首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi‐distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high‐mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two‐step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing ‘normal’ (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

2.
Abstract

Recent developments in hydrological modelling of river basins are focused on prediction in ungauged basins, which implies the need to improve relationships between model parameters and easily-obtainable information, such as satellite images, and to test the transferability of model parameters. A large-scale distributed hydrological model is described, which has been used in several large river basins in Brazil. The model parameters are related to classes of physical characteristics, such as soil type, land use, geology and vegetation. The model uses two basin space units: square grids for flow direction along the basin and GRU—group response units—which are hydrological classes of the basin physical characteristics for water balance. Expected ranges of parameter values are associated with each of these classes during the model calibration. Results are presented of the model fitting in the Taquari-Antas River basin in Brazil (26 000 km2 and 11 flow gauges). Based on this fitting, the model was then applied to the Upper Uruguay River basin (52 000 km2), having similar physical conditions, without any further calibration, in order to test the transferability of the model. The results in the Uruguay basin were compared with recorded flow data and showed relatively small errors, although a tendency to underestimate mean flows was found.  相似文献   

3.
Abstract

The Hydrological Recursive Model (HRM), a conceptual rainfall-runoff model, was applied for local and regional simulation of hourly discharges in the transnational Alzette River basin (Luxembourg-France-Belgium). The model was calibrated for a range of various sub-basins with a view to analysing its ability to reproduce the variability of basin responses during flood generation. The regionalization of the model parameters was obtained by fitting simultaneously the runoff series of calibration sub-basins after their spatial discretization in lithological contrasting isochronal zones. The runoff simulations of the model agreed well with the recorded runoff series. Significant correlations with some basin characteristics and, noticeably, the permeability of geological formations, could be found for two of the four free model parameters. The goodness of fit for runoff predictions using the derived regional parameter set was generally satisfactory, particularly for the statistical characteristics of streamflow. A more physically-based modelling approach, or at least an explicit treatment of quick surface runoff, is expected to give better results for high peak discharge.  相似文献   

4.
A depth‐averaged linearized meander evolution model was calibrated and tested using the field data collected at the Quinn River in the Black Rock Desert, Nevada. Two approaches used to test the model were: (1) simulating meander evolution and comparing the results with the observed 38 year migration pattern; and (2) fitting the model parameters to present bank asymmetry (the ratio of the maximum bank gradients on opposite sides of the channel). The data required as input were collected in the field during a high flow in May 2011 and from aerial photographs and LiDAR data. Both approaches yielded similar results for the best fit parameter values. The bank asymmetry analysis showed that the bank asymmetry and the velocity perturbation have high correlation at close to zero spatial lag while the maximum correlation between the bank asymmetry and maximum bend curvature is offset by about 25 m. The model sufficiently replicated 38 years of channel migration, with a few locations significantly under‐ or over‐predicted. Inadequacies of the flow model and/or variation in bank properties unaccounted for are most likely the causes for these discrepancies. Flow through the Quinn River was also simulated by a more general 3D model. The downstream pattern of near‐bank shear stresses simulated by the 3D model is nearly identical to those resulting from the linearized flow model. Topographic profiles across interior bends are essentially invariant over a wide range of migration rates, suggesting that the traditional formulation that cut bank erosion processes govern migration rates is appropriate for the Quinn River. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Remotely sensed land cover was used to generate spatially‐distributed friction coefficients for use in a two‐dimensional model of flood inundation. Such models are at the forefront of research into the prediction of river flooding. Standard practice, however, is to use single (static) friction coefficients on both the channel and floodplain, which are varied in a calibration procedure to provide a “best fit” to a known inundation extent. Spatially‐distributed friction provides a physically grounded estimate of friction that does not require fitting to a known inundation extent, but which can be fitted if desired. Remote sensing offers the opportunity to map these friction coefficients relatively straightforwardly and for low cost. Inundation was predicted using the LISFLOOD‐FP model for a reach on the River Nene, UK. Friction coefficients were produced from land cover predicted from Landsat TM imagery using both ML and fuzzy c‐means classifiction. The elevetion data used were from combined contour and differential global positioning system (GPS) elevation data. Predicted inundation using spatially‐distributed and static friction were compared. Spatially‐distributed friction had the greatest effect on the timing of flood inundation, but a small effect on predicted inundation extent. The results indicate that spatially‐distributed friction should be considered where the timing of initial flooding (e.g. for early warning) is important. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
《国际泥沙研究》2016,(2):139-148
Applications of sediment transport and water flow characteristics based sediment transport simulation models for a river system are presented in this study. An existing water–sediment model and a new sediment–water model are used to formulate the simulation models representing water and sediment movement in a river system. The sediment–water model parameters account for water flow characteristics embodying sediment transport properties of a section. The models are revised formulations of the multiple water inflows model describing water movement through a river system as given by the Muskingum principle. The models are applied to a river system in Mississippi River basin to estimate downstream sediment concentration, sediment discharge, and water discharge. River system and the river section parameters are estimated using a revised and the original multiple water inflows models by applying the genetic algorithm. The models estimate downstream sediment transport rates on the basis of upstream sediment/water flow rates to a system. Model performance is evaluated by using standard statistical criteria;downstream water discharge resulting from the original multiple water inflows model using the estimated river system parameters indicate that the revised models satisfactorily describe water movement through a river system. Results obtained in the study demonstrate the applicability of the sediment transport and water flow characteristics-based simulation models in predicting downstream sediment transport and water flow rates in a river system.  相似文献   

8.
This paper provides a comparison of gauge and radar precipitation data sources during an extreme hydrological event. November–December 2006 was selected as a time period of intense rainfall and large river flows for the Severn Uplands, an upland catchment in the United Kingdom. A comparison between gauge and radar precipitation time‐series records for the event indicated discrepancies between data sources, particularly in areas of higher elevation. The HEC‐HMS rainfall‐runoff model was selected to assess the accuracy of the precipitation to simulate river flows for the extreme event. Gauge, radar and gauge‐corrected radar rainfall were used as model inputs. Universal cokriging was used to geostatistically interpolate gauge data with radar and elevation data as covariates. This interpolated layer was used to calculate the mean‐field bias and correct the radar composites. Results indicated that gauge‐ and gauge‐corrected radar‐driven models replicated flows adequately for the extreme event. Gauge‐corrected flow predictions produced an increase in flow prediction accuracy when compared with the raw radar, yet predictions were comparative in accuracy to those using the interpolated gauge network. Subsequent investigations suggested this was due to an adequate spatial and temporal resolution of the precipitation gauge network within the Severn Uplands. Results suggested that the six rain gauges could adequately represent precipitation variability of the Severn Uplands to predict flows at an approximately equal accuracy to that obtained by radar. Temporally, radar produced an increase in flow prediction accuracy in mountainous reaches once the gauge time step was in excessive of an hourly interval. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Most runoff analyses using a grid‐based distributed model use one parameter group calibrated at the outlet of a watershed, instead of dividing the watershed into subwatersheds. Significant differences between the observed value and the simulation result of the subwatersheds can occur if just one parameter group is used in all subwatersheds that have different hydrological characteristics from each other. Therefore, to improve the simulation results of the subwatersheds within a watershed, a model calibrated at every subwatershed needs to be used to reflect the characteristics of each subwatershed. In this study, different parameter groups were set up for one or two sites using a distributed model, the GRM (Grid based Rainfall‐runoff Model), and the evaluations were based on the results of rainfall–runoff analysis, which uses a multi‐site calibration (MSC) technique to calibrate the model at the outlet of each site. The Hyangseok watershed in Naeseong River, which is a tributary of Nakdong River in Korea, was chosen as the study area. The watershed was divided into five subwatersheds each with a subwatershed outlet that was applied to the calibration sites . The MSC was applied for five cases. When a site was added for calibration in a watershed, the runoff simulation showed better results than the calibration of only one site at the most downstream area of the watershed. The MSC approach could improve the simulation results on the calibrated sites and even on the non‐calibrated sites, and the effect of MSC was improved when the calibrated site was closer to the runoff site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A refined specific‐gauge approach was developed to quantify changes over time in hydrological response on 3260 km of the Mississippi River system using long‐term data observed at 67 hydrologic measurement stations. Of these stations, 49 were unrated (stage‐only) stations, for which over 2 000 000 ‘synthetic discharges’ were generated based on measured discharge values at nearby rated stations. The addition of these synthetic discharges nearly tripled the number of stations in the study area for which specific‐gauge analysis could be performed. In order to maintain spatial homogeneity across such a broad study area, discharges were normalized to multiples of mean daily flow (MDF). Specific‐gauge analysis calculates stage changes over time for invariant discharge conditions. Two discharges were analysed: low‐flow and flood conditions at each station. In order to avoid the large errors associated with extrapolation of annual rating curves, a new ‘enhanced interpolation’ technique was developed that calculates continuous specific‐stage time series, even for rare discharges. Thus enhanced, specific‐gauge analysis is a useful reconnaissance tool for detecting geomorphic and hydrologic trends over time. Results show that on the Middle Mississippi River and Lower Missouri River, flood stages increased at all stations in spite of widespread incision of the river bed. On the Lower Mississippi River, both low‐flow and flood stages decreased, mainly the result of artificial meander cutoffs in the late 1920s and 1930s, except downstream of Natchez, MS, where net aggradation was observed. On the Upper Mississippi River, the specific‐gauge trends were dominated by emplacement of navigational dams and impoundment of slackwater pools. On all four river reaches, these results document hydrologic responses to the different engineering toolkits used on the different portions of the Mississippi River system during the past 75–150 years. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
With high spatio‐temporal resolution and wide coverage, satellite‐based precipitation products can potentially fill the deficiencies of traditional in situ gauge precipitation observations and provide an alternative data source for ungauged areas. However, due to the relatively poor accuracy and high uncertainty of satellite‐based precipitation products, it remains necessary to assess the quality and applicability of the products for each investigated area. This study evaluated the accuracy and error of the latest Tropical Rainfall Measuring Mission Multi‐satellites Precipitation Analysis 3B42‐V7 satellite‐based precipitation product and validated the applicability of the product for the Beijiang and Dongjiang River Basins, downstream of the Pearl River Basin in China. The study first evaluated the accuracy, error, and bias of the 3B42‐V7 product during 1998–2006 at daily and monthly scale via comparison with in situ observations. The study further validated the applicability of the product via hydrologic simulation using the variable infiltration capacity hydrological model for three hydrological stations in the Beijiang River Basin, considering two scenarios: a streamflow simulation with gauge‐calibrated parameters (Scenario I) and a simulation after recalibration with the 3B42‐V7 product (Scenario II). The results revealed that (a) the 3B42‐V7 product produced acceptable accuracy both at the daily scale and high accuracy at the monthly scale while generally tending to overestimate precipitation; (b) the product clearly overestimated the frequency of no rainfall events at the grid cell scale and light rainfall (<1 mm/day) events at the region scale and also overestimated the amount of heavy rain (25–50 mm/day) and hard rain (≥50 mm/day) events; (c) under Scenario I, the 3B42‐V7 product performed poorly at three stations with gauge‐calibrated parameters; under Scenario II, the recalibrated model provided significantly improved performance of streamflow simulation with the 3B42‐V7 product; (d) the variable infiltration capacity model has the ability to reveal the hydrological characteristics of the karst landform in the Beijiang Basin when using the 3B42‐V7 product.  相似文献   

12.
A sediment mass balance constructed for a 16‐km reach of the Snake River downstream from Jackson Lake Dam (JLD) indicates that river regulation has reduced the magnitude of sediment mass balance deficit that would naturally exist in the absence of the dam. The sediment budget was constructed from calibrated bed load transport relations, which were used to model sediment flux into and through the study reach. Calibration of the transport relations was based on bed load transport data collected over a wide range of flows on the Snake River and its two major tributaries within the study area in 2006 and 2007. Comparison of actual flows with unregulated flows for the period since 1957 shows that operations of JLD have reduced annual peak flows and increased late summer flows. Painted tracer stones placed at five locations during the 2005 spring flood demonstrate that despite the reduction in flood magnitudes, common floods are capable of mobilizing the bed material. The sediment mass balance demonstrates that more sediment exits the study reach than is being supplied by tributaries. However, the volume of sediment exported using estimated unregulated hydrology indicates that the magnitude of the deficit would be greater in the absence of JLD. Calculations suggest that the Snake River was not in equilibrium before construction of JLD, but was naturally in sediment deficit. The conclusion that impoundment lessened a natural sediment deficit condition rather than causing sediment surplus could not have been predicted in the absence of sediment transport data, and highlights the value of transport data and calculation of sediment mass balance in informing dam operations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A statistical riverine litter propagation (RLP) model based on importance sampling Monte Carlo (ISMC) simulation was developed in order to predict the frequency distribution of certain litter types in river reaches. The model was preliminarily calibrated for plastic sheeting by a pilot study conducted on the River Taff, Wales (UK). Litter movement was predominantly controlled by reach characteristics, such as vegetation overhang and water-course obstructions. These affects were modeled in the simulations, by utilizing geometric distributions of river reaches in the time domain. The proposed model satisfactorily simulated the dosing experiments performed at the River Taff. It was concluded from the preliminary calibrations that, the RLP model can be efficiently utilized to portray litter propagation at any arbitrarily selected river site, provided that the stream flows and reach characteristics are calibrated by representative probability distributions of similar sections. Therefore, the RLP model can be considered as a new statistical technique that can predict litter propagation in river sections.  相似文献   

14.
With the recent development of distributed hydrological models, the use of multi‐site observed data to evaluate model performance is becoming more common. Distributed hydrological model have many advantages, and at the same time, it also faces the challenge to calibrate over‐do parameters. As a typical distributed hydrological model, problems also exist in Soil and Water Assessment Tool (SWAT) parameter calibration. In the paper, four different uncertainty approaches – Particle Swarm Optimization (PSO) techniques, Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting algorithm (SUFI‐2) and Parameter Solution (PARASOL) – are taken to a comparative study with the SWAT model applied in Peace River Basin, central Florida. In our study, the observed river discharge data used in SWAT model calibration were collected from the three gauging stations at the main tributary of the Peace River. Behind these approaches, there is a shared philosophy; all methods seek out many parameter set to fit the uncertainties due to the non‐uniqueness in model parameter evaluation. On the basis of the statistical results of four uncertainty methods, difficulty level of each method, the number of runs and theoretical basis, the reasons that affected the accuracy of simulation were analysed and compared. Furthermore, for the four uncertainty method with SWAT model in the study area, the pairwise correlation between parameters and the distributions of model fit summary statistics computed from the sampling over the behavioural parameter and the entire model calibration parameter feasible spaces were identified and examined. It provided additional insight into the relative identifiability of the four uncertainty methods Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
The characteristics of water flow and sediment transport in a typical meandering and island-braided reach of the middle Yangtze River is investigated using a two-dimensional (2D) mathematical model. The major problems studied in the paper include the carrying capacity for suspended load, the incipient velocity and transport formula of non-uniform sediment, the thickness of the mixed layer on the riverbed, and the partitioning of bed load and suspended load. The model parameters are calibrated using extensive field data. Water surface profiles, distribution of flow velocities, riverbed deformation are verified with site measurements. The model is applied to a meandering and island-braided section of the Wakouzi-Majiazui reach in the middle Yangtze River, which is about 200 km downstream from the Three Gorges Dam, to study the training scheme of the navigation channels. The model predicts the processes of sediment deposition and fiver bed erosion, changes of flow stage and navigation conditions for the first 20 years of impoundment of the Three Gorges Project.  相似文献   

16.
Grain‐size distribution patterns in a point bar system of the Usri River, India, were critically analysed in the light of log‐normal, log‐hyperbolic and log‐skew‐Laplace distribution models. Sand samples were collected from the cross‐bedding foreset of different sizes of bedform; the objectives were to (i) study whether bedform heights have any role in grain‐size distribution patterns, (ii) offer a best‐fit statistical model, (iii) study the downstream variation of size‐sorting in a point bar system, and (iv) study the mechanism of grain sorting. The results indicate that the bedform heights have no role in grain‐size distribution patterns. Quantitatively when the errors in three distribution models were analysed, it was observed that the log‐normal distribution is the best‐fit statistical model and the next one is the log‐skew‐Laplace. However, in the upper reaches of the river, log‐normal distribution is the best‐fit model in the case of large bedforms, whereas in the lower reaches the log‐normal model is the best‐fit one in the case of small bed forms. It is also observed that within a point bar, for large and small bedforms, there is a tendency for mean grain size to decrease downstream. Between point bars for large bedforms there is no consistency in decreasing grain size downstream, whereas for small bed forms the decrease of grain size downstream is observed except near the confluence at Palkia. With distance of transport, the coarser and finer fractions of sediments are gradually chopped off. The coarser fractions are buried below the advancing bedforms on the lee sides and the finer ones are transported further downstream. Thus the finer admixture giving rise to the fining‐upward sequence overlies a carpet of coarser materials. This mechanism provides a clue to the process of grain sorting in the fluvial environment. An interpretation has been offered for the log‐normality of the grain‐size distribution pattern. During prolonged transportation in a fluvial environment, the larger grain‐size fractions are gradually chopped off and buried below the advancing bedforms on their lee sides. On the other hand, the finer fractions are transported further downstream in suspension. Thus the narrow, intermediate size fraction takes active part in the distribution patterns leading to the generation of unimodality and a symmetric distribution pattern downstream, which are the main criteria for log‐normality. Similarly, increase of bedform size is the effect of increase of stream power and Froude number leading to the selective segregation of bed materials. Thus the intermediate size fractions take a more active part than the coarser and the finer size fractions in developing log‐normality. Besides the hydrodynamic parameters of the Usri, coarsening of grain size downstream has been attributed to (i) the aggrading nature of the Usri downstream, and (ii) the contribution of coarser materials to the Usri by its tributaries and bank erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Many studies have analysed the nonstationarity in single hydrological variables due to changing environments. Yet, few researches have been done to investigate how the dependence structure between different individual hydrological variables is affected by changing environments. To investigate how the reservoirs have altered the dependence structure between river flows at different locations on the Hanjiang River, a time‐varying copula model, which takes the nonstationarity in the marginal distribution and/or the time variation in dependence structure between different hydrological series into consideration, is presented in this paper to perform a bivariate frequency analysis for the low‐flow series from two neighbouring hydrological gauges. The time‐varying moments model with either time or reservoir index as explanatory variables is applied to build the time‐varying marginal distributions of the two low‐flow series. It's found that both marginal distributions are nonstationary, and the reservoir index yields better performance than the time index in describing the nonstationarities in the marginal distributions. Then, the copula with the dependence parameter expressed as a function of either time or reservoir index is applied to model the variable dependence between the two low‐flow series. The copula with reservoir index as the explanatory variable of the dependence parameter has a better fitting performance than the copula with the constant or the time‐trend dependence parameter. Finally, the effect of the time variation in the joint distribution on three different types of joint return periods (i.e. AND, OR and Kendall) of low flows at two neighbouring hydrological gauges is presented. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Nonlinear finite element (FE) modeling has been widely used to investigate the effects of seismic isolation on the response of bridges to earthquakes. However, most FE models of seismic isolated bridges (SIB) have used seismic isolator models calibrated from component test data, while the prediction accuracy of nonlinear FE models of SIB is rarely addressed by using data recorded from instrumented bridges. In this paper, the accuracy of a state‐of‐the‐art FE model is studied through nonlinear FE model updating (FEMU) of an existing instrumented SIB, the Marga‐Marga Bridge located in Viña del Mar, Chile. The seismic isolator models are updated in 2 phases: component‐wise and system‐wise FEMU. The isolator model parameters obtained from 23 isolator component tests show large scatter, and poor goodness of fit of the FE‐predicted bridge response to the 2010 Mw 8.8 Maule, Chile Earthquake is obtained when most of those parameter sets are used for the isolator elements of the bridge model. In contrast, good agreement is obtained between the FE‐predicted and measured bridge response when the isolator model parameters are calibrated using the bridge response data recorded during the mega‐earthquake. Nonlinear FEMU is conducted by solving single‐ and multiobjective optimization problems using high‐throughput cloud computing. The updated FE model is then used to reconstruct response quantities not recorded during the earthquake, gaining more insight into the effects of seismic isolation on the response of the bridge during the strong earthquake.  相似文献   

19.
Abstract

In catchments characterized by spatially varying hydrological processes and responses, the optimal parameter values or regions of attraction in parameter space may differ with location-specific characteristics and dominating processes. This paper evaluates the value of semi-distributed calibration parameters for large-scale streamflow simulation using the spatially distributed LISFLOOD model. We employ the Shuffled Complex Evolution Metropolis (SCEM-UA) global optimization algorithm to infer the calibration parameters using daily discharge observations. The resulting posterior parameter distribution reflects the uncertainty about the model parameters and forms the basis for making probabilistic flow predictions. We assess the value of semi-distributing the calibration parameters by comparing three different calibration strategies. In the first calibration strategy uniform values over the entire area of interest are adopted for the unknown parameters, which are calibrated against discharge observations at the downstream outlet of the catchment. In the second calibration strategy the parameters are also uniformly distributed, but they are calibrated against observed discharges at the catchment outlet and at internal stations. In the third strategy a semi-distributed approach is adopted. Starting from upstream, parameters in each subcatchment are calibrated against the observed discharges at the outlet of the subcatchment. In order not to propagate upstream errors in the calibration process, observed discharges at upstream catchment outlets are used as inflow when calibrating downstream subcatchments. As an illustrative example, we demonstrate the methodology for a part of the Morava catchment, covering an area of approximately 10 000 km2. The calibration results reveal that the additional value of the internal discharge stations is limited when applying a lumped parameter approach. Moving from a lumped to a semi-distributed parameter approach: (i) improves the accuracy of the flow predictions, especially in the upstream subcatchments; and (ii) results in a more correct representation of flow prediction uncertainty. The results show the clear need to distribute the calibration parameters, especially in large catchments characterized by spatially varying hydrological processes and responses.  相似文献   

20.
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号