首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of forest litter on snow surface albedo has been subject to limited study, mainly in the hardwood‐dominated forests of the northeastern United States. Given the recent pine beetle infestation in Western North America and associated increases in litter production, this study examines the effects of forest litter on snow surface albedo in the coniferous forests of south‐central British Columbia. Measured changes in canopy transmittance provide an indication of canopy loss or total litterfall over the winter of 2007–2008. Relationships between percent litter cover, an index of albedo, snow depth, and snow ablation during the 2008 melt season are compared between a mature, young, and clearcut coniferous stand. Results indicate a strong feedback effect between canopy loss and subsequent enhanced shortwave transmittance, and litter accumulation on the snow surface from that canopy loss. However, this relationship is confounded by other variables concurrently affecting albedo. While results suggest that a relatively small percent litter cover can have a significant effect on albedo and ablation, further research is underway to extract the litter signal from that of other factors affecting albedo, particularly snow depth. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Evan Pugh  Eric Gordon 《水文研究》2013,27(14):2048-2060
In regions of western North America with snow‐dominated hydrology, the presence of forested watersheds can significantly influence streamflow compared to areas with other vegetation cover types. Widespread tree death in these watersheds can thus dramatically alter many ecohydrologic processes including transpiration, canopy solar transmission and snow interception, subcanopy wind regimes, soil infiltration, forest energy storage and snow surface albedo. One of the more important causes of conifer tree death is bark beetle infestation, which in some instances will kill nearly all of the canopy trees within forest stands. Since 1996, an ongoing outbreak of bark beetles (Coleoptera: Scolytidae) has caused widespread mortality across more than 600,000 km2 of coniferous forests in western North America, including numerous Rocky Mountain headwaters catchments with high rates of lodgepole pine (Pinus contorta) mortality from mountain pin beetle (Dendroctonous ponderosae) infestations. Few empirical studies have documented the effects of MPB infestations on hydrologic processes, and little is known about the direction and magnitude of changes in water yield and timing of runoff due to insect‐induced tree death. Here, we review and synthesize existing research and provide new results quantifying the effects of beetle infestations on canopy structure, snow interception and transmission to create a conceptual model of the hydrologic effects of MPB‐induced lodgepole pine death during different stages of mortality. We identify the primary hydrologic processes operating in living forest stands, stands in multiple stages of death and long‐dead stands undergoing regeneration and estimate the direction of change in new water yield. This conceptual model is intended to identify avenues for future research efforts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Leaf area index (LAI) and canopy coverage are important parameters when modelling snow process in coniferous forests, controlling interception and transmitting radiation. Estimates of LAI and sky view factor show large variability depending on the estimation method used, and it is not clear how this is reflected in the calculated snow processes beneath the canopy. In this study, the winter LAI and sky view fraction were estimated using different optical and biomass‐based approximations in several boreal coniferous forest stands in Fennoscandia with different stand density, age and site latitude. The biomass‐based estimate of LAI derived from forest inventory data was close to the values derived from the optical measurements at most sites, suggesting that forest inventory data can be used as input to snow hydrological modelling. Heterogeneity of tree species and site fertility, as well as edge effects between different forest compartments, caused differences in the LAI estimates at some sites. A snow energy and mass balance model (SNOWPACK) was applied to detect how the differences in the estimated values of the winter LAI and sky view fraction were reflected in simulated snow processes. In the simulations, an increase in LAI and a decrease in sky view fraction changed the snow surface energy balance by decreasing shortwave radiation input and increasing longwave radiation input. Changes in LAI and sky view fraction affected directly snow accumulation through altered throughfall fraction and indirectly snowmelt through the changed surface energy balance. Changes in LAI and sky view fraction had a greater impact on mean incoming radiation beneath the canopy than on other energy fluxes. Snowmelt was affected more than snow accumulation. The effect of canopy parameters on evaporation loss from intercepted snow was comparable with the effect of variation in governing meteorological variables such as precipitation intensity and air temperature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Over the past decade, British Columbia (BC), has experienced the largest mountain pine beetle (MPB) outbreak on record. This study used the eddy‐covariance (EC) technique to examine the impact of the MPB attack on evapotranspiration (E) and associated canopy characteristics of two lodgepole pine stands with secondary structure (trees, saplings and seedlings surviving the attack) located in central BC. MPB‐06, an 85‐year‐old almost pure stand of pine trees, was first attacked in 2006, and by 2010, ~80% of the trees had been killed. MPB‐03, a 110‐year‐old stand with an overstory consisting of over 90% pine and a developed sub‐canopy, was first attacked in 2003 and by 2007 had > 95% pine canopy mortality. EC measurements began in August 2006 at MPB‐06 and in March 2007 at MPB‐03, and continued for four years. Annual total E ranged from 226 mm to 237 mm at MPB‐06, and from 280 to 297 mm at MPB‐03, showing relatively little year‐to‐year change at both sites over the four years. Increased E from the accelerated growth of the surviving vegetation (secondary structure, shrubs and herbs) compensated for reduction in E due to the death of the overstory. Monthly average daytime canopy conductance, the Priestley–Taylor (α), and the canopy–atmosphere decoupling coefficient (Ω) steadily increased during the growing season reaching approximate maximum values of 5 mm s?1, 0.75 and 0.12, respectively. Potential evapotranspiration was approximated using a vapour pressure deficit‐dependent α obtained at high soil water content. Calculated water deficits indicated some water‐supply limitation to the surviving trees and understory at both sites. Rates of root zone drainage during the growing season were low relative to precipitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This study quantified changes in snow accumulation and ablation with forest defoliation in a young pine stand attacked by mountain pine beetle, a mature mixed species stand, and a clearcut in south‐central British Columbia. From 2006 to 2012, as trees in the pine stand turned from green to grey, average canopy transmittance increased from 27% to 49%. In the mixed stand, transmittance remained constant at 19%. In 2009, the year of greatest needle loss, average snow surface litter cover in the pine stand was 29% (range 4 – 61%), compared to ≤9% in other years and over double that in the mixed stand. By 2012, litter accumulation in the now‐grey pine stand was only a sixth of that in the mixed stand. Inter‐annual variability in the weather had the greatest effect on snow accumulation and ablation, with the greatest differences between both forested stands and the clearcut occurring in 2010, the year of lowest SWE. Differences in snow accumulation between the pine and mixed stand increased in 2010 as a result of decreased snow interception in the young stand after needlefall. Average ablation rates in the attacked stand were most different from the mixed stand in 2009 and 2012, the years with the largest and smallest over‐winter needle loss, respectively. This study shows that grey, non‐pine, and understory trees moderate snow response to changes in the main canopy. It also highlights the complex interrelationships between ecohydrological processes key to assessing watershed response to forest cover loss in snow dominated hydrologic regimes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
J. W. POMEROY  K. DION 《水文研究》1996,10(12):1591-1608
Predicting the rate of snowmelt and intercepted snow sublimation in boreal forests requires an understanding of the effects of snow-covered conifers on the exchange of radiant energy. This study examined the amount of intercepted snow on a jack pine canopy in the boreal forest of central Saskatchewan and the shortwave and net radiation exchange with this canopy, to determine the effect of intercepted snow and canopy structure on shortwave radiation reflection and extinction and net radiation attenuation in a boreal forest. The study focused on clear sky conditions, which are common during winter in the continental boreal forest. Intercepted snow was found to have no influence on the clear-sky albedo of the canopy, the extinction of short wave radiation by the canopy or ratio of net radiation at the canopy top to that at the surface snow cover. Because of the low albedo of the snow-covered canopy, net radiation at the canopy top remains positive and a large potential source of energy for sublimation. The canopy albedo declines somewhat as the extinction efficiency of the underlying canopy increases. The extinction efficiency of short wave radiation in the canopy depends on solar angle because of the approximately horizontal orientation of pine branches. For low solar angles above the horizon, the extinction efficiency is quite low and short wave transmissivity through the canopy is relatively high. As the solar angle increases, extinction increases up to angles of about 50°, and then declines. Extinction of short wave radiation in the canopy strongly influences the attenuation of net radiation by the canopy. Short wave radiation that is extinguished by branches is radiated as long wave, partly downwards to the snow cover. The ratio of net radiation at the canopy top to that at the snow cover surface increases with the extinction of short wave radiation and is negative for low extinction efficiencies. For the pine canopy examined, the daily mean net radiation at the snow cover surface became positive when daily mean solar angles exceeded 22° in late March. Hence, canopy structure and solar angle control the net radiation at the snow cover surface during clear sky conditions and will govern the timing and rate of snowmelt. Models of intercepted snow sublimation and forest snowmelt could beneficially incorporate the canopy radiation balance, which can be extrapolated to stands of various canopy densities, coverage and heights in a physically based manner. Such models could hence avoid ‘empirical’ temperature index measures that cannot be extrapolated with confidence.  相似文献   

7.
Forested boreal peatlands represent a precipitation‐dependent ecosystem that is prone to wildfire disturbance. Solar radiation exchange in forested peatlands is modified by the growth of a heterogeneous, open‐crown tree canopy, as well as by likely disturbance from wildfire. Radiation exchange at the peat surface is important in peatlands, as evaporation from the peat surface is the dominant pathway of water loss in peatlands of continental western North America. We examined shortwave and longwave radiation exchange in two forested ombrotrophic peatlands of central Alberta, Canada: one with (>75 years since wildfire; unburned) and another without a living spruce canopy (1–4 years since wildfire; burned) between the autumn of 2007 and 2010. Above‐canopy winter albedo was nearly two times greater in the recently burned peatland than the unburned peatland. Incoming shortwave radiation at the peat surface was much higher at the burned peatland, which increases the amount of energy available for evaporation. This is especially true for hollow microforms that are generally shaded by the tree canopy in unburned peatlands. Snow‐free albedo was similar between peatlands, although an increase in longwave losses at the burned site resulted in slightly greater net radiation at the unburned site. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Snowmelt energetics at a shrub tundra site in the western Canadian Arctic   总被引:1,自引:0,他引:1  
Snow accumulation and melt were observed at shrub tundra and tundra sites in the western Canadian Arctic. End of winter snow water equivalent (SWE) was higher at the shrub tundra site than the tundra site, but lower than total winter snowfall because snow was removed by blowing snow, and a component was also lost to sublimation. Removal of snow from the shrub site was larger than expected because the shrubs were bent over and covered by snow during much of the winter. Although SWE was higher at the shrub site, the snow disappeared at a similar time at both sites, suggesting enhanced melt at the shrub site. The Canadian Land Surface Scheme (CLASS) was used to explore the processes controlling this enhanced melt. The spring‐up of the shrubs during melt had a large effect on snowmelt energetics, with similar turbulent fluxes and radiation above the canopy at both sites before shrub emergence and after the snowmelt. However, when the shrubs were emerging, conditions were considerably different at the two sites. Above the shrub canopy, outgoing shortwave radiation was reduced, outgoing longwave radiation was increased, sensible heat flux was increased and latent flux was similar to that at the tundra site. Above the snow surface at this site, incoming shortwave radiation was reduced, incoming longwave radiation was increased and sensible heat flux was decreased. These differences were caused by the lower albedo of the shrubs, shading of the snow, increased longwave emission by the shrub stems and decreased wind speed below the shrub canopy. The overall result was increased snowmelt at the shrub site. Although this article details the impact of shrubs on snow accumulation and melt, and energy exchanges, additional research is required to consider the effect of shrub proliferation on both regional hydrology and climate. Copyright 2010 John Wiley & Sons Ltd and Crown in the right of Canada.  相似文献   

10.
Western US forest ecosystems and downstream water supplies are reliant on seasonal snowmelt. Complex feedbacks govern forest–snow interactions in which forests influence the distribution of snow and the timing of snowmelt but are also sensitive to snow water availability. Notwithstanding, few studies have investigated the influence of forest structure on snow distribution, snowmelt and soil moisture response. Using a multi‐year record from co‐located observations of snow depth and soil moisture, we evaluated the influence of forest‐canopy position on snow accumulation and snow depth depletion, and associated controls on the timing of soil moisture response at Boulder Creek, Colorado, Jemez River Basin, New Mexico, and the Wolverton Basin, California. Forest‐canopy controls on snow accumulation led to 12–42 cm greater peak snow depths in open versus under‐canopy positions. Differences in accumulation and melt across sites resulted in earlier snow disappearance in open positions at Jemez and earlier snow disappearance in under‐canopy positions at Boulder and Wolverton sites. Irrespective of net snow accumulation, we found that peak annual soil moisture was nearly synchronous with the date of snow disappearance at all sites with an average deviation of 12, 3 and 22 days at Jemez, Boulder and Wolverton sites, respectively. Interestingly, sites in the Sierra Nevada showed peak soil moisture prior to snow disappearance at both our intensive study site and the nearby snow telemetry stations. Our results imply that the duration of soil water stress may increase as regional warming or forest disturbance lead to earlier snow disappearance and soil moisture recession in subalpine forests. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
As large, high‐severity forest fires increase and snowpacks become more vulnerable to climate change across the western USA, it is important to understand post‐fire disturbance impacts on snow hydrology. Here, we examine, quantify, parameterize, model, and assess the post‐fire radiative forcing effects on snow to improve hydrologic modelling of snow‐dominated watersheds having experienced severe forest fires. Following a 2011 high‐severity forest fire in the Oregon Cascades, we measured snow albedo, monitored snow, and micrometeorological conditions, sampled snow surface debris, and modelled snowpack energy and mass balance in adjacent burned forest (BF) and unburned forest sites. For three winters following the fire, charred debris in the BF reduced snow albedo, accelerated snow albedo decay, and increased snowmelt rates thereby advancing the date of snow disappearance compared with the unburned forest. We demonstrate a new parameterization of post‐fire snow albedo as a function of days‐since‐snowfall and net snowpack energy balance using an empirically based exponential decay function. Incorporating our new post‐fire snow albedo decay parameterization in a spatially distributed energy and mass balance snow model, we show significantly improved predictions of snow cover duration and spatial variability of snow water equivalent across the BF, particularly during the late snowmelt period. Field measurements, snow model results, and remote sensing data demonstrate that charred forests increase the radiative forcing to snow and advance the timing of snow disappearance for several years following fire. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Snowpacks and forests have complex interactions throughout the large range of altitudes where they co-occur. However, there are no reliable data on the spatial and temporal interactions of forests with snowpacks, such as those that occur in nearby areas that have different environmental conditions and those that occur during different snow seasons. This study monitored the interactions of forests with snowpacks in four forest stands in a single valley of the central Spanish Pyrenees during three consecutive snow seasons (2015/2016, 2016/2017 and 2017/2018). Daily snow depth data from time-lapse cameras were compared with snow data from field surveys that were performed every 10–15 days. These data thus provided information on the spatial and temporal changes of snow–water equivalent (SWE). The results indicated that forest had the same general effects on snowpack in each forest stand and during each snow season. On average, forest cover reduced the duration of snowpack by 17 days, reduced the cumulative SWE of the snowpack by about 60% and increased the spatial heterogeneity of snowpack by 190%. Overall, forest cover reduced SWE total accumulation by 40% and the rate of SWE accumulation by 25%. The forest-mediated reduction of the accumulation rate, in combination with the occasional forest-mediated enhancement of melting rate, explained the reduced duration of snowpacks beneath forest canopies. However, the magnitude and timing of certain forest effects on snowpack had significant spatial and temporal variations. This variability must be considered when selecting the location of an experimental site in a mountainous area, because the study site should be representative of surrounding areas. The same considerations apply when selecting a time period for study.  相似文献   

13.
The stable water isotopes, 2H and 18O, can be useful environmental tracers for quantifying snow contributions to streams and aquifers, but characterizing the isotopic signatures of bulk snowpacks is challenging because they can be highly variable across the catchment landscape. In this study, we investigate one major source of isotopic heterogeneity in snowpacks: the influence of canopy cover. We measured amounts and isotopic compositions of bulk snowpack, throughfall, and open precipitation during seven campaigns in mid-winter 2018 along forest-grassland transects at three different elevations (1196, 1297, and 1434 m above sea level) in a pre-Alpine catchment in Switzerland. Snowpack storages under forest canopies were 67 to 93% less than in adjacent open grasslands. On average, the water isotope ratios were higher in the snowpacks under forest canopy than in open grasslands (by 13.4 ‰ in δ2H and 2.3 ‰ in δ18O). This isotopic difference mirrored the higher isotope values in throughfall compared with open snowfall (by 13.5 ‰ in δ2H and 2.2 ‰ in δ18O). Although this may suggest that most of the isotopic differences in snowpacks under forests versus in open grasslands were attributable to canopy interception effects, the temporal evolution of snowpack isotope ratios indicated preferential effluxes of lighter isotopes as energy inputs increased and the snowpack ripened and melted. Understanding these effects of forest canopy on bulk snowpack snow water equivalent and isotopic composition are useful when using isotopes to infer snowmelt processes in landscapes with varying forest cover.  相似文献   

14.
Water losses from snow intercepted by forest canopy can significantly influence the hydrological cycle in seasonally snow‐covered regions, yet how snow interception losses (SIL) are influenced by a changing climate are poorly understood. In this study, we used a unique 30 year record (1986–2015) of snow accumulation and snow water equivalent measurements in a mature mixed coniferous (Picea abies and Pinus sylvestris ) forest stand and an adjacent open area to assess how changes in weather conditions influence SIL. Given little change in canopy cover during this study, the 20% increase in SIL was likely the result of changes in winter weather conditions. However, there was no significant change in average wintertime precipitation and temperature during the study period. Instead, mean monthly temperature values increased during the early winter months (i.e., November and December), whereas there was a significant decrease in precipitation in March. We also assessed how daily variation in meteorological variables influenced SIL and found that about 50% of the variation in SIL was correlated to the amount of precipitation that occurred when temperatures were lower than ?3 °C and to the proportion of days with mean daily temperatures higher than +0.4 °C. Taken together, this study highlights the importance of understanding the appropriate time scale and thresholds in which weather conditions influence SIL in order to better predict how projected climate change will influence snow accumulation and hydrology in boreal forests in the future.  相似文献   

15.
Understanding the role of forests on snowmelt processes enables better estimates of snow storages at a catchment scale and contributes to a higher accuracy of spring flood forecasting. A coniferous forest modifies the snowpack energy balance by reducing the total amount of solar shortwave radiation (SWR) and enhancing the role of longwave radiation (LWR) emitted by trees. This study focuses on changes in SWR and LWR at three sites with different canopy structure (Bohemian Forest, Czechia), including one site affected by the bark beetle (Ips typographus). Measurements of incoming and outgoing SWR and LWR were performed at all sites equipped with CNR4 Net Radiometers for three cold seasons. In addition to SWR and LWR, sensible and latent heat, and ground heat and energy supplied by liquid precipitation were calculated. The results showed that net SWR at the healthy forest site represented only 7% of the amount at the open site due to the shading effect of trees. In contrast, net LWR represented a positive component of the snowpack energy balance at the healthy forest site and thus contributed the most to snowmelt. However, the modelled snowmelt rates were significantly lower in the forest than in the open area since the higher LWR in the forest did not compensated for the lower SWR. The progressive decay of disturbed forest caused the decrease in mean net LWR from −3.1 W/m2 to −12.9 W/m2 and the increase in mean net SWR from 31.6 W/m2 to 96.2 W/m2 during the study period. These changes caused an increase in modelled snowmelt rates by 50% in the disturbed forest, compared to the healthy forest site, during the study period. Our findings have important implications for runoff from areas affected by land cover changes due to either human activity or climate change.  相似文献   

16.
17.
Heng Lu  Ming‐Zhe Liu  Xi Han 《水文研究》2017,31(8):1602-1612
Forest litter exerts an impact on the energy budget of snow surfaces, which lie beneath forest canopies. In this study, we measured shortwave and longwave radiation levels, as well as quantities of Asian spruce (Picea schrenkinan ) forest litter, over 3 snow study plots that representing an open environment, 20% forest canopy openness (20% FCO), and 80% forest canopy openness (80% FCO). The fractional litter coverage (lc ) was obtained through the binarization of digital photographs of forest litter. The effects of forest litter on snow surface albedo (α ), snow surface temperature (T s ), upward shortwave and longwave radiation (K and L ), and sensible heat flux (H ) were then analyzed. According to our results, the energy budget over snow surface influenced by forest litter principally due to forest litter forcing α decrease and T s increase. The effects of forest litter on the energy budget increased with time and lc . We found that forest litter exerted the most significant impact on K and L at daytime during the latter stages of the snowmelt period. The influence of forest litter on H was more apparent on windy days. The presence of forest litter increased gains in shortwave radiation and losses in longwave radiation and decreased gains in H . Compared to the simulated energy (K  + L  + H ) over a snow surface without litter, the calculated energy decreased by ?13.4 W/m2 and increased by 9.0 W/m2, respectively, at the 20% FCO and 80% FCO sites during the latter stages of the snowmelt period. Overall, forest litter facilitated snow surface energy gains at the 80% FCO site and impeded them at the 20% FCO site during the latter stages of the snowmelt period.  相似文献   

18.
The water and energy exchanges in forests form one of the most important hydro‐meteorological systems. There have been far fewer investigations of the water and heat exchange in high latitude forests than of those in warm, humid regions. There have been few observations of this system in Siberia for an entire growing season, including the snowmelt and leaf‐fall seasons. In this study, the characteristics of the energy and water budgets in an eastern Siberian larch forest were investigated from the snowmelt season to the leaf‐fall season. The latent heat flux was strongly affected by the transpiration activity of the larch trees and increased quickly as the larch stand began to foliate. The sensible heat dropped at that time, although the net all‐wave radiation increased. Consequently, the seasonal variation in the Bowen ratio was clearly ‘U’‐shaped, and the minimum value (1·0) occurred in June and July. The Bowen ratio was very high (10–25) in early spring, just before leaf opening. The canopy resistance for a big leaf model far exceeded the aerodynamic resistance and fluctuated over a much wider range. The canopy resistance was strongly restricted by the saturation deficit, and its minimum value was 100 s m?1 (10 mm s?1 in conductance). This minimum canopy resistance is higher than values obtained for forests in warm, humid regions, but is similar to those measured in other boreal conifer forests. It has been suggested that the senescence of leaves also affects the canopy resistance, which was higher in the leaf‐fall season than in the foliated season. The mean evapotranspiration rate from 21 April 1998 to 7 September 1998 was 1·16 mm day?1, and the maximum rate, 2·9 mm day?1, occurred at the beginning of July. For the growing season from 1 June to 31 August, this rate was 1·5 mm day?1. The total evapotranspiration from the forest (151 mm) exceeded the amount of precipitation (106 mm) and was equal to 73% of the total water input (211 mm), including the snow water equivalent. The understory evapotranspiration reached 35% of the total evapotranspiration, and the interception evaporation was 15% of the gross precipitation. The understory evapotranspiration was high and the interception evaporation was low because the canopy was sparse and the leaf area index was low. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The Canadian Land Surface Scheme (CLASS) was modified to correct an underestimation of the winter albedo in evergreen needleleaf forests. Default values for the visible and near‐infrared albedo of a canopy with intercepted snow, αVIS,cs and αNIR,cs, respectively, were too small, and the fraction of the canopy covered with snow, fsnow, increased too slowly with interception, producing a damped albedo response. A new model for fsnow is based on zI*, the effective depth of newly intercepted snow required to increase the canopy albedo to its maximum, which corresponds in the model with fsnow = 1. Snow unloading rates were extracted from visual assessments of photographs and modelled based on relationships with meteorological variables, replacing the time‐based method employed in CLASS. These parameterizations were tested in CLASS version 3.6 at boreal black spruce and jack pine forests in Saskatchewan, Canada, a subalpine Norway spruce and silver fir forest at Alptal, Switzerland, and a boreal maritime forest at Hitsujigaoka, Japan. Model configurations were assessed based on the index of agreement, d, relating simulated and observed daily albedo. The new model employs αVIS,cs = 0.27, αNIR,cs = 0.38 and zI* = 3 cm. The best single‐variable snow unloading algorithm, determined by the average cross‐site d, was based on wind speed. Two model configurations employing ensemble averages of the unloading rate as a function of total incoming radiation and wind speed, and air temperature and wind speed, respectively, produced larger minimum cross‐site d values but a smaller average. The default configuration of CLASS 3.6 produced a cross‐site average d from October to April of 0.58. The best model employing a single parameter (wind speed at the canopy top) for modelling the unloading rate produced an average d of 0.86, while the two‐parameter ensemble‐average unloading models produced a minimum d of 0.81 and an average d of 0.84. © 2015 Her Majesty the Queen in Right of Canada. Hydrological Processes published by John Wiley & Sons, Ltd.  相似文献   

20.
Snow water equivalent was measured during three springs on north‐ and south‐exposed sites representing a range of stand structure and development stages of Quebec's balsam fir forest. Maximum snow water equivalent of the season, mean seasonal snowmelt rate, snowmelt season duration and total snowmelt season degree‐day factor were related to canopy height, canopy density, light interception fraction and basal area of the stands using random coefficient models. Seasonal mean snowmelt rate was better explained by stand characteristics (R2 from 0·41 to 0·61) than was maximum snow water equivalent (R2 from 0·08 to 0·23). The best relationship was found with light interception, which explained 61% of snowmelt rate variability between stands. These relationships were not significantly affected by stand aspect (Pr ≥ S = 0·14 or higher), as snow dynamics seemed less dependent on aspect than on stand characteristics. Snowmelt recovery rates could be used by forest planners to establish an acceptable time step for the harvesting of different parts of a watershed in order to prevent peak flow augmentations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号