首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Small‐scale heterogeneities and large changes in hydraulic gradient over short distances can create preferential groundwater flow paths that discharge to lakes. A 170 m2 grid within an area of springs and seeps along the shore of Shingobee Lake, Minnesota, was intensively instrumented to characterize groundwater‐lake interaction within underlying organic‐rich soil and sandy glacial sediments. Seepage meters in the lake and piezometer nests, installed at depths of 0·5 and 1·0 m below the ground surface and lakebed, were used to estimate groundwater flow. Statistical analysis of hydraulic conductivity estimated from slug tests indicated a range from 21 to 4·8 × 10?3 m day?1 and small spatial correlation. Although hydraulic gradients are overall upward and toward the lake, surface water that flows onto an area about 2 m onshore results in downward flow and localized recharge. Most flow occurred within 3 m of the shore through more permeable pathways. Seepage meter and Darcy law estimates of groundwater discharge agreed well within error limits. In the small area examined, discharge decreases irregularly with distance into the lake, indicating that sediment heterogeneity plays an important role in the distribution of groundwater discharge. Temperature gradients showed some relationship to discharge, but neither temperature profiles nor specific electrical conductance could provide a more convenient method to map groundwater–lake interaction. These results suggest that site‐specific data may be needed to evaluate local water budget and to protect the water quality and quantity of discharge‐dominated lakes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
To ascertain the influence of hydrological boundary conditions on acidity fluxes in lakes influenced by acid mine drainage, acidity budgets were developed for two sediments in areas of differential groundwater inflow (approx. 1 L m?2 d?1 and 10 L m?2 d?1). In both sediments iron was deposited as schwertmannite leading to iron(III) enriched sediments (3.9…6.2 mmol g?1, referred to dry weight). Compared to the surface water, the inflowing groundwater had higher pH (4.5 vs. 3), ferrous iron (6…20 mmol L?1 vs. 0.8…2.0 mmol L?1), and sulfate (5…60 mmol L?1 vs. 8…13 mmol L?1) concentrations. The inflow changed the sediment pore water chemistry and triggered a further increase in pH to above 5.5. In both sediments acidity generation in the surface water (10…30 mol m?2 a?1) strongly prevailed over acidity consumption in the sediments (> ?0.6 mol m?2 a?1). With advective groundwater inflow, however, more acidity was consumed due to TRIS formation (?0.12 mol m?2 a?1 vs. ?0.017 mol m?2 a?1), iron carbonate burial (upper estimate: ?0.14 mol m?2 a?1 vs. ?0.022 mol m?2 a?1), and unspecific ferrous iron retention (?0.39 mol m?2 a?1 vs. ?0.08 mol m?2 a?1). Also, less acidity was generated due to schwertmannite transformation (?2.4 mol m?2 a?1 vs. ?0.11 mol m?2 a?1). The acidity balance of internal processes in the sediment with groundwater inflow was negative, whereas it was positive in the other sediment. The study demonstrates that in acidic and iron rich lakes the hydrological boundary conditions strongly affect geochemical processes as subsumed in acidity fluxes.  相似文献   

3.
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Knowledge on groundwater–surface water interaction and especially on exchange fluxes between streams and aquifers is an important prerequisite for the study of transport and fate of contaminants and nutrients in the hyporheic zone. One possibility to quantify groundwater–surface water exchange fluxes is by using heat as an environmlental tracer. Modern field equipment including multilevel temperature sticks and the novel open‐source analysis tool LPML make this technique ever more attractive. The recently developed LPML method solves the one‐dimensional fluid flow and heat transport equation by combining a local polynomial method with a maximum likelihood estimator. In this study, we apply the LPML method on field data to quantify the spatial and temporal variability of vertical fluxes and their uncertainties from temperature–time series measured in a Belgian lowland stream. Over several months, temperature data were collected with multilevel temperature sticks at the streambed top and at six depths for a small stream section. Long‐term estimates show a range from gaining fluxes of ?291 mm day?1 to loosing fluxes of 12 mm day?1; average seasonal fluxes ranged from ?138 mm day?1 in winter to ?16 mm day?1 in summer. With our analyses, we could determine a high spatial and temporal variability of vertical exchange fluxes for the investigated stream section. Such spatial and temporal variability should be taken into account in biogeochemical cycling of carbon, nutrients and metals and in fate analysis of contaminant plumes. In general, the stream section was gaining during most of the observation period. Two short‐term high stream stage events, seemingly caused by blockage of the stream outlet, led to a change in flow direction from gaining to losing conditions. We also found more discharge occurring at the outer stream bank than at the inner one indicating a local flow‐through system. With the conducted analyses, we were able to advance our understanding of the regional groundwater flow system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Coastal lagoons are significant wetland environments found on coastlines throughout the world. Groundwater seepage may be a key component of lagoon water balances, though only a few studies have investigated large (>100 km2) coastal lagoons. In this study, we combined airborne thermal infrared imagery with continuous measurements of radon (222Rn—a natural groundwater tracer), conductivity, water temperature and dissolved oxygen to map groundwater seepage to a large coastal lagoon in New Zealand. We found evidence of seepage along the margins of the lagoon but not away from the margins. Our findings confirmed previously known seepage zones and identified new potential locations of groundwater inflow. Both point source and diffuse seepage occurred on the western and northwestern margins of the lagoon and parallel to the barrier between the lagoon and sea. These observations imply geologic controls on seepage. The combination of remote sensing and in-situ radon measurements allowed us to effectively map groundwater discharge areas across the entire lagoon. Combined, broad-scale qualitative methods built confidence in our interpretation of groundwater discharge locations in a large, dynamic coastal lagoon.  相似文献   

6.
The effects of temperature, diffusive boundary-layer thickness, and sediment composition on fluxes of inorganic N and P were estimated for sediment cores with oxidized surfaces from nearshore waters (2?C10?m) of a montane oligotrophic lake. Fluxes of N and P were not affected by diffusive boundary-layer thickness but were strongly affected by temperature. Below 16?°C, sediments sequestered small amounts of P and released small amounts of N. Above 16?°C, the seasonal maximum water temperature, sediments were substantial sources of N (NH4 +?CN?=?2?C24?mg?m?2 d?1; NO3 ??+?NO2 ??CN?=?2?C5?mg?m?2 d?1) and P (0.1?C0.4?mg?m?2 d?1), indicating potential responsiveness of sediment?Cwater nutrient exchange, and of corresponding phytoplankton growth, to synoptic warming.  相似文献   

7.
High‐frequency water discharge and suspended sediment concentration (SSC) databases were collected for 3 years on four contrasted watersheds: the Asse and the Bléone (two Mediterranean rainfall regime watersheds) and the Romanche and the Ferrand (two rainfall–snowmelt regime watersheds). SSCs were calculated from turbidity recordings (1‐h time step), converted into SSC values. The rating curve was calculated by means of simultaneous SSC measurement taken by water sampling and turbidity recording. Violent storms during springtime and autumn were responsible for suspended sediment transport on the Asse and the Bléone rivers. On the Ferrand and the Romanche, a large share of suspended sediment transport was also caused by local storms, but 30% of annual fluxes results from snowmelt or icemelt which occurred from April to October. On each watershed, SSC up to 50 g l?1 were observed. Annual specific fluxes ranged from 450 to 800 t km?2 year?1 and 40–80% of annual suspended sediment fluxes occurred within 2% of the time. These general indicators clearly demonstrate the intensity of suspended sediment transport on these types of watersheds. Suspended sediment fluxes proved to be highly variable at the annual scale (inter‐annual variability of specific fluxes) as well as at the event scale (through a hysteresis loop in the SSC/Q relationship) on these watersheds. In both cases, water discharge and precipitations were the main processes involved in suspended sediment production and transport. The temporal and spatial variability of hydro‐meteorological processes on the watershed provides a better understanding of suspended sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
《Marine pollution bulletin》2011,62(7-12):399-412
In order to quantify the spatial and seasonal variations of sediment oxygen consumption and nutrient fluxes, we performed a spatial survey in the south west lagoon of New Caledonia during the two major seasons (dry and wet) based on a network of 11 sampling stations. Stations were selected along two barrier reef to land transects representing most types of sediments encountered in the lagoon. Fluxes were measured using ex-situ sediment incubations and compared to sediment characteristics. Sediment oxygen consumption (SOC) varied between 500 and 2000 μmol m−2 h−1, depending on season and stations. Nutrient effluxes from sediment were highly variable with highest fluxes measured in muddy sediments near the coast. Inter-sample variability was as high as seasonal differences so that no seasonally driven temperature effect could be observed on benthic nutrient fluxes in our temperature range. Nutrient fluxes, generally directed from the sediment to the water column, varied between −5.0 and 70.0 μmol m−2 h−1 for ammonia and between −2.5 and +12.5 μmol m−2 h−1 for PO4 and NO2+3. SOC and nutrient fluxes were compared to pelagic primary production rates in order to highlight the tight coupling existing between the benthic and pelagic compartments in this shallow tropical lagoon. Under specific occasions of low pelagic productivity, oxygen sediment consumption and related carbon and nutrient fluxes could balance nearly all net primary production in the lagoon. These biogeochemical estimates point to the functional importance of sediment biogeochemistry in the lagoon of New Caledonia.  相似文献   

9.
Direct measurements of winter water loss due to sublimation were made in a sub‐alpine forest in the Rocky Mountains of Colorado. Above‐and below‐canopy eddy covariance systems indicated substantial losses of winter‐season snow accumulation in the form of snowpack (0·41 mm d?1) and intercepted snow (0·71 mm d?1) sublimation. The partitioning between these over and under story components of water loss was highly dependent on atmospheric conditions and near‐surface conditions at and below the snow/atmosphere interface. High above‐canopy sensible heat fluxes lead to strong temperature gradients between vegetation and the snow‐surface, driving substantial specific humidity gradients at the snow surface and high sublimation rates. Intercepted snowfall resulted in rapid response of above‐canopy latent heat fluxes, high within‐canopy sublimation rates (maximum = 3·7 mm d?1), and diminished sub‐canopy snowpack sublimation. These results indicate that sublimation losses from the sub‐canopy snowpack are strongly dependent on the partitioning of sensible and latent heat fluxes in the canopy. This compels comprehensive studies of snow sublimation in forested regions that integrate sub‐canopy and over‐story processes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Groundwater circulation is known to be one of the agents responsible for the redistribution of geothermal energy by acting as a source or sink in the course of its movement through porous media. Heat transport in groundwater systems is considered to be a coupled process and the theory based on this was used to analyse temperature profiles of 30 thermally stable observation wells in a deep, semi-confined aquifer system in the Tokyo Metropolitan area. Vertical water fluxes in the semi-confined aquifers and the associated upward heat fluxes were estimated from a heat flux equation that describes convection and conduction processes of heat transport in one dimension. The vertical downward water fluxes in Shitamachi lowland, Musashino and Tachikawa terraces were 0.69.26.91 × 10?9, 1.46-70.92 × 10?9 and 2.61.2204 × 10?9 m/s, respectively. A vertical upward water flux of 1.80-33.60 × 10?9 m/s was estimated in Shitamachi lowland. The water flux generally decreased with increasing depth for observation wells which intercepted more than one semi-confining layer. The estimated upward heat fluxes for Shitamachi lowland, Musashino and Tachikawa terraces were 0.32-1.12, 0.49-1.21 and 1.00-11.62 W/m2, respectively. The heat flux was highest in Tachikawa terrace where a major fault, the Tachikawa fault, is located. Generally, the estimated heat flux was higher in the semi-confining layers than in the aquifers. Areas with heat sources and sinks as well as groundwater flow patterns in the semi-confined aquifers were revealed by heat flux and temperature distributions in the study area.  相似文献   

12.
A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutrient fluxes in this area. With a bottom wave stress of 0.019 N m?2 (equivalent to disturbance caused by wind SE 5–7 m s?1 at the sediment sample site of Meiliang Bay), the fluxes of TN, TDN and NH4 +-N were separately 1.92 × 10?3, ?1.81 × 10?4 and 5.28 × 10?4 mg m?2 s?1 (positive for upward and negative for downward), but for TP, TDP and SRP, the fluxes were 5.69 × 10?4, 1.68 × 10?4 and ?1.29 × 10?4 mg m?2 s?1. In order to calculate the released amount of nutrients based on these results, statistic analysis on the long-term meteorological data was conducted. The result shows that the maximum lasting time for wind SE 5–7 m s?1 in this area is about 15 h in summer. Further calculation shows that 111 t TN, 32 t NH4 +-N, 34 t TP and 10 t TDP can be released into water (the sediment area was 47.45% of the whole surface area), resulting in concentration increase of 0.025, 0.007, 0.007 and 0.002 mg L?1 separately. With stronger disturbance (bottom wave stress is 0.217 N m?2 which is equivalent to disturbance caused by wind SE 10–11 m s?1 at the same site), there has been significant increase of nutrient fluxes (1.16 × 10?2, 6.76 × 10?3, 1.14 × 10?2 and 2.14 × 10?3 mg m?2 s?1 for TN, DTN and NH4 +-N and TP). The exceptions were TDP with flux having a decrease (measured to be 9.54 × 10?5 mg m?2 s?1) and SRP with flux having a small increase (measured to be 5.42 × 10?5 mg m?2 s?1). The same statistic analysis on meteorological data reveal that the maximum lasting time for wind SE 10–11 m s?1 is no more than 5 h. Based on the nutrient fluxes and the wind lasting-time, similar calculations were also made suggesting that 232 t TN, 134.9 t TDN, 228 t NH4 +-N, 42.7 t TP, 2.0 t TDP and 1.1 t SRP will be released from sediment at this hydrodynamic condition resulting in the concentration increases of 0.050, 0.029, 0.049, 0.009, 0.0004 and 0.0002 mg L?1. Therefore in shallow lakes, surface disturbance can lead to significant increase of nutrient concentrations although some components in water column had negative flux with weak disturbance (e.g. TDN and SRP in this experiment). In this case, sediment looks to be a source of nutrients. These nutrients deposited in sediment can be carried or released into water with sediment resuspension or changes of environmental conditions at water-sediment interface, which can have great effects on aquatic ecosystem and is also the characteristics of shallow lakes.  相似文献   

13.
The present study makes use of a detailed water balance to investigate the hydrological status of a peatland with a basal clay‐rich layer overlying an aquifer exploited for drinking water. The aim is to determine the influence of climate and groundwater extraction on the water balance and water levels in the peatland. During the two‐year period of monitoring, the hydrological functioning of the wetland showed a hydric deficit, associated with a permanent unsaturated layer and a deep water table. At the same time, a stream was observed serving as a recharge inflow instead of draining the peatland, as usually described in natural systems. Such conditions are not favourable for peat accumulation. Field investigations show that the clay layer has a high hydraulic conductivity (from 1·10?7 to 3·10?9 m.s?1) and does not form a hydraulic barrier. Moreover, the vertical hydraulic gradients are downward between the peat and the sand aquifer, leading to high flows of groundwater through the clay layer (20–48% of the precipitation). The observed hydric deficit of the peatland results from a combination of dry climatic conditions during the study period and groundwater extraction. The climatic effect is mainly expressed through drying out of the peatland, while the anthropogenic effect leads to an enhancement of the climatic effect on a global scale, and a modification of fluxes at a local scale. The drying out of the peatland can lead to its mineralisation, which thus gives rise to environmental impacts. The protection of such wetlands in the context of climate change should take account of anthropogenic pressures by considering the wetland‐aquifer interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Understanding groundwater–surface water (GW–SW) interactions is vital for water management in karstic catchments due to its impact on water quality. The objective of this study was to evaluate and compare the applicability of seven environmental tracers to quantify and localize groundwater exfiltration into a small, human-impacted karstic river system. Tracers were selected based on their emission source to the surface water either as (a) dissolved, predominantly geogenic compounds (radon-222, sulphate and electrical conductivity) or (b) anthropogenic compounds (predominantly) originating from wastewater treatment plant (WWTP) effluents (carbamazepine, tramadol, sodium, chloride). Two contrasting sampling approaches were compared (a) assuming steady-state flow conditions and (b) considering the travel time of the water parcels (Lagrangian sampling) through the catchment to account for diurnal changes in inflow from the WWTP. Spatial variability of the concentrations of all tracers indicated sections of preferential groundwater inflow. Lagrangian sampling techniques seem highly relevant for capturing dynamic concentration patterns of WWTP-derived compounds. Quantification of GW inflow with the finite element model FINIFLUX, based on observed in-stream Rn activities led to plausible fluxes along the investigated river reaches (0.265 m3 s−1), while observations of other natural or anthropogenic environmental tracers produced less plausible water fluxes. Important point sources of groundwater exfiltration can be ascribed to locations where the river crosses geological fault lines. This indicates that commonly applied concepts describing groundwater–surface water interactions assuming diffuse flow in porous media are difficult to transfer to karstic river systems whereas concepts from fractured aquifers may be more applicable. In general, this study helps selecting the best suited hydrological tracer for GW exfiltration and leads to a better understanding of processes controlling groundwater inflow into karstic river systems.  相似文献   

15.
Spatial and temporal variability of hydrological responses affecting surface water dissolved organic carbon (DOC) concentrations are important for determining upscaling patterns of DOC export within larger catchments. Annual and intra‐annual variations in DOC concentrations and fluxes were assessed over 2 years at 12 sites (3·40–1837 km2) within the River Dee basin in NE Scotland. Mean annual DOC fluxes, primarily correlated with catchment soil coverage, ranged from 3·41 to 9·48 g m?2 yr?1. Periods of seasonal (summer–autumn and winter–spring) DOC concentrations (production) were delineated and related to discharge. Although antecedent temperature mainly determined the timing of switchover between periods of high DOC in the summer‐autumn and low DOC in winter‐spring, inter‐annual variability of export within the same season was largely dependent on its associated water flux. DOC fluxes ranged from 1·39 to 4·80 g m?2 season?1 during summer–autumn and 1·43 to 4·15 g m?2 season?1 in winter–spring.Relationships between DOC areal fluxes and catchment scale indicated that mainstem fluxes reflect the averaging of highly heterogeneous inputs from contrasting headwater catchments, leading to convergent DOC fluxes at catchment sizes of ca 100 km2. However, during summer–autumn periods, in contrast to winter–spring, longitudinal mainstem DOC fluxes continue to decrease, most likely because of increasing biological processes. This highlights the importance of considering seasonal as well as annual changes in DOC fluxes with catchment scale. This study increases our understanding of the temporal variability of DOC upscaling patterns reflecting cumulative changes across different catchment scales and aids modelling of carbon budgets at different stages of riverine systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Over an oceanic peatland, the concentration of Na in fog averaged 38.1 mgl?1 compared with 1.8 mgl?1 in rain, resulting in a significant flux of mineral elements to the surface. Between 16 May and 20 June 1990 the average mass flux of Na to the bog surface by fog, rain, and dry deposition was 21.9, 10.4 and 7.0 mg m?2 d?1. There was little long-term storage of Na within the peatland system, where Na losses measured in stream runoff averaged 34.8 mg m2 d?1, and deep groundwater losses 4 mg m?2 d?1. Calcium and Mg were preferentially retained in the organic soil, whereas K was relatively mobile. Potassium tended to become concentrated in the unsaturated zone. Stream runoff had a consistently higher pH than groundwater, corresponding to higher Ca and Mg concentrations, which may have been from mineral sources in the headwater ponds. Otherwise, the stream water chemistry was closely related to groundwater in the upper layers of the peat deposit.  相似文献   

17.
The processes of water movement through the Coombe Deposit in a chalk dry valley near Eastbourne in Southeast England were investigated using simple methods based on regular weekly measurements of rainfall, soil water content, and soil water potential. The drainage flux (recharge) through the soil was determined using the water balance method during the winter and the zero flux plane (ZFP) method after the appearance of the ZFP in the spring. The unsaturated hydraulic conductivity was derived applying Darcy's Law in a novel way using the measured potential gradients and weekly drainage fluxes. The derived conductivity characteristics were adequate to identify the flow mechanisms, to illustrate the difference in behaviour between the horizons of the soil profile, and to give some indication of pore water velocities. The mean daily drainage flux at 2.85 m depth during the recharge period from 10 October 1980 to 29 May 1981 was 1.6 mm d?1. Weekly mean rates of up to 3.7 mm d?1 were observed, but peak short term rates must have considerably exceeded this figure. It was shown that, in the lower part of the Coombe Deposit, when drainage fluxes are large, much of the flux passes through a very small proportion of the wetted cross-sectional area of the soil. This gives rise to pore water velocities of at least 3 m d?1 at a depth of 2.85 m and 0.5 m d?1 between 0.5 m and 2.5 m depth. These results show that pollutants may be moved very rapidly through the profile in this, and similar, material. The core sampling techniques normally used to monitor pollutant movement in the chalk are unlikely to succeed in detecting this movement, not only because it is transient but also because it occupies only a very small proportion of the water filled pores.  相似文献   

18.
A simple numerical model is presented for estimating vertical groundwater flux from transient subsurface temperature profiles obtained from field measurements. The model developed utilizes the MacCormack scheme, which is based on the Finite Difference Method (FDM), for solving the governing partial differential equation of convection–diffusion heat transport with appropriate initial and boundary conditions within the subsurface. In order to validate the model, numerical solutions obtained for the study area located in the Nagoka plain, Japan are compared with the published measured data and results obtained by others. Results obtained show good agreement and fit the observed data with a correlation coefficient, R2, of 0·88. The estimated groundwater flux is 1·85 × 10−7 m s−1. Sensitivity analyses were also carried out to investigate the effect of variations in groundwater fluxes, thermal properties and the annual thermal variability due to climatic changes on the transient subsurface temperature profiles and to have a better understanding of the subsurface thermal dynamics. A substantial effect of annual climatic variability is observed on the temporal distributions of temperature depth profiles, and a better estimate of thermal parameters is required to estimate vertical groundwater flux. The largest change in subsurface temperature depth profiles due to groundwater flux over a year is within ± 4 °C. The influence of groundwater flux on subsurface temperature distributions in space and time may be more pronounced in areas where the top of the saturated layer fluctuates considerably. Variation in thermal diffusivity results in temperature change up to ± 1·5% and may cause change in groundwater flux estimate by ± 18%. The model presented has merits over analytical solutions (type curve matching techniques) in terms of suitability and applicability to real field problems, and can be a good asset to hydrological models as quantifying groundwater recharge or deducing it from other quantities, such as rainfall, evapotranspiration and runoff, is often complicated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

20.
Oxygen uptake rates by the sediment have been determined in a natural stratified sediment-water system from Lake Constance (Obersee, max. depth). After oxic preconditioning of the system the uptake rates ranged between 855 and 1,062 mg·m?2·d?1; after anoxic preconditioning of the system they ranged between 3,405 and 3,794 mg·m?2·d?1. These data, and the electron activity buffer capacity and oxygen consumption intensity as found in Lake Constance profundal water, show that the oxic-anoxic transition will happen here at the earliest after 142 days (about 4.5 months) of total oxygen isolation. Reoxygenation requires at least 3.7 times higher O2 input than supposed for a ‘normal’ winter circulation in Obersee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号