首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co‐genetic debrite–turbidite beds occur in a variety of modern and ancient turbidite systems. Their basic character is distinctive. An ungraded muddy sandstone interval is encased within mud‐poor graded sandstone, siltstone and mudstone. The muddy sandstone interval preserves evidence of en masse deposition and is thus termed a debrite. The mud‐poor sandstone, siltstone and mudstone show features indicating progressive layer‐by‐layer deposition and are thus called a turbidite. Palaeocurrent indicators, ubiquitous stratigraphic association and the position of hemipelagic intervals demonstrate that debrite and enclosing turbidite originate in the same event. Detailed field observations are presented for co‐genetic debrite–turbidite beds in three widespread sequences of variable age: the Miocene Marnoso Arenacea Formation in the Italian Apennines; the Silurian Aberystwyth Grits in Wales; and Quaternary deposits of the Agadir Basin, offshore Morocco. Deposition of these sequences occurred in similar unchannellized basin‐plain settings. Co‐genetic debrite–turbidite beds were deposited from longitudinally segregated flow events, comprising both debris flow and forerunning turbidity current. It is most likely that the debris flow was generated by relatively shallow (few tens of centimetres) erosion of mud‐rich sea‐floor sediment. Changes in the settling behaviour of sand grains from a muddy fluid as flows decelerated may also have contributed to debrite deposition. The association with distal settings results from the ubiquitous presence of muddy deposits in such locations, which may be eroded and disaggregated to form a cohesive debris flow. Debrite intervals may be extensive (> 26 × 10 km in the Marnoso Arenacea Formation) and are not restricted to basin margins. Such long debris flow run‐out on low‐gradient sea floor (< 0·1°) may simply be due to low yield strength (? 50 Pa) of the debris–water mixture. This study emphasizes that multiple flow types, and transformations between flow types, can occur within the distal parts of submarine flow events.  相似文献   

2.
The Marnoso‐arenacea Formation in the Italian Apennines is the only ancient rock sequence where individual submarine sediment density flow deposits have been mapped out in detail for over 100 km. Bed correlations provide new insight into how submarine flows deposit sand, because bed architecture and sandstone shape provide an independent test of depositional process models. This test is important because it can be difficult or impossible to infer depositional process unambiguously from characteristics seen at just one outcrop, especially for massive clean‐sandstone intervals whose origin has been controversial. Beds have three different types of geometries (facies tracts) in downflow oriented transects. Facies tracts 1 and 2 contain clean graded and ungraded massive sandstone deposited incrementally by turbidity currents, and these intervals taper relatively gradually downflow. Mud‐rich sand deposited by cohesive debris flow occurs in the distal part of Facies tract 2. Facies tract 3 contains clean sandstone with a distinctive swirly fabric formed by patches of coarser and better‐sorted grains that most likely records pervasive liquefaction. This type of clean sandstone can extend for up to 30 km before pinching out relatively abruptly. This abrupt pinch out suggests that this clean sand was deposited by debris flow. In some beds there are downflow transitions from turbidite sandstone into clean debrite sandstone, suggesting that debris flows formed by transformation from high‐density turbidity currents. However, outsize clasts in one particular debrite are too large and dense to have been carried by an initial turbidity current, suggesting that this debris flow ran out for at least 15 km. Field data indicate that liquefied debris flows can sometimes deposit clean sand over large (10 to 30 km) expanses of sea floor, and that these clean debrite sand layers can terminate abruptly.  相似文献   

3.
Current understanding of submarine sediment density flows is based heavily on their deposits, because such flows are notoriously difficult to monitor directly. However, it is rarely possible to trace the facies architecture of individual deposits over significant distances. Instead, bed‐scale facies models that infer the architecture of ‘typical’ deposits encapsulate current understanding of depositional processes and flow evolution. In this study, the distribution of facies in 12 individual beds has been documented along downstream transects over distances in excess of 100 km. These deposits were emplaced in relatively flat basin‐plain settings in the Miocene Marnoso Arenacea Formation, north‐east Italy and the late Quaternary Agadir Basin, offshore Morocco. Statistical analysis shows that the most common series of vertical facies transitions broadly resembles established facies models. However, mapping of individual beds shows that they commonly deviate from generalized models in several important ways that include: (i) the abundance of parallel laminated sand, suggesting deposition of this facies from both high‐density and low‐density turbidity current; (ii) three distinctly different types of grain‐size break, suggesting waxing flow, erosional hiatuses and bypass of silty sediment; (iii) the presence of mud‐rich debrites demonstrating hybrid flow deposition; and (iv) dune‐scale cross‐lamination in fine‐medium grained sandstones. Submarine sediment density flows in basin‐plain settings flow over relatively simple topography. Yet, their deposits record complex flow events, involving transformation between different flow types, rather than the simple waning surges often associated with the distal parts of turbidite systems.  相似文献   

4.
Four megabeds (I to IV) were recognized throughout the Cerro Bola inlier, a glacially influenced depositional area of the Carboniferous Paganzo Basin, south‐western La Rioja Province, Argentina. Such anomalous thick beds are associated with the collapse of an unstable basin margin after periods of large meltwater discharge and sediment accumulation. Failure of these previously deposited sediments triggered mass flows and associated turbidity currents into the basin. Megabed I is up to 188 m thick and was deposited during a transgressive stage by re‐sedimentation of ice‐rafted debris. Also part of the transgressive stage, Megabeds II, III and IV are up to 9 m thick and are associated with a dropstone‐free period of flooding. Megabeds were subdivided into three divisions (1 to 3) that represent a spectrum of flow properties and rheologies, indicative of a wide range of grain support mechanisms. These divisions are proposed as an idealized deposit that may or may not be completely present; the Cerro Bola megabeds thus display bipartite or tripartite organization, each division inferred to reflect a rheologically distinct phase of flow. Division 1 is a basal layer that consists of clast‐supported and matrix‐supported, pebble conglomerate, rarely followed by weak normally graded to ungraded, very coarse‐ to coarse‐grained sandstone. This lower interval is interpreted to be the deposit of a concentrated density flow and is absent in bipartite megabeds. Division 2 is represented by a mud‐rich sandstone matrix with dispersed granule to pebble‐size crystalline and mudstone clasts. It also includes fragments of sandstone up to boulder size, as well as rafts of cohesive muddy material and wood fragments. Division 2 is interpreted to be a result of debris‐flow deposition. A debrite‐related topography, resulting from the freezing of high yield strength material, captures and partially confines the succeeding upper division 3, which fills the topographic lows and pinches out against topographic highs. Division 3 is rich in mudstone chips and consists of very coarse‐grained, dirty sandstones grading upward to siltstones and mudstones. It is interpreted to be a deposit of a co‐genetic turbidity current. Spectral gamma ray and petrographic analyses indicate that both debrite and co‐genetic turbidite have high depositional mud content and are of similar composition. One of the megabeds is correlated with an initial slump‐derived debris flow, which suggests that the mass flow becomes partitioned both at the top, generating a co‐genetic turbidity current and, at the base, segregating into a concentrated density flow that seems to behave as a gravelly traction carpet.  相似文献   

5.
Deep‐water sandstone beds of the Oligocene Fusaru Sandstone and Lower Dysodilic Shale, exposed in the Buz?u Valley area of the East Carpathian flysch belt, Romania, can be described in terms of the standard turbidite divisions. In addition, mud‐rich sand layers are common, both as parts of otherwise ‘normal’ sequences of turbidite divisions and as individual event beds. Eleven units, interpreted as the deposits of individual flows, were densely sampled, and 87 thin sections were point counted for grain size and mud content. S3/Ta divisions, which form the bulk of most sedimentation units, have low internal textural variability but show subtle vertical trends in grain size. Most commonly, coarse‐tail normal grading is associated with fine‐tail inverse grading. The mean grain size can show inverse grading, normal grading or a lack of grading, but sorting tends to improve upward in most beds. Fine‐tail inverse grading is interpreted as resulting from a decreasing effectiveness of trapping of fines during rapid deposition from a turbidity current as the initially high suspended‐load fallout rate declines. If this effect is strong enough, the mean grain size can show subtle inverse grading as well. Thus, thick inversely graded intervals in deep‐water sands lacking traction structures do not necessarily imply waxing flow velocities. If the suspended‐load fallout rate drops to zero after the deposition of the coarse grain‐size populations, the remaining finer grained flow bypasses and may rework the top of the S3 division, forming well‐sorted, coarser grained, current‐structured Tt units. Alternatively, the suspended‐load fallout rate may remain high enough to prevent segregation of fines, leading to the deposition of significant amounts of mud along with the sand. Mud content of the sandstones is bimodal: either 3–13% or more than 20%. Two types of mud‐rich sandstones were observed. Coarser grained mud‐rich sandstones occur towards the upper parts of S3/Ta divisions. These units were deposited as a result of enhanced trapping of mud particles in the rapidly deposited sediment. Finer grained mud‐rich units are interbedded with ripple‐laminated very fine‐grained sandy Tc divisions. During deposition of these units, mud floccules were hydraulically equivalent to the very fine sand‐ and silt‐sized sediment. The mud‐rich sandstones were probably deposited by flows that became transitional between turbidity currents and debris flows during their late‐stage evolution.  相似文献   

6.
Submarine mass movement deposits exposed in the Vischkuil Formation, Laingsburg Karoo Basin, South Africa, provide a rare opportunity to analyse and interpret their emplacement history and deformation processes at a scale comparable to seismic examples. An up to 80 m thick slide deposit, continuously exposed in two 2 km long sub‐parallel sections, passes from extensionally deformed material (clastic dykes and down‐dip facing low‐angle shear surfaces) down‐dip into a compressional toe zone with large (tens of metres amplitude) folds dissected by steep, up‐dip facing thrust planes. The compressional shear planes sole out onto a highly sheared décollement and cross‐cutting relationships indicate an up‐depositional dip younging in the timing of fold dissection. Lithofacies characteristics and detailed correlation of volcanic ash and other marker beds over more than 500 km2 in the bounding undeformed stratigraphy indicate a low‐gradient (<0·1°) basin floor setting. The slide is abruptly overlain by an up to 50 m thick debrite with sandy clasts supported by an argillaceous matrix. Shear loading of the debris flow is interpreted to have driven large‐scale deformation of the substrate through the generation of high shear stresses at a rheological interface due to: (i) the abrupt contact between the slide and the debrite; (ii) the coincident thickness distributions of the debrite and slide; (iii) the distribution of the most intense folding and thrusting under the thickest parts of the debrite; (iv) the preservation of fold crests with only minor erosion along fold limbs; (v) the presence of the debrite under overturned folds; (vi) the presence of laterally extensive marker beds directly above deformation units indicating minimal depositional topography; and (vii) the demonstrably local derivation of the slide as individual folded beds are mapped into undeformed strata outside the areas of deformation. The debrite is directly overlain by fine‐grained turbidite sandstone beds that show widespread vertical foundering into the debrite. This case study demonstrates that intensely deformed strata can be generated by negligible amounts of down‐dip movement in a low‐gradient, fine‐grained basin floor setting with the driver for movement and deformation being the mass imbalance resulting from emplacement of episodic debris flows. Simple interpretation of an unstable slope setting based on the presence of such deformed strata should be treated with caution.  相似文献   

7.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

8.
Turbidite facies distribution and palaeocurrent analysis of submarine fan evolution in the Pindos foreland basin of west Peloponnesus peninsula (SW Greece) indicate that this part of the foreland was developed during Late Eocene to Early Oligocene in three linear sub‐basins (Tritea, Hrisovitsi and Finikounda). The basin fill conditions, with a multiple feeder system, which is characterized by axial transport of sediments and asymmetric stratigraphic thickness of the studied sediments, indicate that the Pindos Foreland Basin in this area was an underfilled foreland basin. Sediments are dominated by conglomerates, sandstones and mudstones. The flow types that controlled the depositional processes of the submarine fans were grain flows, debris flows and low‐ and high‐density turbidity currents. The sedimentary model that we propose for the depositional mechanisms and geometrical distribution of the turbidite units in the Tritea sub‐basin is a mixed sand‐mud submarine fan with a sequential interaction of progradation and retrogradation for the submarine fan development and shows a WNW main palaeocurrent direction. The Hrisovitsi sub‐basin turbidite system characterized by small‐scale channels was sediment starved, and the erosion during deposition was greater than the two other studied areas, indicating a more restricted basin topography with a NW main palaeocurrent direction. The Finikounda sub‐basin exhibits sand‐rich submarine fans, is characterized by the presence of distinct, small‐scale, thickening‐upward cycles and by the covering of a distal fan by a proximal fan. It was constructed under the simultaneous interaction of progradation and aggradation, where the main palaeocurrent direction was from NNW to SSE. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The Marnoso Arenacea Formation provides the most extensive correlation of individual flow deposits (beds) yet documented in an ancient turbidite system. These correlations provide unusually detailed constraints on bed shape, which is used to deduce flow evolution and assess the validity of numerical and laboratory models. Bed volumes have an approximately log‐normal frequency distribution; a small number of flows dominated sediment supply to this non‐channelized basin plain. Turbidite sandstone within small‐volume (<0·7 km3) beds thins downflow in an approximately exponential fashion. This shape is a property of spatially depletive flows, and has been reproduced by previous mathematical models and laboratory experiments. Sandstone intervals in larger‐volume (0·7–7 km3) beds have a broad thickness maximum in their proximal part. Grain‐size trends within this broad thickness maximum indicate spatially near‐uniform flow for distances of ∼30 km, although the flow was temporally unsteady. Previous mathematical models and laboratory experiments have not reproduced this type of deposit shape. This may be because models fail to simulate the way in which near bed sediment concentration tends towards a constant value (saturates) in powerful flows. Alternatively, the discrepancy may be the result of relatively high ratios of flow thickness and sediment settling velocity in submarine flows, together with very gradual changes in sea‐floor gradient. Intra‐bed erosion, temporally varying discharge, and reworking of suspension fallout as bedload could also help to explain the discrepancy in deposit shape. Most large‐volume beds contain an internal erosion surface underlain by inversely graded sandstone, recording waxing and waning flow. It has been inferred previously that these characteristics are diagnostic of turbidites generated by hyperpycnal flood discharge. These turbidites are too voluminous to have been formed by hyperpycnal flows, unless such flows are capable of eroding cubic kilometres of sea‐floor sediment. It is more likely that these flows originated from submarine slope failure. Two beds comprise multiple sandstone intervals separated only by turbidite mudstone. These features suggest that the submarine slope failures occurred as either a waxing and waning event, or in a number of stages.  相似文献   

10.
ABSTRACT Mud‐rich sandstone beds in the Lower Cretaceous Britannia Formation, UK North Sea, were deposited by sediment flows transitional between debris flows and turbidity currents, termed slurry flows. Much of the mud in these flows was transported as sand‐ and silt‐sized grains that were approximately hydraulically equivalent to suspended quartz and feldspar. In the eastern Britannia Field, individual slurry beds are continuous over long distances, and abundant core makes it possible to document facies changes across the field. Most beds display regular areal grain‐size changes. In this study, fining trends, especially in the size of the largest grains, are used to estimate palaeoflow and palaeoslope directions. In the middle part of the Britannia Formation, stratigraphic zones 40 and 45, slurry flows moved from south‐west and south towards the north‐east and north. Most zone 45 beds lens out before reaching the northern edge of the field, apparently by wedging out against the northern basin slope. Zone 40 and 45 beds show downflow facies transitions from low‐mud‐content, dish‐structured and wispy‐laminated sandstone to high‐mud‐content banded units. In zone 50, at the top of the formation, flows moved from north to south or north‐west to south‐east, and their deposits show transitions from proximal mud‐rich banded and mixed slurried beds to more distal lower‐mud‐content banded and wispy‐laminated units. The contrasting facies trends in zones 40 and 45 and zone 50 may reflect differing grain‐size relationships between quartz and feldspar grains and mud particles in the depositing flows. In zones 40 and 45, quartz grains average 0·30–0·32 mm in diameter, ≈ 0·10 mm coarser than in zone 50. The medium‐grained quartz in zones 40 and 45 flows may have been slightly coarser than the associated mud grains, resulting in the preferential deposition of quartz in proximal areas and downslope enrichment of the flows in mud. In zone 50 flows, mud was probably slightly coarser than the associated fine‐grained quartz, resulting in early mud sedimentation and enrichment of the distal flows in fine‐grained quartz and feldspar. Mud particles in all flows may have had an effective grain size of ≈ 0·25 mm. Both mud content and suspended‐load fallout rate played key roles in the sedimentation of Britannia slurry flows and structuring of the resulting deposits. During deposition of zones 40 and 45, the area of the eastern Britannia Field in block 16/26 may have been a locally enclosed subbasin within which the depositing slurry flows were locally ponded. Slurry beds in the eastern Britannia Field are ‘lumpy’ sheet‐like bodies that show facies changes but little additional complexity. There is no thin‐bedded facies that might represent waning flows analogous to low‐density turbidity currents. The dominance of laminar, cohesion‐dominated shear layers during sedimentation prevented most bed erosion, and the deposystem lacked channel, levee and overbank facies that commonly make up turbidity current‐dominated systems. Britannia slurry flows, although turbulent and capable of size‐fractionating even fine‐grained sediments, left sand bodies with geometries and facies more like those deposited by poorly differentiated laminar debris flows.  相似文献   

11.
The Temburong Fm (Early Miocene), Labuan Island, offshore NW Borneo, was deposited in a lower-slope to proximal basin-floor setting, and provides an opportunity to study the deposits of sustained turbidity currents and their interaction with debrite-related topography. Two main gravity-flow facies are identified; (i) slump-derived debris-flow deposits (debrites) — characterised by ungraded silty mudstones in beds 1.5 to > 60 m thick which are rich in large (> 5 m) lithic clasts; and (ii) turbidity current deposits (turbidites) — characterised by medium-grained sandstone in beds up to 2 m thick, which contain structureless (Ta) intervals alternating with planar-parallel (Tb) and current-ripple (Tc) laminated intervals. Laterally discontinuous, cobble-mantled scours are also locally developed within turbidite beds. Based on these characteristics, these sandstones are interpreted to have been deposited by sustained turbidity currents. The cobble-mantled scours indicate either periods of intense turbidity current waxing or individual flow events. The sustained turbidity currents are interpreted to have been derived from retrogressive collapse of sand-rich mouth bars (breaching) or directly from river effluent (hyperpycnal flow). Analysis of the stratal architecture of the two facies indicates that routing of the turbidity currents was influenced by topographic relief developed at the top of the underlying debrite. In addition, turbidite beds are locally eroded at the base of an overlying debrite, possibly due to clast-related substrate ‘ploughing’ during the latter flow event. This study highlights the difficulty in constraining the origin of sustained turbidity currents in ancient sedimentary sequences. In addition, this study documents the importance large debrites may have in generating topography on submarine slopes and influencing routing of subsequent turbidity currents and the geometry of their associated deposits.  相似文献   

12.
鄂尔多斯盆地上三叠统延长组长7段深水重力流沉积类型   总被引:1,自引:0,他引:1  
以鄂尔多斯盆地上三叠统延长组长7段取芯段为主要研究对象,以详细的岩芯观察为基础,以Z43井为例,研究鄂尔多斯盆地延长组长7段深水重力流沉积类型及其特征。研究结果表明,研究区主要发育砂质碎屑流沉积、低密度浊流沉积及混合事件层三种沉积类型。砂质碎屑流沉积整体呈块状,岩性为中—细砂岩,内部可见多个接触面,为多套砂质碎屑流沉积垂向叠置形成。低密度浊流沉积中大部分为中—薄层的正粒序砂岩垂向叠置而成,部分泥质含量较高,表现出砂泥互层的特征。混合事件层主要由下部干净的块状细砂岩与上部富含变形泥岩撕裂屑的砂质泥岩或泥质砂岩成对组合形成,其成因为浊流流动过程中侵蚀泥质基底,黏土物质或泥质碎屑的混入导致浊流向泥质碎屑流转化,最终形成下部浊流沉积上部泥质碎屑流沉积的混合事件层。相近位置不同深度不同类型的深水重力流沉积垂向叠置,指示了复杂多变的重力流流体演化过程。对重力流沉积类型的准确认识,能进一步促进对深水重力流流体转化过程的理解,明确深水重力流沉积分布,为鄂尔多斯盆地深水重力流沉积及常规与非常规油气勘探与开发提供理论指导。  相似文献   

13.
Subaqueous sediment density flows: Depositional processes and deposit types   总被引:7,自引:0,他引:7  
Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run‐out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain‐back for long distances into basinal lows. Deposition of ungraded mud (TE‐3) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (TE‐2) and finely laminated mud (TE‐1) most probably result from floc settling at lower mud concentrations. Grain‐size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar‐laminated (TD) and ripple cross‐laminated (TC) non‐cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain‐size break beneath the ripple cross‐laminated (TC) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar‐laminated sand can be deposited by low‐amplitude bed waves in dilute flow (TB‐1), but it is most likely to be deposited mainly by high‐concentration near‐bed layers beneath high‐density flows (TB‐2). More widely spaced planar lamination (TB‐3) occurs beneath massive clean sand (TA), and is also formed by high‐density turbidity currents. High‐density turbidite deposits (TA, TB‐2 and TB‐3) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low‐density turbidite (TD and TC,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (DCS), in which case the clean sand is ungraded or has a patchy grain‐size texture. Clean‐sand debrites can extend for several tens of kilometres before pinching out abruptly. Up‐current transitions suggest that clean‐sand debris flows sometimes form via transformation from high‐density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low‐strength cohesive debris flows produce extensive deposits restricted to distal areas. These low‐strength debris flows may contain clasts and travel long distances (DM‐2), or result from more local flow transformation due to turbulence damping by cohesive mud (DM‐1). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows.  相似文献   

14.
The down‐dip portion of submarine fans comprises terminal lobes that consist of various gravity flow deposits, including turbidites and debrites. Within lobe complexes, lobe deposition commonly takes place in topographic lows created between previous lobes, resulting in an architecture characterized by compensational stacking. However, in some deep water turbidite systems, compensational stacking is less prominent and progradation dominates over aggradation and lateral stacking. Combined outcrop and subsurface data from the Eocene Central Basin of Spitsbergen provide a rare example of submarine fans that comprise progradationally stacked lobes and lobe complexes. Evidence for progradation includes basinward offset stacking of successive lobe complexes, a vertical change from distal to proximal lobe environments as recorded by an upward increase in bed amalgamation, and coarsening and thickening upward trends within the lobes. Slope clinoforms occur immediately above the lobe complexes, suggesting that a shelf‐slope system prograded across the basin in concert with deposition of the lobe complexes. Erosive channels are present in proximal axial lobe settings, whereas shallow channels, scours and terminal lobes dominate further basinward. Terminal lobes are classified as amalgamated, non‐amalgamated or thin‐bedded, consistent with turbidite deposition in lobe axis, off‐axis and fringe settings, respectively. Co‐genetic turbidite–debrite beds, interpreted as being deposited from hybrid sediment gravity flows which consisted of both turbulent and laminar flow phases, occur frequently in lobe off‐axis to fringe settings, and are rare and poorly developed in channels and axial lobe environments. This indicates bypass of the laminar flow phase in proximal settings, and deposition in relative distal unconfined settings. Palaeocurrent data indicate sediment dispersal mainly towards the east, and is consistent with slope and lobe complex progradation perpendicular to the NNW–SSE trending basin margin.  相似文献   

15.
The settling behaviour of particulate suspensions and their deposits has been documented using a series of settling tube experiments. Suspensions comprised saline solution and noncohesive glass‐ballotini sand of particle size 35·5 μm < d < 250 μm and volume fractions, φs, up to 0·6 and cohesive kaolinite clay of particle size d < 35·5 μm and volume fractions, φm, up to 0·15. Five texturally distinct deposits were found, associated with different settling regimes: (I) clean, graded sand beds produced by incremental deposition under unhindered or hindered settling conditions; (II) partially graded, clean sand beds with an ungraded base and a graded top, produced by incremental deposition under hindered settling conditions; (III) graded muddy sands produced by compaction with significant particle sorting by elutriation; (IV) ungraded clean sand produced by compaction and (V) ungraded muddy sand produced by compaction. A transition from particle size segregation (regime I) to suppressed size segregation (regime II or III) to virtually no size segregation (IV or V) occurred as sediment concentration was increased. In noncohesive particulate suspensions, segregation was initially suppressed at φs ~ 0·2 and entirely inhibited at φs ≥ 0·6. In noncohesive and cohesive mixtures with low sand concentrations (φs < 0·2), particle segregation was initially suppressed at φm ~ 0·07 and entirely suppressed at φm ≥ 0·13. The experimental results have a number of implications for the depositional dynamics of submarine sediment gravity flows and other particulate flows that carry sand and mud; because the influence of moving flow is ignored in these experiments, the results will only be applicable to flows in which settling processes, in the depositional boundary, dominate over shear‐flow processes, as might be the case for rapidly decelerating currents with high suspended load fallout rates. The ‘abrupt’ change in settling regimes between regime I and V, over a relatively small change in mud concentration (<5% by volume), favours the development of either mud‐poor, graded sandy deposits or mud‐rich, ungraded sandy deposits. This may explain the bimodality in sediment texture (clean ‘turbidite’ or muddy ‘debrite’ sand or sandstone) found in some turbidite systems. Furthermore, it supports the notion that distal ‘linked’ debrites could form because of a relatively small increase in the mud concentration of turbidity currents, perhaps associated with erosion of a muddy sea floor. Ungraded, clean sand deposits were formed by noncohesive suspensions with concentrations 0·2 ≤ φs ≤ 0·4. Hydrodynamic sorting is interpreted as being suppressed in this case by relatively high bed aggradation rates which could also occur in association with sustained, stratified turbidity currents or noncohesive debris flows with relatively high near‐bed sediment concentrations.  相似文献   

16.
Grain‐size breaks are surfaces where abrupt changes in grain size occur vertically within deposits. Grain‐size breaks are common features in turbidites around the world, including ancient and modern systems. Despite their widespread occurrence, grain‐size breaks have been regarded as exceptional, and not included within idealized models of turbidity current deposition. This study uses ca 100 shallow sediment cores, from the Moroccan Turbidite System, to map out five turbidite beds for distances in excess of 2000 km. The vertical and spatial distributions of grain‐size breaks within these beds are examined. Five different types of grain‐size break are found: Type I – in proximal areas between coarse sand and finer grained structureless sand; Type II – in proximal areas between inversely graded sand overlain by finer sand; Type III – in proximal areas between sand overlain by ripple cross‐laminated finer sand; Type IV – throughout the system between clean sand and mud; and Type V – in distal areas between mud‐rich (debrite) sand and mud. This article interprets Types I and V as being generated by sharp vertical concentration boundaries, controlled by sediment and clay concentrations within the flows, whilst Types II and III are interpreted as products of spatial/temporal fluctuations in flow capacity. Type IV are interpreted as the product of fluid mud layers, which hinder the settling of non‐cohesive grains and bypasses them down slope. Decelerating suspensions with sufficient clay will always form cohesive layers near to bed, promoting the generation of Type IV grain‐size breaks. This may explain why Type IV grain‐size breaks are widespread in all five turbidites examined and are commonplace within turbidite sequences studied elsewhere. Therefore, Type IV grain‐size breaks should be understood as the norm, not the exception, and regarded as a typical feature within turbidite beds.  相似文献   

17.
A common facies observed in deep‐water slope and especially basin‐floor rocks of the Neoproterozoic Windermere Supergroup (British Columbia, Canada) is structureless, coarse‐tail graded, medium‐grained to coarse‐grained sandstone with from 30% to >50% mud matrix content (i.e. matrix‐rich). Bed contacts are commonly sharp, flat and loaded. Matrix‐rich sandstone beds typically form laterally continuous units that are up to several metres thick and several tens to hundreds of metres wide, and commonly adjacent to units of comparatively matrix‐poor, scour‐based sandstone beds with large tabular mudstone and sandstone clasts. Matrix‐rich units are common in proximal basin‐floor (Upper Kaza Group) deposits, but occur also in more distal basin‐floor (Middle Kaza Group) and slope (Isaac Formation) deposits. Regardless of stratigraphic setting, matrix‐rich units typically are directly and abruptly overlain by architectural elements comprising matrix‐poor coarse sandstone (i.e. channels and splays). Despite a number of similarities with previously described matrix‐rich beds in the literature, for example slurry beds, linked debrites and co‐genetic turbidites, a number of important differences exist, including the stratal make‐up of individual beds (for example, the lack of a clean sandstone turbidite base) and their stratigraphic occurrence (present throughout base of slope and basin‐floor strata, but most common in proximal lobe deposits) and accordingly suggest a different mode of emplacement. The matrix‐rich, poorly sorted nature of the beds and the abundance and size of tabular clasts in laterally equivalent sandstones imply intense upstream scouring, most probably related to significant erosion by an energetic plane‐wall jet or within a submerged hydraulic jump. Rapid energy loss coupled with rapid charging of the flow with fine‐grained sediment probably changed the rheology of the flow and promoted deposition along the margins of the jet. Moreover, these distinctive matrix‐rich strata are interpreted to represent the energetic initiation of the local sedimentary system, most probably caused by a local upflow avulsion.  相似文献   

18.
研究目的】碎屑流是深水环境沉积物搬运和分散的重要机制,其相关的砂岩储层是含油气盆地重要的勘探目标,然而,与经典浊流及浊积系统相比,对碎屑流主控型深水体系的发育规律目前仍知之甚少。【研究方法】本文基于岩心、测井及全三维地震资料,通过系统的岩心观察描述、测井及地震资料解释,对渤海湾盆地东营凹陷始新统沙三中亚段深水体系沉积过程及模式开展研究。【研究结果】结果表明,沙三中深水体系发育九种异地搬运岩相,可概括为四大成因类型,反映了块体及流体两种搬运过程。岩相定量统计表明,该深水体系主要由碎屑流沉积构成,浊流沉积很少,碎屑流中又以砂质碎屑流为主。重力流在搬运过程中经历了滑动、滑塌、砂质碎屑流、泥质碎屑流及浊流等5个阶段演变,发育5类主要的深水沉积单元,包括滑动体、滑塌体、碎屑流水道、碎屑流朵体及浊积薄层砂。从发育规模及储层物性上,砂质碎屑流水道、朵体及砂质滑动体构成了本区最重要的深水储层类型。【结论】认为沙三中时期充足的物源供给、三角洲前缘高沉积速率、断陷期频繁的断层活动以及较短的搬运距离是碎屑流主控型深水体系形成及演化的主控因素,最终基于沉积过程、沉积样式及盆地地貌特征综合建立了碎屑流主控型深水体系沉积模式。本研究将进一步丰富深水沉积理论,为陆相深水储层预测提供借鉴。  相似文献   

19.
DONALD R. LOWE 《Sedimentology》2012,59(7):2042-2070
Deposits of submarine debris flows can build up substantial topography on the sea floor. The resulting sea floor morphology can strongly influence the pathways of and deposition from subsequent turbidity currents. Map views of sea floor morphology are available for parts of the modern sea floor and from high‐resolution seismic‐reflection data. However, these data sets usually lack lithological information. In contrast, outcrops provide cross‐sectional and lateral stratigraphic details of deep‐water strata with superb lithological control but provide little information on sea floor morphology. Here, a methodology is presented that extracts fundamental lithological information from sediment core and well logs with a novel calibration between core, well‐logs and seismic attributes within a large submarine axial channel belt in the Tertiary Molasse foreland basin, Austria. This channel belt was the course of multiple debris‐flow and turbidity current events, and the fill consists of interbedded layers deposited by both of these processes. Using the core‐well‐seismic calibration, three‐dimensional lithofacies proportion volumes were created. These volumes enable the interpretation of the three‐dimensional distribution of the important lithofacies and thus the investigation of sea floor morphology produced by debris‐flow events and its impact on succeeding turbidite deposition. These results show that the distribution of debris‐flow deposits follows a relatively regular pattern of levées and lobes. When subsequent high‐density turbidity currents encountered this mounded debris‐flow topography, they slowed and deposited a portion of their sandy high‐density loads just upstream of morphological highs. Understanding the depositional patterns of debris flows is key to understanding and predicting the location and character of associated sandstone accumulations. This detailed model of the filling style and the resulting stratigraphic architecture of a debris‐flow dominated deep‐marine depositional system can be used as an analogue for similar modern and ancient systems.  相似文献   

20.
Sur submarine slide, Monterey Fan, central California   总被引:1,自引:0,他引:1  
The Sur debris slide and associated debris flow cover more than 1000 km2 of the eastern part of Monterey submarine fan and extend from the base of the continental slope near the apex of the fan to the Monterey fan valley. The flow is generally confined between the continental slope and remnants of an older channel (Monterey East fan valley). The hummocky surface of the debris slide and diffuse echo returns from the surface of the nearly acoustically transparent debris flow, as seen in 3.5 kHz profiles, are common to large submarine slides described from passive-margin continental-slope and rise deposits. Piston cores from the Sur slide recovered contorted and sheared fan turbidite units as well as clast- and matrix-supported mudlump debris flows. The cores show that the slide debris is overlain by 0.23–0.87 m of mud and turbidite sand that limit the age of the slide to latest Holocene, although more than one stage of emplacement is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号