite attorno alla componente di sequenza principale. Quest'ultima eventualità potrebbe condurre alla formazione di una struttura di disco. Dai risultati ottenuti con modelli evolutivi di sistemi semistaccati di casi A e B è emerso che la formazione di una struttura di disco sembra difficile nei casi A e nelle prime fasi dello scambio lento di massa nei casi B.
  相似文献   

12.
We investigated a set of 54 interplanetary coronal mass ejection (ICME) events whose solar sources are very close to the disk center (within ±?15° from the central meridian). The ICMEs consisted of 23 magnetic-cloud (MC) events and 31 non-MC events. Our analyses suggest that the MC and non-MC ICMEs have more or less the same eruption characteristics at the Sun in terms of soft X-ray flares and CMEs. Both types have significant enhancements in ion charge states, although the non-MC structures have slightly lower levels of enhancement. The overall duration of charge-state enhancement is also considerably smaller than that in MCs as derived from solar wind plasma and magnetic signatures. We find very good correlation between the Fe and O charge-state measurements and the flare properties such as soft X-ray flare intensity and flare temperature for both MCs and non-MCs. These observations suggest that both MC and non-MC ICMEs are likely to have a flux-rope structure and the unfavorable observational geometry may be responsible for the appearance of non-MC structures at 1 AU. We do not find any evidence for an active region expansion resulting in ICMEs lacking a flux-rope structure because the mechanism of producing high charge states and the flux-rope structure at the Sun is the same for MC and non-MC events.  相似文献   

13.
We compare the temporal and spatial properties of posteruption arcades (PEAs) associated with coronal mass ejections (CMEs) at the Sun that end up as magnetic cloud (MC) and non-MC events in the solar wind. We investigate the length, width, area, tilt angle, and formation time of the PEAs associated with 22 MC and 29 non-MC events and we find no difference between the two populations. According to current ideas on the relation between flares and CMEs, the PEA is formed together with the CME flux-rope structure by magnetic reconnection. Our results indicate that at the Sun flux ropes form during CMEs in association with both MC and non-MC events; however, for non-MC events the flux-rope structure is not observed in the interplanetary space because of the geometry of the observation, i.e. the location of the spacecraft when the structure passes through it.  相似文献   

14.
Interplanetary coronal mass ejections (ICMEs) and their subset, magnetic clouds (MCs), are important manifestations of solar activity which have substantial impact on the geomagnetic field. We re-analyze events already identified in Wind and Voyager 2 data and estimate changes of their geometry along the path from the Sun. The analysis is based on the thickness of the sheath between a shock and a particular ICME or MC which is proportional to the apparent curvature radius of ICMEs/MCs. We have found that this apparent radius of curvature increases with the Mach number and this effect is attributed to the larger deformation of the fast ICME/MC. Further, the relative sheath thickness that is proportional to the flux rope oblateness decreases with the magnetic field intensity inside the ICME/MC and increases with the heliospheric distance.  相似文献   

15.
Magnetic clouds (MCs) belong to an important subset of interplanetary coronal mass ejections. The identification of their boundaries is always a problem in the studies of MCs. This paper discusses a method to identify the boundaries of MCs by coordinate transformation. Instead of the conventional GSE (Geocentric Solar Ecliptic) coordinate system, the interplanetary magnetic field data are converted into a cloud natural coordinate system, in which the profile of the MC as a magnetic flux tube is clearly displayed. Then, combining with the plasma properties of the MC, the boundary of the cloud can be identified easily. Six observed MCs are analyzed using this method, and the results show that this method is feasible and can reduce the uncertainty in the identification of MC boundaries.  相似文献   

16.
磁云因其独特的磁场结构经常是重大灾害性空间天气的驱动源. 近来从磁云的边界层结构、环向通量、大尺度结构等方面关于磁云传播的动力学演化过程的研究取得了一些进展. 在磁云边界存在一个由于磁场重联而形成的边界层结构. 在磁云传播过程中, 这种发生在边界处的磁场重联可能会把磁云的磁场剥蚀掉, 进而引起其磁通量绳结构环向通量的减少以及不对称. 在磁云内部, 经常会观测到多个子通量绳结构. 这些特性各异的子通量绳可以通过磁场重联而合并, 进而引起磁云磁结构的改变. 关于磁云大尺度磁场拓扑位形的演化机制, 除了较早提出的交换重联外, 目前的研究表明在行星际空间中, 磁云边界处的重联过程也可以将磁云闭合或半开放的磁场线打开或断开. 尽管在相关研究中已经取得了较大进展, 但关于磁云传播的动力学演化过程还有许多问题尚不清楚. 在行星际小尺度磁通量绳边界也发现了边界层结构, 那么磁云是否会因剥蚀而成为小尺度通量绳? 磁云内子通量绳结构在相互作用中会不会引起某些不稳定性而导致整个通量绳系统的崩溃? 这些问题的解决还有待于进一步的理论、观测和数值模拟研究.  相似文献   

17.
Taking the 32 storm sudden commencements (SSCs) listed by the International Service of Geomagnetic Indices (ISGI) of the Observatory de l’Ebre during 2002 (solar activity maximum in Cycle 23) as a starting point, we performed a multi-criterion analysis based on observations (propagation time, velocity comparisons, sense of the magnetic field rotation, radio waves) to associate them with solar sources, identified their effects in the interplanetary medium, and looked at the response of the terrestrial ionized and neutral environment. We find that 28 SSCs can be related to 44 coronal mass ejections (CMEs), 15 with a unique CME and 13 with a series of multiple CMEs, among which 19 (68%) involved halo CMEs. Twelve of the 19 fastest CMEs with speeds greater than 1000 km?s?1 are halo CMEs. For the 44 CMEs, including 21 halo CMEs, the corresponding X-ray flare classes are: 3 X-class, 19 M-class, and 22 C-class flares. The probability for an SSC to occur is 75% if the CME is a halo CME. Among the 500, or even more, front-side, non-halo CMEs recorded in 2002, only 23 could be the source of an SSC, i.e. 5%. The complex interactions between two (or more) CMEs and the modification of their trajectories have been examined using joint white-light and multiple-wavelength radio observations. The detection of long-lasting type IV bursts observed at metric–hectometric wavelengths is a very useful criterion for the CME–SSC events association. The events associated with the most depressed Dst values are also associated with type IV radio bursts. The four SSCs associated with a single shock at L1 correspond to four radio events exhibiting characteristics different from type IV radio bursts. The solar-wind structures at L1 after the 32 SSCs are 12 magnetic clouds (MCs), 6 interplanetary coronal mass ejections (ICMEs) without an MC structure, 4 miscellaneous structures, which cannot unambiguously be classified as ICMEs, 5 corotating or stream interaction regions (CIRs/SIRs), one CIR caused two SSCs, and 4 shock events; note than one CIR caused two SSCs. The 11 MCs listed in 3 or more MC catalogs covering the year 2002 are associated with SSCs. For the three most intense geomagnetic storms (based on Dst minima) related to MCs, we note two sudden increases of the Dst, at the arrival of the sheath and the arrival of the MC itself. In terms of geoeffectiveness, the relation between the CME speed and the magnetic-storm intensity, as characterized using the Dst magnetic index, is very complex, but generally CMEs with velocities at the Sun larger than 1000 km?s?1 have larger probabilities to trigger moderate or intense storms. The most geoeffective events are MCs, since 92% of them trigger moderate or intense storms, followed by ICMEs (33%). At best, CIRs/SIRs only cause weak storms. We show that these geoeffective events (ICMEs or MCs) trigger an increased and combined auroral kilometric radiation (AKR) and non-thermal continuum (NTC) wave activity in the magnetosphere, an enhanced convection in the ionosphere, and a stronger response in the thermosphere. However, this trend does not appear clearly in the coupling functions, which exhibit relatively weak correlations between the solar-wind energy input and the amplitude of various geomagnetic indices, whereas the role of the southward component of the solar-wind magnetic field is confirmed. Some saturation appears for Dst values \(< -100\) nT on the integrated values of the polar and auroral indices.  相似文献   

18.
If the solar system is considered as a mechanical clockwork consisting of its present members which attract each other as mass-points, the extent of its present approach to secular stability (i.e., the state of minimum potential energy) — manifested by the existence of a number of nearcommensurabilities of the present orbital periods, not only of the planets, but also of their satellites —could not have been attained in a time-span of 4.6×109 yr of its age by gravitational perturbations alone.The existence of such commensurabilities — striking in many instances— could then be understood only on the assumption that either (a) the solar system was actually born with the present 2-, 3- and 4-term couplings between the orbital period of the planets already built-in from the outset (which is improbable on any known grounds); or (b) that these couplings — in particular, the 25 Jupiter-Saturn commensurability — have arisen as a result of tidal interaction between proto-planetary globes of much larger dimensions than these planets possess today. For the present dimensions and mutual distances of these planets, their tidal interaction in 109 yr would exert but negligible effects; and during that time neither their masses, nor the scale of the solar system underwent any essential change.Therefore, a hypothesis is proposed that the situation now obtaining had its origin in the early days of the formation of the solar system, when the planetary globes — in particular, those of Jupiter and Saturn (now in the terminal stage of Kelvin contraction) — were very much larger than they are today; and when, as a result, the tidal coupling between them operated at a much higher rate than at the present time.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

19.
The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity, which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled by neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 – 10 November 2004. This MC was embedded in an ICME. After determining an approximate orientation for the flux rope using the minimum variance method, we obtain a precise orientation of the cloud axis by relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the inbound and outbound branches and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). The MC is also studied using dynamic models with isotropic expansion. We have found (6.2±1.5)×1020 Mx for the axial flux and (78±18)×1020 Mx for the azimuthal flux. Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted by considering the existence of a previously larger flux rope, which partially reconnected with its environment in the front. We estimate that the reconnection process started close to the Sun. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).  相似文献   

20.
The behavior of solar energetic particles (SEPs) in a shock – magnetic cloud interacting complex structure observed by the Advanced Composition Explorer (ACE) spacecraft on 5 November 2001 is analyzed. A strong shock causing magnetic field strength and solar wind speed increases of about 41 nT and 300 km s−1, respectively, propagated within a preceding magnetic cloud (MC). It is found that an extraordinary SEP enhancement appeared at the high-energy (≥10 MeV) proton intensities and extended over and only over the entire period of the shock – MC structure passing through the spacecraft. Such SEP behavior is much different from the usual picture that the SEPs are depressed in MCs. The comparison of this event with other top SEP events of solar cycle 23 (2000 Bastille Day and 2003 Halloween events) shows that such an enhancement resulted from the effects of the shock – MC complex structure leading to the highest ≥10 MeV proton intensity of solar cycle 23. Our analysis suggests that the relatively isolated magnetic field configuration of MCs combined with an embedded strong shock could significantly enhance the SEP intensity; SEPs are accelerated by the shock and confined into the MC. Further, we find that the SEP enhancement at lower energies happened not only within the shock – MC structure but also after it, probably owing to the presence of a following MC-like structure. This is consistent with the picture that SEP fluxes could be enhanced in the magnetic topology between two MCs, which was proposed based on numerical simulations by Kallenrode and Cliver (Proc. 27th ICRC 8, 3318, 2001b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号