首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
I. Introduction In this section the problem is stated, its physical and mathematical difficulties are indicated, and the way the authors try to overcome them are briefly outlined. Made up of a few measurements of limited accuracy, an electrical sounding does not define a unique solution for the variation of the earth resistivities, even in the case of an isotropic horizontal layering. Interpretation (i.e. the determination of the true resistivities and thicknesses of the ground-layers) requires, therefore, additional information drawn from various more or less reliable geological or other geophysical sources. The introduction of such information into an automatic processing is rather difficult; hence the authors developped a two-stage procedure:
  • a) the field measurements are automatically processed, without loss of information, into more easily usable data;
  • b) some additional information is then introduced, permitting the determination of several geologically conceivable solutions.
The final interpretation remains with the geophysicist who has to adjust the results of the processing to all the specific conditions of his actual problem. II. Principles of the procedure In this section the fundamental idea of the procedure is given as well as an outline of its successive stages. Since the early thirties, geophysicists have been working on direct methods of interpreting E.S. related to a tabular ground (sequence of parallel, homogeneous, isotropic layers of thicknesses hi and resistivities ρi). They generally started by calculating the Stefanesco (or a similar) kernel function, from the integral equation of the apparent resistivity: where r is the distance between the current source and the observation point, S0 the Stefanesco function, ρ(z) the resistivity as a function of the depth z, J1 the Bessel function of order 1 and λ the integration variable. Thicknesses and resistivities had then to be deduced from S0 step by step. Unfortunately, it is difficult to perform automatically this type of procedure due to the rapid accumulation of the errors which originate in the experimental data that may lead to physically impossible results (e.g. negative thicknesses or resistivities) (II. 1). The authors start from a different integral representation of the apparent resistivity: where K1 is the modified Bessel function of order I. Using dimensionless variables t = r/2h0 and y(t)=ζ (r)/ρ1 and subdividing the earth into layers of equal thicknesses h0 (highest common factor of the thicknesses hi), ø becomes an even periodic function (period 2π) and the integral takes the form: The advantage of this representation is due to the fact that its kernel ø (function of the resistivities of the layers), if positive or null, always yields a sequence of positive resistivities for all values of θ and thus a solution which is surely convenient physically, if not geologically (II.3). Besides, it can be proved that ø(θ) is the Fourier transform of the sequence of the electric images of the current source in the successive interfaces (II.4). Thus, the main steps of the procedure are: a) determination of a non-negative periodic, even function ø(θ) which satisfies in the best way the integral equation of apparent resistivity for the points where measurements were made; b) a Fourier transform gives the electric images from which, c) the resistivities are obtained. This sequence of resistivities is called the “comprehensive solution”; it includes all the information contained in the original E.S. diagram, even if its too great detail has no practical significance. Simplification of the comprehensive solution leads to geologically conceivable distributions (h, ρ) called “particular solutions”. The smoothing is carried out through the Dar-Zarrouk curve (Maillet 1947) which shows the variations of parameters (transverse resistance Ri= hii–as function of the longitudinal conductance Ci=hii) well suited to reflect the laws of electrical prospecting (principles of equivalence and suppression). Comprehensive and particular solutions help the geophysicist in making the final interpretation (II.5). III. Computing methods In this section the mathematical operations involved in processing the data are outlined. The function ø(θ) is given by an integral equation; but taking into account the small number and the limited accuracy of the measurements, the determination of ø(θ) is performed by minimising the mean square of the weighted relative differences between the measured and the calculated apparent resistivities: minimum with inequalities as constraints: where tl are the values of t for the sequence of measured resistivities and pl are the weights chosen according to their estimated accuracy. When the integral in the above expression is conveniently replaced by a finite sum, the problem of minimization becomes one known as quadratic programming. Moreover, the geophysicist may, if it is considered to be necessary, impose that the automatic solution keep close to a given distribution (h, ρ) (resulting for instance from a preliminary interpretation). If φ(θ) is the ø-function corresponding to the fixed distribution, the quantity to minimize takes the form: where: The images are then calculated by Fourier transformation (III.2) and the resistivities are derived from the images through an algorithm almost identical to a procedure used in seismic prospecting (determination of the transmission coefficients) (III.3). As for the presentation of the results, resorting to the Dar-Zarrouk curve permits: a) to get a diagram somewhat similar to the E.S. curve (bilogarithmic scales coordinates: cumulative R and C) that is an already “smoothed” diagram where deeper layers show up less than superficial ones and b) to simplify the comprehensive solution. In fact, in arithmetic scales (R versus C) the Dar-Zarrouk curve consists of a many-sided polygonal contour which múst be replaced by an “equivalent” contour having a smaller number of sides. Though manually possible, this operation is automatically performed and additional constraints (e.g. geological information concerning thicknesses and resistivities) can be introduced at this stage. At present, the constraint used is the number of layers (III.4). Each solution (comprehensive and particular) is checked against the original data by calculating the E.S. diagrams corresponding to the distributions (thickness, resistivity) proposed. If the discrepancies are too large, the process is resumed (III.5). IV. Examples Several examples illustrate the procedure (IV). The first ones concern calculated E.S. diagrams, i.e. curves devoid of experimental errors and corresponding to a known distribution of resistivities and thicknesses (IV. 1). Example I shows how an E.S. curve is sampled. Several distributions (thickness, resistivity) were found: one is similar to, others differ from, the original one, although all E.S. diagrams are alike and characteristic parameters (transverse resistance of resistive layers and longitudinal conductance of conductive layers) are well determined. Additional informations must be introduced by the interpreter to remove the indeterminacy (IV.1.1). Examples 2 and 3 illustrate the principles of equivalence and suppression and give an idea of the sensitivity of the process, which seems accurate enough to make a correct distinction between calculated E.S. whose difference is less than what might be considered as significant in field curves (IV. 1.2 and IV. 1.3). The following example (number 4) concerns a multy-layer case which cannot be correctly approximated by a much smaller number of layers. It indicates that the result of the processing reflects correctly the trend of the changes in resistivity with depth but that, without additional information, several equally satisfactory solutions can be obtained (IV. 1.4). A second series of examples illustrates how the process behaves in presence of different kinds of errors on the original data (IV.2). A few anomalous points inserted into a series of accurate values of resistivities cause no problem, since the automatic processing practically replaces the wrong values (example 5) by what they should be had the E.S. diagram not been wilfully disturbed (IV.2.1). However, the procedure becomes less able to make a correct distinction, as the number of erroneous points increases. Weights must then be introduced, in order to determine the tolerance acceptable at each point as a function of its supposed accuracy. Example 6 shows how the weighting system used works (IV.2.2). The foregoing examples concern E.S. which include anomalous points that might have been caused by erroneous measurements. Geological effects (dipping layers for instance) while continuing to give smooth curves might introduce anomalous curvatures in an E.S. Example 7 indicates that in such a case the automatic processing gives distributions (thicknesses, resistivities) whose E.S. diagrams differ from the original curve only where curvatures exceed the limit corresponding to a horizontal stratification (IV.2.3). Numerous field diagrams have been processed (IV. 3). A first case (example 8) illustrates the various stages of the operation, chiefly the sampling of the E.S. (choice of the left cross, the weights and the resistivity of the substratum) and the selection of a solution, adapted from the automatic results (IV.3.1). The following examples (Nrs 9 and 10) show that electrical prospecting for deep seated layers can be usefully guided by the automatic processing of the E.S., even when difficult field conditions give original curves of low accuracy. A bore-hole proved the automatic solution proposed for E.S. no 10, slightly modified by the interpreter, to be correct.  相似文献   

2.
Electrical resistivity measurements have been conducted as a possible means for obtaining precursory earthquake information. Before five great earthquakes (M>7,h<25 km) in China, the apparent resistivity a showed systematic variations within a region 200 km from the epicenters. In particular, 9 stations in the Tangshan-Tianjin-Beijing region prior to the Tangshan earthquake (M=7.8,h=11 km, 27 July 1976) showed a consistent decrease of apparent resistivity around the epicenter, with a maximum resistivity change of 6% and a period of variation of 2–3 years. Simultaneous water table observations in this region showed a declining water table, and ground surface observations indicated a slight (5 mm) uplift in the epicenter region relative to its surroundings.In order to develop an explanation for the observed change of apparent resistivity associated with these great earthquakes, we have used Archie's Law to explore the effects of changes in rock porosity, water content and electrolyte resistivity on measured resistivity.Tentative conclusions of this study are as follows: (1) the apparent resistivity change is opposite to the effect expected from the simultaneous water table trend; (2) the dilatancy needed to give such resistivity variations (assuming Archie's Law holds) is much larger than that needed to explain the observed uplift (by 2–3 orders of magnitude); (3) salinity change in the pore electrolyte is a possible explanation for the variation in resistivity: an increase in the salinity would cause a proportional decrease in resistivity; the data needed to test this hypothesis, however, are lacking; and (4) the effect of changing geometry of rock pores or cracks due to pressure solution may provide an explanation for the decrease in apparent resistivity; it is different in nature from the effect of a volume change in response to stress although the geometry change is also closely related to the stress change.  相似文献   

3.
It is advantageous to postulate the phenomenological equivalence of chargeability with a slight increase in resistivities rather than a similar reduction in the conductivities. Substitution of these increments in the expression for the total differential of apparent resistivity leads directly to Seigel's formula. Included also are (i) an equally simple demonstration that, for a homogeneously chargeable ground with arbitrary resistivity distribution, the apparent chargeability ma, equals the true homogeneous value m, and (ii) a direct derivation of the completely general resistivity relation where the symbols have the usual meanings.  相似文献   

4.
This paper describes certain procedures for deriving from the apparent resistivity data as measured by the Wenner electrode configuration two functions, known as the kernel and the associated kernel respectively, both of which are functions dependent on the layer resistivities and thicknesses. It is shown that the solution of the integral equation for the Wenner electrode configuration leads directly to the associated kernel, from which an integral expression expressing the kernel explicitly in terms of the apparent resistivity function can be derived. The kernel is related to the associated kernel by a simple functional equation where K1(λ) is the kernel and B1(λ) the associated kernel. Composite numerical quadrature formulas and also integration formulas based on partial approximation of the integrand by a parabolic arc within a small interval are developed for the calculation of the kernel and the associated kernel from apparent resistivity data. Both techniques of integration require knowledge of the values of the apparent resistivity function at points lying between the input data points. It is shown that such unknown values of the apparent resistivity function can satisfactorily be obtained by interpolation using the least-squares method. The least-squares method involves the approximation of the observed set of apparent resistivity data by orthogonal polynomials generated by Forsythe's method (Forsythe 1956). Values of the kernel and of the associated kernel obtained by numerical integration compare favourably with the corresponding theoretical values of these functions.  相似文献   

5.
In the strip limestone mine in Guiding county, Guizhou Province the shear and frictionin situ tests of rock body were made for the three typical inclined weak bands C 3 1 /C 3 1 , C 3 1 /C 2 2 and C 2 2 /C 2 1 . The tests were made according to the second scheme of cuneate sample of the standards on rock mechanics test of Water Conservancy and Electricity Ministry. The changes of the resistivity in the weak band and the acoustic speed across the weak band were measured in the same time. The apparent resistivity data, obtained for 8 samples on 27 measure lines in 38 cycle tests, show that the apparent resistivity changes have rather obvious characters as follows: 1. At shear and friction stage, the change of the apparent resistivity accelerates after the yield point, and reaches the maximum of change rate and change amplitude near fracture point (except the lines with resistivity invariant); 2. On the same sample, the resistivity changes are different on the various lines and related to the location settled the lines, there are some “sensitive” location; 3. At the stage of preloading normal stress before shearing, the resistivity decreases on most lines, but on a few lines the resistivity does not changes; 4. After unloading shear stress, the resistivity could not recover completely and the hysteresis of resistiviity takes place on a few lines.  相似文献   

6.
Summary Four hourly current-and wind observations during the years 1924–1927 at the German lightvessels Norderney, Elbe 1, and Aussen-Eider were subjected to harmonic analysis with emphasis on the influence of the wind on the residual as well as on the tidal current. The tidal current is strongest at Elbe 1 and weakest at Aussen-Eider. The half-monthly inequality of the current is strongly influenced by a 2 tidal component. Wind influences the velocity, phase and duration of ebb-and flow current in a systematic way at Norderney and Elbe 1. Deviations from the mean tidal current are caused mainly by the change in wind direction rather than by wind velocity. The mean residual current is weak at the three stations. But wind driven currents have a velocity up to 5 times as great as the mean residual current and reverse their direction with the wind. The annual variation of the mean residual current, however, is caused only to a small part by the annual wind variation.Abbreviations used in this paper Gr. M. Tr. Greenwich moon transit, i.e. Greenwich civil time of the upper or lower transit of the moon through the meridian of Greenwich - C n computed tidal current at M1/2Hn - C n m computed mean tidal current at M1/2Hn - M n Moon-half hour mean, i.e. mean of all current velocities observed during M1/2Hn - M.A. Moon age of an observation, true Greenwich time of Gr.M.Tr. directly preceeding the time of observation, expressed in 12 integral numbers, each representing M.A. falling in 12 different hourly intervals - M1/2H Moon-half hour, 1/2 of the interval between one moon transit and the next, i.e. 1/24 of 12h25m - R n o ,R n ' ,R n " residual current computed by harmonic analysis ofn M1/2H means of the mean current, the current at weak winds, and the current at strong winds respectively - d.o.f. degrees of freedom - standard deviation ofC n fromM n - * mean standard deviation ofC n fromM n for analysis with weighted means - A o Standard error of the residual currentA o - AB standard error of the harmonic coefficientsA 1,B 1,A 2,B 2,... - S 2 Phase of the current componentS 2  相似文献   

7.
The composition characteristics of light hydrocarbons from crude oil, chloroform bitumen A, saturated hydrocarbon fraction, aromatic hydrocarbon fraction, and asphaltene fraction during cracking have been studied systematically. The results revealed that the content of n-alkanes, branched alkanes and cycloalkanes in light hydrocarbons from the samples gradually decreased as the simulation temperature increased, and finally almost depleted completely, while the abundance of methane, benzene and its homologues increased obviously and became the main products. The ratios of benzene/ n-hexane and toluene/n-heptane can be used as measures for oil cracking levels. Variation characteristics of maturity parameters of light hydrocarbons, for example, iC4/nC4, iC5/nC5, isoheptane value, 2,2-DMC4/nC6, and 2-MC6+3-MC6/nC7 for different samples with increasing pyrolysis temperature, are consistent with those in petroleum reservoirs, indicating that these parameters may be efficient maturity index.  相似文献   

8.
A number of time-domain IP traverses were carried out across two parallel mineralized sheets in the Lower Pillow Lavas, near Mitsero, Cyprus with Huntec Mark III equipment using the pole-dipole array. In one sheet the mineralization was disseminated (2%S), and in the other it was massive (30%S). The transients were recorded at separation n= 2 at a number of points to give the complete shape of the curves. The normalized time integrals were anomalous over the two sheets, but were not significantly different; the highest values being observed over the disseminated sheet. Both sheets were also associated with high electromagnetic components of the decay curve. The chargeability and resistivity values obtained over the disseminated body were considerably higher. The metal factor was also of value in discriminating between massive ore, disseminated mineralization, and barren rock. The values of P2 and P3 for the two bodies were also compared (P2 and P3 are defined by where M1 to M4 are the amplitudes of the decay curve at 55, 130, 280 and 580 ms respectively). For the massive ore, P was inversely related to M, but for the disseminated ore P was independent of M. Four simple parameters from the decay curves show that indices of curve shape offer the best prospect of grade discrimination.  相似文献   

9.
This paper presents the results of an investigation of the magnitude–intensity and intensity–attenuation relationships for earthquakes in the Atlas block and Algeria using macroseismic data. This work is based on a selected sample of isoseismal maps from 32 events which were recently revised. Surface-wave magnitudes, Ms, are recalculated using the Prague formula and range from 4·2 to 7·45. Because the Atlas mountains block is in a collision zone, earthquakes occur in general within a layer 15 km deep. Expressions of general form for the magnitude–intensity and intensity–attenuation correlations are adopted and are, respectively, and where R2 = d2 + h2, d the source distance in km, h the focal depth in km, Ms the revised surface-wave magnitude, Msc the predicted surface-wave magnitude, Ii the intensity at isoseismal i, I the predicted intensity, σ the standard deviation and P is zero for 50-percentile values and one for 84-percentile, and the coefficients A's and B's are determined by regression analysis. The results of this study show that the intensity–attenuation models are adequate to predict quite well the die-out of intensity with distance in the Atlas zone and coastal Algeria; it is also found that magnitude can be predicted accurately by calibrating isoseismal radii against revised instrumental surface-wave magnitude. Such magnitude–intensity relationships may be used to evaluate the magnitude of historical earthquakes in the region under survey, with no instrumental data, for which isoseismal radii and intensities are available.  相似文献   

10.
Equilibrium water uptake and the sizes of atmospheric aerosol particles have for the first time been determined for high relative humidities, i.e., for humidities above 95 percent, as a function of the particles chemical composition. For that purpose a new treatment of the osmotic coefficient has been developed and experimentally confirmed. It is shown that the equilibrium water uptake and the equilibrium sizes of atmospheric aerosol particles at large relative humidities are significantly dependent on their chemical composition.List of symbols A proportionality factor - a w activity of water in a solution - c p v specific heat of water vapour at constant pressure - c w specific heat of liquid water - f relative humidity - l w specific heat of evaporation of water - M i molar mass of solute speciesi - M s mean molar mass of all the solute species in a solution - M w molar mass of water - m 0 mass of an aerosol particle in dry state - m i mass of solute speciesi - m s mass of solute - m w mass of water taken up by an aerosol particle in equilibrium state - m total molality=number of mols of solute species in 1000 g of water - m i molality of solute speciesi - m k total molality of a pure electrolytek - O(m 2) remaining terms being of the second and of higher powers ofm - p + standard pressure - p total pressure of the gas phase - p pressure within a droplet - p 1,p 2,p 3 coefficients in the expansion of M - p 1i, p2i, p3i specific parameters of ioni - p s saturation vapour pressure - p w water vapour pressure - R w individual gas constant of water - r radius of a droplet - r 0 equivalent volume radius of an aerosol particle in dry state - T temperature - T 0 standard temperature - T 1 temperature of the pure water drop in the osmometer - v w specific volume of pure water - z i valence of ioni - i relativenumber concentration of ioni in a solution - correction term due to the adsorption of ions at liquid-solid interfaces - activity coefficient of solute speciesi in a solution, related to molalities - I bridge current - T temperature difference between solution and pure water drop in the osmometer - exponential mass increase coefficient - w specific chemical potential of water vapour - w specific chemical potential of water - 0 w specific chemical potential of pure water vapour - 0 w specific chemical potential of pure water - 0 density of an aerosol particle in dry state - w density of pure water - surface tension of a droplet - 0 surface tension of pure water, i.e., at infinite dilution of the solute - osmotic coefficient - k osmotic coefficient of a solution of a pure electrolytek - k osmotic coefficient of a solution of a mixed solute - M fugacity coefficient of water vapour - s i=1 i z 2 i This work is part of a Ph.D. thesis carried out at the Meteorological Institute of the Johannes Gutenberg-Universität, Mainz.  相似文献   

11.
In a previous paper (Makropoulos andBurton, 1983) the seismic risk of the circum-Pacific belt was examined using a whole process technique reduced to three representative parameters related to the physical release of strain energy, these are:M 1, the annual modal magnitude determined using the Gutenberg-Richter relationship;M 2, the magnitude equivalent to the total strain energy release rate per annum, andM 3, the upper bound magnitude equivalent to the maximum strain energy release in a region.The risk analysis is extended here using the part process statistical model of Gumbel's IIIrd asymptotic distribution of extreme values. The circum-Pacific is chosen being a complete earthquake data set, and the stability postulate on which asymptotic distributions of extremes are deduced to give similar results to those obtained from whole process or exact distributions of extremes is successfully checked. Additionally, when Gumbel III asymptotic distribution curve fitting is compared with Gumbel I using reduced chi-squared it is seen to be preferable in all cases and it also allows extensions to an upper-bounded range of magnitude occurrences. Examining the regional seismicity generates several seismic risk results, for example, the annual mode for all regions is greater thanm(1)=7.0, with the maximum being in the Japan, Kurile, Kamchatka region atm(1)=7.6. Overall, the most hazardous areas are situated in this northwestern region and also diagonally opposite in the southeastern circum-Pacific. Relationships are established between the Gumbel III parameters and quantitiesm 1(1),X 2 and , quantities notionally similar toM 1,M 2 andM 3 although is shown to be systematically larger thanM; thereby giving a physical link through strain energy release to seismic risk statistics. Inall regions of the circum-Pacific similar results are obtained forM 1,M 2 andM 3 and the notionally corresponding statistical quantitiesm 1(1),X 2 and , demonstrating that the relationships obtained are valid over a wide range of seismotectonic enviroments.  相似文献   

12.
Lower Cretaceous C-isotope records show intermittent negative/positive spikes, and consistent patterns of coeval chemostratigraphic curves thus document shifts that signal simultaneous responses of temporal changes in the global carbon reservoir. The standard pattern registered by the δ 13Corg and δ 13Ccarb in Lower Aptian sediments includes distinct isotope segments C1 to C8 (Menegatti et al., 1998). In the El Pui section, Organyà Basin, Spain, C-isotope segment C2 is the longest interval preceding segments C3–C6 associated with oceanic anoxic event 1a (OAE 1a), and reveals a distinct negative shift of ~1.8‰ to ~2.23‰ defining the C-isotope pattern within that interval. Total inorganic carbon (TIC), total organic carbon (TOC), δ 13Corg, microfacies, n-alkanes show no difference before, during, or after the negative inflection. The biomarkers indicate that organic matter (OM) mainly originates from algal/microbial sources because short-chain length homologues (≤nC19) dominate. nC20 through nC25 indicate some contribution from aquatic vegetation, but little from higher plants (>nC25), as also suggested by the terrestrial/aquatic ratio of n-alkanes or (TAR) = [(nC27+nC29+nC31)/(nC15+nC17+nC19)] (averages 0.085). We suggest that conjoint pulses of contemporaneous LIPs (Ontong Java) and massive explosive volcanism in northeast Asia, the Songliao Basin (SB-V), best conform to plausible causes of the negative intra-C2 carbon isotopic excursion (CIE) at that time. Because of its apparent common occurrence the intra-C2 inflection could be a useful marker harbinger to the more pronounced CIE C3, the hallmark of OAE1a.  相似文献   

13.
The equation which determines the distribution of the stationary potential ? in isotropic heterogeneous conductive media with continuously varying local conductivity σ, takes the symmetrical form if we choose as new variables For certain grounds (half-spaces) in which α is a harmonic function (Δα=ΔΨ= 0), it is possible to obtain by means of simple calculations the lines of equal apparent resistivity and the geoelectrical apparent cross-sections for the usual devices of d.c. prospecting methods. Graphical examples are also given.  相似文献   

14.
A theoretical equation was developed to express the time variation of drainage density in a basin or geomorphic surface: Di(t, T) is the drainage density at time T on the i-th basin or geomorphic surface, which was formed at time t; β(τ) is a factor related to the erosional force causing the development of the rivers of the basin or surface at time τ; δi is the maximum drainage density; and Di is the initial drainage density on the i-th geomorphic surface or basin. The equation is based on the assumption that the drainage density increases with time until it reaches a specific upper limit δi(t)), the maximum drainage density, which is related to certain physical properties of the basin. The equations for various dated basins or geomorphic surfaces can be combined into one modified equation if the same relative erosional forces have acted on those basins or surfaces (β(t) = β(t) and if the basins or surfaces have the same physical properties δi(t) = δi(t), (Di = D0). The application of this equation to coastal terraces and glacial tills shows that the model is compatible with observed drainage densities on various dated basins or surfaces.  相似文献   

15.
High‐resolution measurements of rainfall, water level, pH, conductivity, temperature and carbonate chemistry parameters of groundwater at two adjacent locations within the peak cluster karst of the Guilin Karst Experimental Site in Guangxi Province, China, were made with different types of multiparameter sonde. The data were stored using data loggers recording with 2 min or 15 min resolution. Waters from a large, perennial spring represent the exit for the aquifer's conduit flow, and a nearby well measures water in the conduit‐adjacent, fractured media. During flood pulses, the pH of the conduit flow water rises as the conductivity falls. In contrast, and at the same time, the pH of groundwater in the fractures drops, as conductivity rises. As Ca2+ and HCO3? were the dominant (>90%) ions, we developed linear relationships (both r2 > 0·91) between conductivity and those ions, respectively, and in turn calculated variations in the calcite saturation index (SIC) and CO2 partial pressure (P) of water during flood pulses. Results indicate that the P of fracture water during flood periods is higher than that at lower flows, and its SIC is lower. Simultaneously, P of conduit water during the flood period is lower than that at lower flows, and its SIC also is lower. From these results we conclude that at least two key processes are controlling hydrochemical variations during flood periods: (i) dilution by precipitation and (ii) water–rock–gas interactions. To explain hydrochemical variations in the fracture water, the water–rock–gas interactions may be more important. For example, during flood periods, soil gas with high CO2 concentrations dissolves in water and enters the fracture system, the water, which in turn has become more highly undersaturated, dissolves more limestone, and the conductivity increases. Dilution of rainfall is more important in controlling hydrochemical variations of conduit water, because rainfall with higher pH (in this area apparently owing to interaction with limestone dust in the lower atmosphere) and low conductivity travels through the conduit system rapidly. These results illustrate that to understand the hydrochemical variations in karst systems, considering only water–rock interactions is not sufficient, and the variable effects of CO2 on the system should be evaluated. Consideration of water–rock–gas interactions is thus a must in understanding variations in karst hydrochemistry. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
— The first empirical duration magnitude (MD) formula is developed and tested for the Northern Morocco Seismic Network (NMSNET). This relationship is obtained by relating the IGN (Instituto Geografico National, Madrid) body-waves mbLgIGN to the duration (), and the epicentral distance (), at 25 analogue stations of the NMSNET for 479 earthquakes with 2.5 mb 5.4, from March 1992 to February 2001. MD estimates are significantly more precise while introducing a correction term for each of these stations, cStaj. The magnitude for the ith event (MD)i is the mean value of individual MDij=–0.14+1.63log10(ij)+0.031(ij)+cStaj. The cStaj corrections reduce considerably the local site effects which influence the recorded durations and cause stations to either overestimate, or underestimate MD up to 0.5 magnitude units. Average station MD residuals (–cStaj) are found to be independent of the distance from the epicenter to at least 10 degrees. It seems evident that regional geological features in the immediate behavior of stations have a systematic effect on the corresponding obtained residuals: older well-consolidated Precambrian crystalline rocks produce high negative residuals (shorter durations), younger unconsolidated sediments produce high positive residuals (longer durations), whereas, intermediate MD site residuals appear to be the result of the effect of various factors, principally age and state of consolidation of the bedrock, combined with the local tectonic.  相似文献   

17.
We extend to Love waves the concept of the mantle magnitudeM mintroduced recently for Rayleigh waves. Spectral amplitudesX() of Love waves in the 50–300 s period range are measured on broad-band records from major events. A distance correctionC D, regionalized to reflect the influence of different tectonic paths, and a source correctionC S, compensating for the variation of excitation with period are effected; the exact geometry and depth of the event are however ignored. The resulting expression
  相似文献   

18.
Flow and transport take place in a heterogeneous medium made up from inclusions of conductivity K submerged in a matrix of conductivity K 0. We consider two-dimensional isotropic media, with circular inclusions of uniform radii, that are placed at random and without overlap in the matrix. The system is completely characterized by the conductivity contrast =K/K 0 and by the volume fraction n. The flow is uniform in the mean, of velocity U=const. The derivation of the velocity field is achieved by a numerical method of high accuracy, based on analytical elements. Approximate analytical solutions are derived by a few methods: composite elements, effective medium, dilute systems and first-order approximation in logconductivity variance. The latter was employed by Rubin (1995), while the dilute system approximation was used by Eames and Bush (1999) and Dagan and Lessoff (2001). Transport is solved in a Lagrangean framework, with trajectories determined numerically from the velocity field, by particle tracking. Results for the velocity variance and for the longitudinal macrodispersivity, for a few values of and n, are presented in Part 2.  相似文献   

19.
An attempt is made to estimate the expected contribution of rainfall to soil moisture during the irrigation season. Effective rainfall and evapotranspiration are the parameters considered in the water balance carried out in the root zone. Rainfall occurrence is simulated by a Poisson process whereas evapotranspiration is described by a simple deterministic function of potential evapotranspiration and soil moisture in the root zone. Using the theory of shot noise models a closed form solution is derived from the expected soil moisture in the root zone at the end of the time interval (0,t]. For illustration purposes the proposed model is applied to a series of data from Mikra meteorological station in Greece.List of symbols x change in water storage in the root zone during the time interval t - X infiltrated rainfall of thei th storm event - ET actual evapotranspiration during thej th day - Poisson rate - number of storm events in (0,t] - t r duration of rainfall - t b interarrival time - h i rainfall depth of thei th storm event - i m mean rainfall intensity - i(t) instantaneous rainfall intensity - x(0),x(t) available soil moisture in the root zone at time 0 andt, respectively - PET potential evapotranspiration rate - x F available soil moisture in the root zone at field capacity - soil moisture depletion rate (=PET/x F ) - w impulse shape of filtered Poisson processes - E[·] mean value - S i time of thei th rainfall event - N(t) time of storm events in (0,t] - estimated standard deviation The following symbols were used in this paper  相似文献   

20.
An estimation of tsunami inundation flow velocity is one of the most challenging issues among tsunami research. Based on field data of inundation depth and inundation flow velocity u estimated using Bernoulli's theorem and inundation depth, fundamental characteristics of the relationship between inundation flow velocity and inundation depth are examined. Fundamental characteristics of the velocity coefficient where g is gravitational acceleration, hf and hr are inundation depths at the front and the back of structures such as a rectangular building with vertical walls, respectively) implicitly included in the relationship are examined through hydraulic experiments. As a result, Cv = 0.6 is recommended as its simple and practical value. It is confirmed through these examinations that the Froude number, defined by where , ranges 0.7–2.0, and when Cv = 0.6 is adopted this Froude number ranges 0.42–1.2. By using the relationship and Cv = 0.6, two simple and practical relationships are presented for two cases where inundation flow velocity exerts the largest or the smallest fluid force on structures. These relationships can be used to roughly grasp the practical side of tsunami damage, and estimate fluid force acting on individual structures, moving velocity and collision force of floating objects and sediment transport such as boulder and sand. Fundamental characteristics of the waterline (tsunami trace) distribution around/on the typical object model (square pillar, corn and column) are also examined through steady flow experiments, and it is confirmed that the maximum and the minimum values of hf/h0 in the full type model of the square pillar are almost the same as those of hf/hr obtained by field surveys where h0 is uniform flow depth. It is also confirmed that hr ? h0 when the Froude number, defined by where u0 is uniform flow velocity, is much less than 1.0. Using a newly defined velocity coefficient, tsunami inundation flow velocity on land can be estimated practically and would be useful for checking proposed sediment transport models that are now being developed by tsunami geologists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号