首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Land cover changes associated with urbanization have negative effects on downstream ecosystems. Contemporary urban development attempts to mitigate these effects by designing stormwater infrastructure to mimic predevelopment hydrology, but their performance is highly variable. This study used in situ monitoring of recently built neighbourhoods to evaluate the catchment‐scale effectiveness of landscape decentralized stormwater control measures (SCMs) in the form of street connected vegetated swales for reducing runoff volumes and flow rates relative to curb‐and‐gutter infrastructure. Effectiveness of the SCMs was quantified by monitoring runoff for 8 months at the outlets of 4 suburban catchments (0.76–5.25 ha) in Maryland, USA. Three “grey” catchments installed curb‐and‐gutter stormwater conveyances, whereas the fourth “green” catchment built parcel‐level vegetated swales. The catchment with decentralized SCMs reduced runoff, runoff ratio, and peak runoff compared with the grey infrastructure catchments. In addition, the green catchment delayed runoff, resulting in longer precipitation–runoff lag times. Runoff ratios across the monitoring period were 0.13 at the green catchment and 0.37, 0.35, and 0.18 at the 3 grey catchments. Runoff only commenced after 6 mm of precipitation at the decentralized SCM catchment, whereas runoff occurred even during the smallest events at the grey catchments. However, as precipitation magnitudes reached 20 mm, the green catchment runoff characteristics were similar to those at the grey catchments, which made up 37% of the total precipitation in only 10 of 72 events. Therefore, volume‐based reduction goals for stormwater using decentralized SCMs such as vegetated swales require additional redundant SCMs in a treatment train as source control and/or end‐of‐pipe detention to capture a larger fraction of runoff and more effectively mimic predevelopment hydrology for the relatively rare but larger precipitation events.  相似文献   

2.
The impacts of land use intensity, here defined as the degree of imperviousness, on stormwater volumes, runoff rates and their temporal occurrence were studied at three urban catchments in a cold region in southern Finland. The catchments with ‘High’ and ‘Intermediate’ land use intensity, located around the city centre, were characterized by 89% and 62% impervious surfaces, respectively. The ‘Low’ catchment was situated in a residential area of 19% imperviousness. During a 2‐year study period with divergent weather conditions, the generation of stormwater correlated positively with catchment imperviousness: The largest annual stormwater volumes and the highest runoff coefficients and number of stormwater runoff events occurred in the High catchment. Land use intensity also altered the seasonality of stormwater runoff: Most stormwater in the High catchment was generated during the warm period of the year, whereas the largest contribution to annual stormwater generation in the Low catchment took place during the cold period. In the two most urbanized catchments, spring snow melt occurred a few weeks earlier than in the Low catchment. The rate of stormwater runoff in the High and Intermediate catchments was higher in summer than during spring snow melt, and summer runoff rates in these more urbanized catchments were several times higher than in the Low catchment. Our study suggests that the effects of land use intensity on stormwater runoff are season dependent in cold climates and that cold seasons diminish the differences between land use intensities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The closed-form analytical stormwater quality models are developed for simulating urban catchment pollutant buildup and washoff processes. By integrating the rainfall–runoff transformation with pollutant buildup and washoff functions, stormwater quality measures, such as the cumulative distribution functions (CDFs) of pollutant loads, the expected value of pollutant event mean concentrations (EMCs) and the average annual pollutant load can be derived. This paper presents methodologies and major procedures for the development of urban stormwater quality models based on derived probability distribution theory. In order to investigate the spatial variation in model parameters and its impact on stormwater pollutant buildup and washoff processes as well as pollutant loads to receiving waters, an extended form of the original rainfall–runoff transformation which is based on lumped runoff coefficient approach is proposed to differentiate runoff generation mechanisms between the impervious and pervious areas of the catchment. In addition, as a contrast to the aggregated pollutant buildup models formulated with a single lumped buildup parameter, the disaggregated form of the pollutant buildup model is proposed by introducing a number of physically-based parameters associated with pollutant buildup and washoff processes into the pollutant load models. The results from the case study indicate that analytical urban stormwater management model are capable of providing results in good agreement with the field measurements, and can be employed as alternatives to continuous simulation models in the evaluation of long-term stormwater quality measures.  相似文献   

4.
Abstract

Rainfall and runoff depths were examined for 763 storms on 26 urban basins located in 12 countries. For 17 of the basins, impervious surfaces were the major contributors to storm runoff. These basins were generally smaller than 25 ha and had small to medium storms in the data set. Nine basins had significant amounts of runoff from pervious as well as impervious surfaces. Eight of these basins are located in Australia. For all 26 basins, plots of rainfall and runoff depths were used to estimate the effective impervious area and the impervious area initial loss. The data plotted close to a single straight line on all basins, indicating that the effective impervious area remained constant for all storm sizes. The effective impervious fraction was related to total impervious area and the directly connected impervious fraction estimated from maps. For the basins with pervious runoff, the depth of rain in the storm was the most important factor in determining pervious runoff for rainfalls less than 50 mm, while for larger storms other factors including rainfall intensity and antecedent wetness were also found to be significant.  相似文献   

5.
Urban expansion and the scarcity of water supplies in arid and semiarid regions have increased the importance of urban runoff to localized water resources. However, urban catchment responses to precipitation are poorly understood in semiarid regions where intense rainfall often results in large runoff events during the short summer monsoon season. To evaluate how urban runoff quantity and quality respond to rainfall magnitude and timing, we collected stream stage data and runoff samples throughout the 2007 and 2008 summer monsoons from four ephemeral drainages in Tucson, Arizona. Antecedent rainfall explained 20% to 30% of discharge (mm) and runoff ratio in the least impervious (22%) catchment but was not statistically related to hydrologic responses at more impervious sites. Regression models indicated that rainfall depth, imperviousness and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality did not vary with imperviousness or catchment size. Rainfall depth and duration, time since antecedent rainfall and event and cumulative discharge controlled runoff hydrochemistry and resulted in five specific solute response patterns: (i) strong event and seasonal solute mobilization (solute flush), (ii) event chemostasis and strong seasonal flush, (iii) event chemostasis and weak seasonal flush, (iv) event and seasonal chemostasis and (v) late seasonal flush. Our results indicate that hydrologic responses of semiarid catchments are controlled by rainfall partitioning at the event scale, whereas wetting magnitude, frequency and timing alter solute stores readily available for transport and control temporal runoff quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9–8·6 °C) than at reference sites (range: 0–1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Green stormwater infrastructure implementation in urban watersheds has outpaced our understanding of practice effectiveness on streamflow response to precipitation events. Long-term monitoring of experimental suburban watersheds in Clarksburg, Maryland, USA, provided an opportunity to examine changes in event-based streamflow metrics in two treatment watersheds that transitioned from agriculture to suburban development with a high density of infiltration-focused stormwater control measures (SCMs). Urban Treatment 1 has predominantly single family detached housing with 33% impervious cover and 126 SCMs. Urban Treatment 2 has a mix of single family detached and attached housing with 44% impervious cover and 219 SCMs. Differences in streamflow-event magnitude and timing were assessed using a before-after-control-reference-impact design to compare urban treatment watersheds with a forested control and an urban control with detention-focused SCMs. Streamflow and precipitation events were identified from 14 years of sub-daily monitoring data with an automated approach to characterize peak streamflow, runoff yield, runoff ratio, streamflow duration, time to peak, rise rate, and precipitation depth for each event. Results indicated that streamflow magnitude and timing were altered by urbanization in the urban treatment watersheds, even with SCMs treating 100% of the impervious area. The largest hydrologic changes were observed in streamflow magnitude metrics, with greater hydrologic change in Urban Treatment 2 compared with Urban Treatment 1. Although streamflow changes were observed in both urban treatment watersheds, SCMs were able to mitigate peak flows and runoff volumes compared with the urban control. The urban control had similar impervious cover to Urban Treatment 2, but Urban Treatment 2 had more than twice the precipitation depth needed to initiate a flow response and lower median peak flow and runoff yield for events less than 20 mm. Differences in impervious cover between the Urban Treatment watersheds appeared to be a large driver of differences in streamflow response, rather than SCM density. Overall, use of infiltration-focused SCMs implemented at a watershed-scale did provide enhanced attenuation of peak flow and runoff volumes compared to centralized-detention SCMs.  相似文献   

8.
The effect of changes in rainfall event characteristics on urban stormwater quality, which was described by total suspended solids (TSS), was studied by means of computer simulations conducted with the Storm Water Management Model for a climate change scenario for northern Sweden. The simulation results showed that TSS event loads depended mainly on rainfall depth and intensity, but not on antecedent conditions. Storms with low‐to‐intermediate depths and intensities showed the highest sensitivity to changes in rainfall input, both for percentage and absolute changes in TSS wash‐off loads, which was explained by the contribution of pervious areas and supply limitations. This has significant implications for stormwater management, because those relatively frequent events generally carry a high percentage of the annual pollutant load. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Urbanization threatens headwater stream ecosystems globally. Watershed restoration practices, such as infiltration‐based stormwater management, are implemented to mitigate the detrimental effects of urbanization on aquatic ecosystems. However, their effectiveness for restoring hydrologic processes and watershed storage remains poorly understood. Our study used a comparative hydrology approach to quantify the effects of urban watershed restoration on watershed hydrologic function in headwater streams within the Coastal Plain of Maryland, USA. We selected 11 headwater streams that spanned an urbanization–restoration gradient (4 forested, 4 urban‐degraded, and 3 urban‐degraded) to evaluate changes in watershed hydrologic function from both urbanization and watershed restoration. Discrete discharge and continuous, high‐frequency rainfall‐stage monitoring were conducted in each watershed. These datasets were used to develop 6 hydrologic metrics describing changes in watershed storage, flowpath connectivity, or the resultant stream flow regime. The hydrological effects of urbanization were clearly observed in all metrics, but only 1 of the 3 restored watersheds exhibited partially restored hydrologic function. At this site, a larger minimum runoff threshold was observed relative to the urban‐degraded watersheds, suggesting enhanced infiltration of stormwater runoff within the restoration structure. However, baseflow in the stream draining this watershed remained low compared to the forested reference streams, suggesting that enhanced infiltration of stormwater runoff did not recharge subsurface storage zones contributing to stream baseflow. The highly variable responses among the 3 restored watersheds were likely due to the spatial heterogeneity of urban development, including the level of impervious cover and extent of the storm sewer network. This study yielded important knowledge on how restoration strategies, such as infiltration‐based stormwater management, modulated—or failed to modulate—hydrological processes affected by urbanization, which will help improve the design of future urban watershed management strategies. More broadly, we highlighted a multimetric approach that can be used to monitor the restoration of headwater stream ecosystems in disturbed landscapes.  相似文献   

11.
In this study, we developed the urban ecohydrology model (UEM) to investigate the role of bioretention on watershed water balance, runoff production, and streamflow variability. UEM partitions the land surface into pervious, impervious, and bioretention cell fractions. Soil moisture and vegetation dynamics are simulated in pervious areas and bioretention cells using a lumped ecohydrological approach. Bioretention cells receive runoff from a fraction of impervious areas. The model is calibrated in an urban headwater catchment near Seattle, WA, USA, using hourly weather data and streamflow observations for 3 years. The calibrated model is first used to investigate the relationship between streamflow variability and bioretention cell size that receives runoff from different values of impervious area in the watershed. Streamflow variability is quantified by 2 indices, high pulse count (HPC), which quantifies the number of flow high pulses in a water year above a threshold, and high pulse range (HPR), which defines the time over which the pulses occurred. Low values of these indices are associated with improved stream health. The effectiveness of the modelled bioretention facilities are measured by their influence on reducing HPC and HPR and on flow duration curves in comparison with modelled fully forested conditions. We used UEM to examine the effectiveness of bioretention cells under rainfall regimes that are wetter and drier than the study area in an effort to understand linkages between the degree of urbanization, climate, and design bioretention cell size to improve inferred stream health conditions. In all model simulations, limits to the reduction of HPC and HPR indicators were reached as the size of bioretention cells grew. Bioretention was more effective as the rainfall regime gets drier. Results may guide bioretention design practices and future studies to explore climate change impacts on bioretention design and management.  相似文献   

12.
Storage facilities for urban drainage systems are frequently planned and implemented to mitigate the negative impacts of stormwater discharges on receiving waters. For screening level analysis of various runoff control alternatives, cost-effective planning and design of the storage facilities could significantly benefit from analytical tools with explicit solutions to the determination of the relative magnitudes of the storage capacity and the controlled outflow capacity in conjunction with the desired level of system performance. This paper presents methodologies for the development of closed-form mathematical expressions of system performance measures, with which existing drainage system performance and a wider range of alternative designs can be evaluated. As an alternative to continuous simulation for urban stormwater runoff control analysis at the planning stage, these analytical models for stormwater control analysis are developed with the derived probability distribution approach whereby the probability density functions (PDFs) of rainfall characteristics of the catchment are mathematically transformed by rainfall–runoff transformation to create the PDFs of system outputs, such as spill volumes from the storage facility, runoff capture efficiency, etc. This study demonstrates that analytical models, with consideration of the entire spectrum of meteorological conditions, are capable of providing comparable results to continuous simulation models and can be employed as effective tools in urban stormwater management planning.  相似文献   

13.
Urban stormwater is a major cause of urban flooding and natural water pollution. It is therefore important to assess any hydrologic trends in urban catchments for stormwater management and planning. This study addresses urban hydrological trend analysis by examining trends in variables that characterize hydrological processes. The original and modified Mann‐Kendall methods are applied to trend detection in two French catchments, that is, Chassieu and La Lechere, based on approximately 1 decade of data from local monitoring programs. In both catchments, no trend is found in the major hydrological process driver (i.e., rainfall variables), whereas increasing trends are detected in runoff flow rates. As a consequence, the runoff coefficients tend to increase during the study period, probably due to growing imperviousness with the local urbanization process. In addition, conceptual urban rainfall‐runoff model parameters, which are identified via model calibration with an event based approach, are examined. Trend detection results indicate that there is no trend in the time of concentration in Chassieu, whereas a decreasing trend is present in La Lechere, which, however, needs to be validated with additional data. Sensitivity analysis indicates that the original Mann‐Kendall method is not sensitive to a few noisy values in the data series.  相似文献   

14.
Since stormwater wash-off of pollutants in urban areas is largely affected by environmental variability, it is very difficult to predict the amount of pollutants transported by stormwater runoff during and after individual rainfall events. We investigated the addition of a random component into an exponential wash-off equation of total suspended solids (TSS) and total nitrogen (TN) to model the variability of runoff pollutant concentrations. The model can be analytically solved to describe the probability distributions of TSS and TN concentrations as a function of increasing runoff depths. TSS data from six Australian catchments and TN data from three of these catchments were used to calibrate the model and evaluate its applicability. Using the results of the model, its potential use to determine the appropriate size of stormwater treatment systems is discussed, stressing how probabilistic considerations should be included in the design of such systems. Specifically, stormwater depths retained by a treatment system should result from a compromise between the recurrence of specific runoff depths and the probability to discharge a target pollutant concentration when such a runoff depth is exceeded.  相似文献   

15.
Urbanization strongly changes natural catchment by increasing impervious coverage and by creating a need for efficient drainage systems. Such land cover changes lead to more rapid hydrological response to storms and change distribution of peak and low flows. This study aims to explore and assess how gradual hydrological changes occur during urban development from rural area to a medium‐density residential catchment. The Stormwater Management Model (SWMM) is utilized to simulate a series of scenarios in a same developing urban catchment. Sub‐hourly hydro‐meteorological data in warm season is used to calibrate and validate the model in the fully developed catchment in 2006. The validated model is then applied to other cases in development stage and runoff management scenarios. Based on the simulations and observations, three key problems are solved: (1) how catchment hydrology changes with land cover change, (2) how urban development changes pre‐development flows, and (3) how stormwater management techniques affect catchment hydrology. The results show that the low‐frequency flow rates had remarkably increased from 2004 to 2006 along with the increase of impervious areas. Urbanization in the residential catchment expands the runoff contributing area, accelerates hydrological response, raises peak flows in an order of magnitude of over 10, and more than doubles the total runoff volume. The effects of several LID controls on runoff hydrograph were simulated, and the techniques were able to reduce flows towards the pre‐development levels. However, the partly restored flow regime was still clearly changed in comparison to the pre‐development flow conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
《水文科学杂志》2013,58(3):629-639
Abstract

The lower Araguás catchment, central Pyrenees, is characterized by extensive badlands (25% of the total catchment), whereas the upper catchment is covered by dense plantation forest. The catchment (45 ha) has been monitored since October 2005 with the aim of studying its hydrological response. The 44 floods recorded over this period were analysed to identify the factors that control the rainfall—runoff relationship. The first relevant feature of the catchment was its responsiveness. The catchment reacted to all rainfall events, but the irregular nature of the hydrological response was the most characteristic feature of the response. No single variable could explain the response of the Araguás catchment. It was found that stormflow coefficients mainly depend on the combination of rainfall volume and antecedent baseflow. A significant correlation was observed between maximum rainfall intensity and peak flow values. The shapes of the different hydrographs are very similar, regardless of the peak flow magnitude; they show a short time lag, relatively narrow peak flow, and steep recession limb. This indicates a large contribution by overland flow, resulting mainly from the generation of infiltration excess runoff in badland areas.  相似文献   

17.
Changes in climate and urban growth are the most influential factors affecting hydrological characteristics in urban and extra‐urban contexts. The assessment of the impacts of these changes on the extreme rainfall–runoff events may have important implications on urban and extra‐urban management policies against severe events, such as floods, and on the design of hydraulic infrastructures. Understanding the effects of the interaction between climate change and urban growth on the generation of runoff extremes is the main aim of this paper. We carried out a synthetic experiment on a river catchment of 64 km2 to generate hourly runoff time series under different hypothetical scenarios. We imposed a growth of the percentage of urban coverage within the basin (from 1.5% to 25%), a rise in mean temperature of 2.6 °C, and an alternatively increase/decrease in mean annual precipitation of 25%; changes in mean annual precipitation were imposed following different schemes, either changing rainstorm frequency or rainstorm intensity. The modelling framework consists of a physically based distributed hydrological model, which simulates fast and slow mechanisms of runoff generation directly connected with the impervious areas, a land‐use change model, and a weather generator. The results indicate that the peaks over threshold and the hourly annual peaks, used as hydrological indicators, are very sensitive to the rainstorm intensity. Moreover, the effects of climate changes dominate on those of urban growth determining an exacerbation of the fast runoff component in extreme events and a reduction of the slow and deep runoff component, thus limiting changes in the overall runoff.  相似文献   

18.
Summer flows in experimental catchments with different forest covers, Chile   总被引:7,自引:0,他引:7  
Runoff and peak flows in four experimental catchments with different land uses are analyzed for summer periods. The catchments have a rainy temperate climate with annual precipitations between 2000 and 2500 mm, 70% of which is concentrated in the winter period between May and August. The final harvest of the forest plantation in one of these catchments generated increases in summer runoff. Also, differences between the maximum instantaneous discharge and the flow at the beginning of the storm then almost duplicated those registered in rainfall events of similar magnitude when the catchment was fully forested. Runoff analysis in this catchment is difficult because the two post-harvesting summer periods are much wetter than the two pre-harvesting ones but a double mass analysis shows the effect of harvesting clearly. In a paired catchment study, low cover in one of the two neighbour catchments explains higher direct runoff and base flows although lower maximum instantaneous specific discharge occurred in the less vegetated but larger catchment. Low vegetation cover explains increases in summer flows, although the size, topography, rainfall conditions, road density, extent of affected area and runoff generation processes play an important role in the hydrological effects of different land uses.  相似文献   

19.
The urban environment modifies the hydrologic cycle resulting in increased runoff rates, volumes, and peak flows. Green infrastructure, which uses best management practices (BMPs), is a natural system approach used to mitigate the impacts of urbanization onto stormwater runoff. Patterns of stormwater runoff from urban environments are complex, and it is unclear how efficiently green infrastructure will improve the urban water cycle. These challenges arise from issues of scale, the merits of BMPs depend on changes to small‐scale hydrologic processes aggregated up from the neighborhood to the urban watershed. Here, we use a hyper‐resolution (1 m), physically based hydrologic model of the urban hydrologic cycle with explicit inclusion of the built environment. This model represents the changes to hydrology at the BMP scale (~1 m) and represents each individual BMP explicitly to represent response over the urban watershed. Our study varies both the percentage of BMP emplacement and their spatial location for storm events of increasing intensity in an urban watershed. We develop a metric of effectiveness that indicates a nonlinear relationship that is seen between percent BMP emplacement and storm intensity. Results indicate that BMP effectiveness varies with spatial location and that type and emplacement within the urban watershed may be more important than overall percent.  相似文献   

20.
This paper focuses on the problem of quantifying real world catchment response using a distributed model and discusses the ability of the model to capture that response. The rainfall–runoff responses of seven small agricultural catchments in the eastern wheatbelt region of south-western Australia are examined. The variability in runoff generation and the factors that contribute to that variability (i.e. rainfall intensity, soil properties and topography) are investigated to determine if their influence can be captured in a mathematical model. The spatially distributed rainfall–runoff model used in this study is based on the TOPMODEL concepts of Beven and Kirkby (1979), and simulates runoff generation by both the infiltration excess and saturation excess mechanisms. Simulations with the model revealed the highly complex nature of catchment response to rainfall events. Runoff generation was highly heterogeneous in both space and time, with the runoff response being governed by the spatial variability of soil properties and topography, and by the temporal variation in rainfall intensity. Although the model proved capable of simulating catchment response for many events, the investigation has demonstrated that not all aspects of the variability associated with agricultural catchments (particularly the effects of land management) can be captured using this relatively simple model. © 1997 by John Wiley & Sons, Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号