首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Z. Švestka 《Solar physics》1970,13(2):471-489
Evidence is given that the particle acceleration in flares is confined to the initial phase of the flare development preceding the H flare maximum and lasting for less than 10 min. The impulsive acceleration process is confined to a relatively small limited volume of about 5 × 1027 cm3 in the region of highest magnetic gradient in the flare, and its size represents about 0.05 or less of the total extent of the hot condensation which produces the soft X-ray and gradual microwave bursts. About one in fifty particles in this volume is accelerated to energy exceeding 100 keV, the total particle density being 1010 cm–3. The accelerated electrons produce the impulsive hard X-ray burst, but synchrotron losses greatly reduce the number of relativistic electrons participating in the bremsstrahlung process. Protons above 20 MeV penetrate to the lowest chromosphere and upper photosphere and temporarily increase the temperature in the bombarded region. As the result a flash of continuous emission appears, which should be most expressive below 1527 Å. The associated white-light emission shows the bottom of the region where the impulsive acceleration process occurs.  相似文献   

2.
The origin of the new component of cosmic ray nuclei in 1–30 MeV amu–1 recently detected through space vehicles in interplanetary space is investigated in detail. It is assumed that these particles may originate from nearby sources, e.g., from novae type explosions, which have peculiar C, N and O compositions. These particles are further assumed to be accelerated and modulated within the heliosphere. The charged states of these ions in the interstellar space have been calculated in detail and it is shown that the same charged states are preserved in the heliosphere when they are accelerated to energies of the order of 107eV amu–1 from energies of 105 ev amu–1. Modulation of these ions are calculated and it is found that because of low charged states of the ions these have high rigidities and are modulated in such a way as to enhance the O-ion abundances as compared to C-ions. A comparison is made of the demodulated composition of C to Si-ions with available abundance data of some novae.  相似文献   

3.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

4.
An extended current sheet characterized by two peculiarities was formed in a configuration with opposite magnetic fields in a laboratory plasma on a -pinch device. First, development of the small scale turbulence leads to abnormal low sheet conductivity, through-sheet plasma diffusion and establishes the sheet thickness an order greater than the skin thicknessc/ pe ( pe is electron plasma frequency). Second, there develops and quickly stabilizes in a sheet the magnetic force line reconnection. As a result, a stable neutral sheet has the complicated structure of a magnetic field, including closed magnetic loops elongated along the axis of the system. The neutral sheet plasma becomes intensively heated, probably due to ion-sound turbulence, while a group of accelerated electrons, which on the energy spectrum lead to a plateau formation, are observed. The absence of any predominant direction is a typical feature for the motion of accelerated particles. The experimental data, obtained over a broad range of plasma densities and magnetic field values typical for the solar atmosphere, show that the antiparallel magnetic field turbulent dissipation could play an important role in the mechanism of solar energy release. The parameters of accelerated particles (energy 4–12 keV, the energy content being 10–1–102 of all the energy dissipated in a sheet) agree nicely with the data of astrophysical observations.  相似文献   

5.
We propose a model for the particle acceleration to energy E≈1021 eV in Seyfert galactic nuclei. The model is based on the theory of active galactic nuclei by Vilkoviskij et al. (1999). The acceleration takes place in hot spots of relativistic jets, which decay in a dense stellar kernel at a distance of 1–3 pc from the center. The maximum energy and chemical composition of the accelerated particles depend on the jet magnetic-field strength. Fe nuclei acquire the largest energy, E≈8×1020 eV, if the jet field strength is B≈16 G. At a field strength B~5–40 G, the nuclei with Z≥10 acquire energy E≥2×1020 eV; the lighter nuclei are accelerated to E≤1020 eV. In a field B~1000 G, only the particles with Z≥23 gain energy E≤1020 eV. The protons are accelerated to E<4×1019 eV, and they do not fall within the energy range concerned at any field strength B. Interactions with infrared photons do not affect the accelerated-particle escape from the sources if the galactic luminosity L≤1046 erg s?1 and if the angle between the normal to the galactic plane and the line of sight is sufficiently small, i.e., if the galactic-disk axial ratio is comparatively large. The particles do not lose their energy through magnetodrift radiation if their deflection from the jet axis does not exceed 0.03–0.04 pc at a distance R≈40–50 pc from the center. The synchrotron losses are small, because the magnetic field frozen in the galactic wind at R≤40–50 pc is directed (as in the jet) predominantly along the motion. If this model is correct, then the detected protons are nuclear fragments or are accelerated in other sources. The jet magnetic fields can be estimated by using the cosmic-ray energy spectrum and chemical composition.  相似文献   

6.
Several well-known binary X-ray sources have been reported to emit copious -radiation at energies up to and exceeding 1015 eV. It is proposed here that the observed events occur during episodes of non-steady accretion onto neutron stars, when MHD instabilities give rise to vortex motions onvery large scales deep inside the magnetosphere. The magnetic lines of force are strongly distorted and reconnect in neutral sheets, along which extremely high voltage drops are maintained and a small fraction of the particles are accelerated to ultra-relativistic energies. The -rays are produced in nuclear collisions undergone by runaway ions traversing regions of high-density, diamagnetic plasma in the accretion flow.  相似文献   

7.
G. M. Simnett 《Solar physics》1986,106(1):165-183
The energetics of the onset of the impulsive phase of solar flares are examined on the premise that a single acceleration mechanism is operating in the corona. From considerations of recent observations of plasma turbulence and upflows, and nuclear gamma-rays it is concluded that a model where the bulk of the energy resides in a non-thermal electron beam with a low energy cut-off at 20–25 keV is incompatible with many of the observations. Conversely, a model where the bulk of the energy resides in non-thermal protons is consistent with the majority, if not all, of the observations. It is suggested that the bulk of the energy in the impulsive phase is initially transferred to 102–103 keV protons. Acceleration by a series of small shocks is an energy transfer mechanism which gives particles increments in velocity rather than energy and would naturally favour protons over electrons. An important consequence of this result is that the hard X-ray burst must be thermal. At this time the precise mechanism for thermal X-ray production is unclear; however recent theoretical plasma physics results have indicated promising avenues of research in this context.  相似文献   

8.
A diffusion model for the propagation of relativistic nuclear cosmic rays in the Galaxy is developed. The model has two nonstandard features: The escape of cosmic-ray particles from the Galaxy is simulated by a term in the diffusion equations, rather than the imposition of boundary conditions on the diffusion solution at the surface of the confinement region. And an age-dependent, locally-averaged effective gas distribution is employed in the diffusion equations. The model simulates free-particle outflow at the Galactic boundary. The model is fit to chemical composition data in the 0.3–5 GeV per nucleon range. It is then consistent with the large-scale Galactic -ray data, radio halo data, energy constraints on the assumed supernova sources, and, when extended to very high energies, cosmic-ray anisotrophy data. From the fit we conclude that the cosmic rays are confined in a large flattened or quasis-pherical halo with a scale height in the range 3–6 kpc and an average Galactic escape time of 108 yr.  相似文献   

9.
The stochastic acceleration of heavy ions by Alfvén turbulence is considered with allowance for Coulomb losses. The pattern of energy dependence of these losses gives rise to characteristic features in the energy spectra of the accelerated particles at energies of the order of several MeV nucleon?1. The manifestation of these features in the spectra is sensitive to the temperature and density of the medium, which can serve as a basis for plasma diagnostics in the flare region. Some impulsive solar energetic particle events during which features in the spectra of 3He and 4He were observed are considered as an example.  相似文献   

10.
Torsti  J.  Valtonen  E.  Kocharov  L. G.  Vainio  R.  Riihonen  E.  Anttila  A.  Laitinen  T.  Teittinen  M.  Kuusela  J. 《Solar physics》1997,170(1):179-191
The energetic particle instrument ERNE on-board SOHO started its observations on December 15, 1995. The low-energy sensor of ERNE, LED, is capable of measuring particles in the energy range from 1 to 10 MeV nucl-1. From the beginning of the year 1996 until May 22, 1996, LED-observations included four energetic particle events above threshold intensities. An energetic particle event caused by a corotating interaction region that accelerated protons upto 10 MeV, was observed during January 20–25. Another similar particle event occured on May 6–12. The events were separated by four solar rotation periods. They had similar time profiles, but the one in May had a harder spectrum and a lower intensity level. The 4He-to-proton ratios were in accordance with the solar wind value. Energetic particles observed during April 22–23 and May 14–17 were accelerated at the Sun. The first one was apparently an outcome from an active region observed on the west limb by telescopes on-board SOHO. Protons were detected at energies from 1 to 10 MeV. For this event, the4He-to-proton ratio in the range 1.5–5 MeV nucl-1 was 3%. No 3He ions were detected. The period of May 14–15 was, in contrast, extremely 3He-rich: it had a3He-to-proton ratio of 1.5 ± 0.6 and a 3He-to- 4He ratio as high as 8. The period of May 14–17 comprised at least three individual, one-day-long events. The first two events were 3He-rich, while the last one seemed to have a normal composition.  相似文献   

11.
Rodríguez-Pacheco  J.  Sequeiros  J.  Del Peral  L.  Bronchalo  E.  Cid  C. 《Solar physics》1998,181(1):185-200
The most intense energetic particle (mainly proton) events in the energy range 36–1600 keV, during the years of maximum activity of solar cycle 21 (1978 to 1982), have been studied with regard to their spectra, temporal profiles, source location at the Sun, interplanetary plasma parameters and interplanetary magnetic field topology. In all the events, the particles were accelerated by the 'Diffusive Shock' acceleration mechanism, because all the events were 'long-duration events', shock-associated, and their spectra fitted to a power-law energetic particle spectrum dJ/dE E-\gamma with the exponent values ranging from 1.25 up to 1.94, with a mean value of 1.60 ± 0.06. We also show that the spectral indexes are related to the shock properties by a linear expression. The solar sources were located on a wide longitudinal belt extending from 50^ W up to 73^ E. Neither the spectral indexes nor the shock parameters present any dependence on the source location at the Sun. Finally, only one event showed the complete set of properties that characterize the presence of a magnetic cloud associated with the event.  相似文献   

12.
A Total Solar Eclipse (TSE) was observed from Diamond Harbour (lat. 22.2°N, long 88.2°E) on 24 October 1995. The variation of -ray intensity was measured in the energy range of 0.3–3.0 MeV for different time spans throughout the period of the eclipse. A CR-39 detector was used to look at the change in the fluxes of neutral and charged particles. The maximum drop ( 25%) in the intensity of -ray was observed in the range 2.5–3 MeV during TSE. The CR-39 results showed the appearance of a good number of tracks and a small variation of proton and neutron flux of 10% which was not significant statistically. Low energy -ray fluxes at sea level originate from the secondary electron-photon components of cosmic rays in the atmosphere; its modulation by TSE is interpreted as follows. The cooling of the atmosphere in the path of the umbra induces a reduction of the height of the main production layer of the nuclear component, as a result of which, fewer µ± mesons (from the decay of the± mesons) decay to e±. This leads to a small reduction in the flux of electron-photon component at sea level which originates from this branch; the main branch of e - component from 0 decay remains nearly unaffected. As the total mass of air remains the same, little or no change in the slow proton or the neutron flux at sea level is expected. These are consistent with the present observations. For a better understanding, further studies of this new phenomenon during future TSE are suggested.  相似文献   

13.
Flux measurements of solar energetic particles (SEPs) in the ERNE instrument onboard SOHO indicate that the abundance of 4He-nuclei compared to protons in the energy range up to 100 MeV nucl–1 was exceptionally high during the particle events on 27 May 1998 and 28 December 1999. The 4He/p ratio stayed between 0.15–0.50 for more than ten hours. There was also a prolonged enhancement in helium-3, 3He/4H 1%. Observations of EIT and LASCO on board SOHO confirm that the originators of both SEP events were western eruptions, flares and coronal mass ejections (CMEs). The onset of the SEP release took place close to the maximum of flares which were probably triggered by the rising CMEs. The observations suggest that the SEP events were started with the flare-(pre)accelerated particles, but impact of the CME-associated shocks might explain the continuation and modification of the helium and proton fluxes well after the flare production. These observations support the idea that the helium enhancements in the CME-associated events reflect the availability of seed particles that originate previously in flares.  相似文献   

14.
The relationship between the production of -ray emitting particles and non-thermal soft X-ray line broadening is investigated. A model of particle acceleration via the stochastic interaction with MHD turbulence is assumed and the time development of the wave energy density derived under the condition of energy conservation between waves and particles. The inferred numbers and energy distribution of accelerated protons for four -ray flares are used to define the wave energy density and its temporal development. The presence of Alfvén wave turbulence is considered as the source of the non-thermal motions in the ambient plasma. These motions are observed as excess widths in the soft X-ray line emission from these events. The decay of the waves via the particle acceleration process is compared with the observed decays of this non-thermal line broadening. Our results show that both the -ray emission and excess soft X-ray line widths in these flares can be explained by the single physical phenomenon of Alfvén wave turbulence.  相似文献   

15.
We report on new measurements of the spectra of Li, Be and B nuclei in the primary cosmic radiation in the energy range 100 MeV/nuc to >22 BeV/nuc. The differential spectrum of these light nuclei is found to have a maximum at 400 MeV/nuc in 1966. The L/M ratio is found to be equal to 0.25±0.01, constant over the entire energy range of the measurement. Atmospheric and solar modulation effects on the L nuclei and the L/M ratio are discussed. It is concluded that this ratio is representative of conditions in interstellar space. Using the most recently available fragmentation parameters gives a material path length of 3.6 g/cm2 of hydrogen for the particles producing the L nuclei. The absence of any variation of the L/M ratio with energy places severe constraints on models for the propagation of cosmic rays. Models in which the material path length is a strong function of energy — or that exhibit an exponential path-length distribution for a fixed energy are incompatible with these results. An examination of the abundance ratios of the individual L nuclei separately reveals major discrepancies with the predictions of interstellar diffusion theory based on presently accepted fragmentation parameters. The constancy of the measured Li/M and B/M ratios with energy is not in accord with the large energy dependence of these ratios expected from the energy dependence of the fragmentation cross-sections. The low Li/M ratio and high B/M ratio to be expected if these nuclei are created at a much lower energy than we observe are also not found. This presents difficulties for theories which suggest that the passage through matter has occurred at low energies subsequently followed by considerable acceleration.The Be/M ratio in cosmic rays is anomalous in that it is 40% larger than expected on the basis of the fragmentation cross-sections. Evidence presented here on the isotopic composition of Be nuclei suggests that this discrepancy is due to an enhanced abundance of Be9 or Be10 in cosmic rays. This discrepancy complicates the determination of a cosmic-ray age using the decay of Be10 into B.Nevertheless the Be/B ratio is observed to remain constant at 0.42±0.03 over the energy range from 100 MeV/nuc to over 10 BeV/nuc. Unless the fragmentation parameters into the various isotopes of Be and B are such that e.g. (Be/B)<0.05 as a result of this decay, then the age of cosmic rays is either >3×108 years or <106 years. The further observation that the mass to charge ratio of all Be nuclei of energy 1 BeV/nuc is =2.05±0.1 suggests that Be10 is present at these energies. This supports the idea of a short lifetime.  相似文献   

16.
The composition of the nucleonic component of the primary cosmic radiation has been compared with the natural abundance of the elements. A normalized quotient between the abundance of an element in the radiation and in nature was found to be approximately equal toZ , whereZ is the atomic number and is a constant approximately equal to one. The observed excess of the heavy elements can be expected in the radiation if the selection of the cosmic ray particles is performed by ionization through fast electron or proton impacts on neutral matter having normal composition. Such a selection mechanism may act in regions in space where fast moving thin plasma clouds collide with clouds of neutral matter. A source model in which the plasma clouds originate in Type II supernova explosions is discussed.  相似文献   

17.
The fluxes of 3He, 4He, C, O, and Fe ions at low energies (about \(0.04\,\mbox{--} \,2~\mbox{MeV}/\mbox{nucleon}\)) are studied during quiet periods in Solar Cycles (SC) 23 and 24 using data from the ULEIS/ACE instrument. In selecting quiet periods (the definition is given in Section 2.1), additional data from EPHIN/SOHO and EPAM/ACE were also used. The analysis of the ion energy spectra and their relative abundances shows that their behavior is governed by their first-ionization potential. Substantial differences in the ion energy spectra in two consecutive solar cycles are observed during the quiet periods selected. Quiet-time fluxes are divided into three distinct types according to the \({\sim}\,80\,\mbox{--}\,320~\mbox{keV}/\mbox{nucleon}\) Fe/O ratio. Our results confirm the earlier observation that these types of suprathermal particles have different origins, that is, they represent different seed populations that are accelerated by different processes. Except for the solar activity minimum, the Fe/O ratio during quiet-time periods correspond either to the abundances of ions in particle fluxes accelerated in impulsive solar flares or to the mean abundances of elements in the solar corona. At the activity minimum, this ratio takes on values that are characteristic for the solar wind. These results indicate that the background fluxes of low-energy particles in the ascending, maximum, and decay phases of the solar cycle include significant contributions from both coronal particles accelerated to suprathermal energies and ions accelerated in small impulsive solar flares rich in Fe, while the contribution of remnants from earlier SEP events cannot be excluded. The comparison of suprathermal ion abundances during the first five years of SC 23 and SC 24 suggests that the quiet-time and non-quiet fluxes of Fe and 3He were lower in SC 24.  相似文献   

18.
A two-fluid plasma is described as a single continuum characterised by the generalised tensor of mechanical pressure and generalised vector of flow of mechanical energy. Plasma energization due to the transfer of mechanical energy inside the plasma body is emphasised and the energization of plasma by conversion of the electromagnetic energy into the mechanical energy is discussed. Two kinds of conversion associated with the convection electric field –(1/c)V×B and with the deviationE * of the total electric field from –(1/c)V×B are distinguished. TheV×B-field is related to the work done upon the plasma, while theE *-field is related to the plasma heating.Plasma motions with scale length larger than the Debye distance, taking place in the central part of the Earth-plasma sheet, are considered. The change of energy of any element of plasma is due mainly to the transfer of mechanical energy across the element's boundary; the EM-field is not strong enough to make a significant contribution. The work done by the internal loads is the main source of mechanical energy in the configurations in which the physical quantities do not vary along the current lines. The rates of change of the kinetic and internal energies are comparable. The transfer of mechanical energy is the principal source of the kinetic energy also in the general case when the physical quantities vary along the current lines. Conversion of the EM energy into mechanical energy is the main source of the internal energy in this case. In the tail plasma located outside the central part of the plasma sheet, conversion of the EM-energy into mechanical energy, which is due to the work done by the EM-force, takes place. The tail plasma is likely to undergo a two-phase energization process: first, it is accelerated and later, when it approaches the neutral sheet, it is heated.  相似文献   

19.
To explain the scattering of sunlight observed from theF-corona and from the zodiac, the scattering particles must have radii of order 15 m, and must have an imaginary component of the refractive index that requires the presence of from 5 to 10% of free carbon. The particles, therefore, have a composition very like the material of C 1 carbonaceous chondrites and like extraterrestrial particles which have been recovered from the high atmosphere.Such particles absorb sunlight, the absorbed solar energy being reradiated in the infrared with a close approximation to black-body emission, even as far into the infrared as 100 m, a deduction in good agreement with recently published observations from the IRAS satellite.The IRAS observations at high ecliptic latitudes require similar particles to be present in large quantity in the interstellar medium, 106 solar masses or more of them. The presence of such a quantity of material with properties very like the material of the C 1 carbonaceous chondrites is a remarkable outcome of the IRAS observations and is likely to have profound implications in many directions.  相似文献   

20.
The processes by which streams of charged particles become charge and current neutralized in the corona are investigated. It is shown that a large amplitude plasma wave, which is related to precursor phenomenon in type III bursts and possibly plasma radiation from type IV bursts, will be excited at the head of the stream. The energy extracted from the stream to produce this plasma wave is computed and used to set conservative upper limits on the densities of possible excitors for type III bursts. For electron streams the density n s < 10–5 n e, where n e is the density of the background plasma. For proton streams n s < 1.8 × 10–2 n e. The energy extracted from the stream is also used to set upper limits on the lifetimes of relativistic electrons stored in the corona and it is concluded that for n e > 102 cm–3 this loss must be taken into account. Since electron streams cannot produce their own stabilizing ionacoustic waves because they would violate the condition n s < 10–5 n e, other mechanisms for producing ion-acoustic waves in the corona are examined. Another stabilization mechanism due to velocity inhomogeneity is investigated.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号