首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The paper deals with the variability of summer-monsoon rainfall during normal, flood and drought years over India. During flood years the monsoon rainfall increases mostly all over parts of the country and large area less than 100 cm isohytel covers Orissa and adjoining Madhya Pradesh. During drought years the rainfall amount decreases over the entire country and isohytel of 100 cm shrinks to almost a point. The variability of monsoon rainfall from flood to normal to drought years depends upon the number of depression/low-pressure area which form over the North Bay and move inland. To understand the intraseasonal and interannual variability of the monsoon rainfall, daily and seasonal anomalies has been performed by using the Empirical Orthogonal Function analysis. Further Empirical Orthogonal Function (EOF) analysis is carried out on these data to find out the nature of rainfall distribution in different monsoon categories namely normal, flood and drought years. This technique thus serves to identify spatial and temporal patterns characteristics of possible physical significance. Received July 25, 2000/Revised September 26, 2000  相似文献   

2.
Interannual variability of both SW monsoon (June-September) and NE monsoon (October-December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958-1986). Correlations of zonal wind anomalies to SW monsoon rainfall (r = 0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Raya  相似文献   

3.
Summary Zonally averaged surface air temperatures have been analysed to form time series of surface air temperature anomalies over the tropics (TTA), extratropics (ETA), the poles (PTA) and the whole northern hemisphere (NHTA) for the period 1901–1990. The temporal statistical relationships between these temperature time series and Indian monsoon rainfall over all India (AIR), northwest India (NWR) and peninsular India (PIR) have been examined for the above period.The northern hemispheric January–February (JF) temperature correlates significantly and positively with all the three monsoon rainfall series, the regional peninsular rainfall series (PIR) displaying the best correlation. The Strongest correlation is observed during 1951–1980 for both AIR and NWR but weakened in 1961–1990. For PIR, the highest correlation is observed during 1961–1990, remaining almost stable since 1951–1980. The JF series AIR monsoon relationship showed the highest correlation over the tropics during 1901–1940, over the polar region during 1941–1980 and over the northern hemisphere during 1951–1980. AIR and NWR moreover show a significant negative relationship with simultaneous, succeeding autumn and following year TTA series, while AIR and PIR monsoon rainfall series show significant positive association with the following year PTA series.The results also suggest that cooler January–February NHTA not only lead to a poor monsoon, but a poor monsoon also leads to warmer temperatures over the tropics and cooler temperatures over the polar region in the following year.With 1 Figure  相似文献   

4.
Reference crop evapotranspiration (ET0) is one of the most important climatic parameters which plays a key role in estimating crop water demand and scheduling irrigation. Under global warming and climate change conditions, it is needed to survey the trend of ET0 in Iran. In this study, ET0 values were determined based on FAO-56 Penman-Monteith equation over 32 synoptic meteorological stations during 1960–2005; and analyzed spatially and temporally in monthly, seasonal and annual time scales. After removing the significant lag-1 serial correlation effect by pre-whitening, non-parametric statistical Mann–Kendall (MK) test was used to detect the trends. The slope of the changes was determined by Sen’s slope estimator. In order to facilitate in trend analysis, the 10 moving average low pass filter were also applied on the normalized annual ET0 time series. Annual ET0 time series and filtered ones were then classified by hierarchical clustering in three clusters and then mapped in order to show the patterns of different clusters. Results showed that the significant decreasing trends were more considerable than increasing ones. Among surveyed stations, and on an annual time scale, the highest and lowest annual values of Sen’s slope estimator were observed in Tabas with (+) 72.14 mm per decade and Shahrud with (?) 62.22 mm per decade, respectively. Results also indicated that the clustered map based on normalized and filtered annual ET0 time series is in accordance with another map which showed spatial distribution of increasing, decreasing and non-significant trends of ET0 on annually time scale. Exploratory and visual analysis of smoothed time series showed increasing trend in recent years especially after 1980 and 1995. In brief, the upward trend of ET0 in recent years is a crucial issue with regard to the high cost of dam construction for agricultural aims in arid and semi-arid regions e.g. Iran.  相似文献   

5.
Using the NCEP/NCAR reanalysis wind and temperature data (1948–2011) and India Meteorological Department (IMD) rainfall data, a long-term trend in the tropical easterly jet stream and its effect on Indian summer monsoon rainfall has been explained in the present study. A decreasing trend in zonal wind speed at 100 mb (maximum decrease), 150 mb, and 200 mb (minimum) is observed. The upper-level (100, 150, and 200 mb) zonal wind speed has been correlated with the surface air temperature anomaly index (ATAI) in the month of May, which is taken as the difference in temperature anomaly over land (22.5°N–27.5°N, 80°E–90°E) and Ocean (5°S–0°S, 75°E–85°E). Significant high correlation is observed between May ATAI and tropical easterly jet stream (TEJ) which suggests that the decreasing land–sea temperature contrast could be one major reason behind the decreasing trend in TEJ. The analysis of spatial distribution of rainfall over India shows a decreasing trend in rainfall over Jammu and Kashmir, Arunachal Pradesh, central Indian region, and western coast of India. Increasing trend in rainfall is observed over south peninsular and northeastern part of India. From the spatial correlation analysis of zonal wind with gridded rainfall, it is observed that the correlation of rainfall is found to be high with the TEJ speed over the regions where the decreasing trend in rainfall is observed. Similarly, from the analysis of spatial correlation between rainfall and May ATAI, positive spatial correlation is observed between May ATAI and summer monsoon rainfall over the regions such as south peninsular India where the rainfall trend is positive, and negative correlation is observed over the places such as Jammu and Kashmir where negative rainfall trend is observed. The decreased land–sea temperature contrast in the pre-monsoon month could be one major reason behind the decreased trend in TEJ as well as the observed spatial variation in the summer monsoon rainfall trend. Thus, the study explained the long-term trend in TEJ and its relation with May month temperature over the Indian Ocean and land region and its effect on the trend and spatial distribution of Indian summer monsoon rainfall.  相似文献   

6.
Analysis of the global mean annual temperature anomalies based on land and marine data for the last 88 years (1901-1988) of this century has been carried out with a view to find any relationship with failures in Indian summer monsoon rainfall. On the climatological scale (i.e. 30 years) it has been noticed that there is as abnormal increase in the frequency of drought years during epochs of global warming and cooling, while it is considerably less when global temperatures are near normal. Results are unchanged even when the data are filtered out for ENSO (El-Nino South-ern Oscillation) effect.It has also been noticed that during warm and cold epochs in global temperatures the amount of summer mon-soon rainfall decreases as compared to the rainfall during a normal temperature epoch.  相似文献   

7.
Global warming has caused unevenly distributed changes in precipitation and evapotranspiration, which has and will certainly impact on the wet-dry variations. Based on daily meteorological data collected at 91 weather stations in Northeast China (NEC), the spatiotemporal characteristics of dry and wet climatic variables (precipitation, crop reference evapotranspiration (ET0), and humid index (HI)) are analyzed, and the probable reasons causing the changes in these variables are discussed during the period of 1961–2014. Precipitation showed non-significant trend over the period of 1961–2014, while ET0 showed a significant decreasing trend, which led to climate wetting in NEC. The period of 2001–2012 exhibited smaller semiarid area and larger humid area compared to the period of 1961–1980, indicating NEC has experienced wetting process at decadal scale. ET0 was most sensitive to relative humidity, and wind speed was the second most sensitive variable. Sunshine hours and temperature were found to be less influential to ET0 in the study area. The changes in wind speed in the recent 54 years have caused the greatest influence on ET0, followed by temperature. For each month, wind speed was the most significant variable causing ET0 reduction in all months except July. Temperature, as a dominant factor, made a positive contribution to ET0 in February and March, as well as sunshine hours in June and July, and relative humidity in August and September. In summary, NEC has experienced noticeable climate wetting due to the significantly decreasing ET0, and the decrease in wind speed was the biggest contributor for the ET0 reduction. Although agricultural drought crisis is expected to be partly alleviated, regional water resources management and planning in Northeast China should consider the potential water shortage and water conflict in the future because of spatiotemporal dry-wet variations in NEC.  相似文献   

8.
Summary The present study examines the long term trend in sea surface temperatures (SSTs) of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean in the context of global warming for the period 1901–2002 and for a subset period 1971–2002. An attempt has also been made to identify the relationship between SST variations over three different ocean areas, and All-India and homogeneous region summer monsoon rainfall variability, including the role of El-Ni?o/Southern Oscillation (ENSO). Annual sea surface temperatures of the Arabian Sea, Bay of Bengal and Equatorial South India Ocean show a significant warming trend of 0.7 °C, 0.6 °C and 0.5 °C per hundred years, respectively, and a relatively accelerated warming of 0.16 °C, 0.14 °C and 0.14 °C per decade during the 1971–2002 period. There is a positive and statistically significant relationship between SSTs over the Arabian Sea from the preceding November to the current February, and Indian monsoon rainfall during the period 1901–2002. The correlation coefficient increases from October and peaks in December, decreasing from February to September. This significant relationship is also found in the recent period 1971–2002, whereas, during 1901–70, the relationship is not significant. On the seasonal scale, Arabian Sea winter SSTs are positively and significantly correlated with Indian monsoon rainfall, while spring SSTs have no significant positive relationship. Nino3 spring SSTs have a negative significant relationship with Indian monsoon rainfall and it is postulated that there is a combined effect of Nino3 and Arabian Sea SSTs on Indian monsoon. If the Nino3 SST effect is removed, the spring SSTs over the Arabian Sea also have a significant relationship with monsoon rainfall. Similarly, the Bay of Bengal and Equatorial South Indian Ocean spring SSTs are significantly and positively correlated with Indian monsoon rainfall after removing the Nino3 effect, and correlation values are more pronounced than for the Arabian Sea. Authors’ address: Dr. D. R. Kothawale, A. A. Munot, H. P. Borgaonkar, Climatology and Hydrometeorology divisions, Indian Institute of Tropical Meteorology, Pune 411008, India.  相似文献   

9.
This study investigated the spatial–temporal patterns and trends of potential evapotranspiration (ET0) and aridity index (AI) over Southwest China during 1960–2013 based on daily temperature, precipitation, wind speed, sunshine duration, total solar radiation, and relative humidity data from 108 meteorological stations. The Penman–Monteith model, Mann–Kendall (M–K) test, moving t test, and Morlet wavelet method were used. The results indicated that ET0 and AI across the region displayed decreasing trends, but the former was significant. After 2000, regionally average trends in ET0 and AI increased rapidly, indicating that droughts increased over Southwest China in recent years. Spatially, the changes of ET0 and AI were dissimilar and not clustered, either. Temporally, both ET0 and AI displayed obvious abrupt change points over different timescales and that of AI was during the winter monsoon period. Significant periodic variations with periods of 27, 13, and 5 years were found in ET0, but only of 13 and 5 years existed in AI. Correlation analysis revealed that the sunshine duration and wind speed were the dominant factors affecting ET0 and that AI showed strong negative correlation with precipitation. The findings of this study enhance the understanding of the relationship between climate change and drought in Southwest China, while the mechanism controlling the variation in drought requires further study.  相似文献   

10.
Summary The electrical effects due to monsoon clouds in conjunction with the VLF atmospherics data have been extensively analyzed. The cloud distribution and rainfall pattern during the SW monsoon period are examined. The diurnal curves of rainfall show that the maximum rain generally occurs in the afternoon hours between 13 to 18 IST. The coefficient of variation (CV) of monsoon rainfall plotted against rainfall amount reveals that CV decreases with increasing rainfall amounts upto about 40 inches. The differences in the mean dry bulb temperature as well as mean relative humidity values at the standard levels between strong and weak monsoon are studied. The monthly median of the hourly average together with the respective upper and lower decile values of atmospherics have been considered. Also, the frequency dependence of afternoon maximum (or late afternoon minimum) to morning minimum in the sferics level is taken into account to determine the seasonal variation. During monsoon months the sferics level with higher cloud amount (4 okta) increases considerably but the width of the sferics is reduced. The results are interpreted by considering the activity of the sources involved at such times.With 10 Figures  相似文献   

11.
India’s annual weather cycle consists mainly of wet and dry periods with monsoonal rains being one of the significant wet periods that shows strong spatiotemporal variability. This study includes the climatological characteristics, fluctuation features, and periodic cycles of annual, seasonal, and monthly rainfall of seven river basins across the eastern Gangetic Plain (EGP) using the longest possible instrumental area-averaged monthly rainfall series (1829–2012). Understanding the relationships between these parameters and global tropospheric temperature changes and El Niño and La Niña climatic signals is also attempted.

Climatologically, mean annual rainfall in the EGP varies from 1070.5?mm in the Tons River basin to 1508.6?mm in the Subarnarekha River basin. The highest rainfall in the EGP occurs during monsoon (1188?mm). The annual rainfall in all river basins and monsoon rainfall in four river basins is normally distributed. Annual and monsoonal rainfall in the Brahmani and Son River basins show a significant decreasing long-term trend. Over the last 20 years, annual rainfall in all river basins and monsoonal rainfall in five river basins show a decreasing trend. The power spectra for all rainfall series are characterized by consistent significant wavelength peaks at 3–5 years, 10–20 years, 40 years, and more than 80 years. Short-term fluctuations with a period less than 10 years is the major contributor to total variance in annual and/or monsoon rainfall (77.6%), followed by decadal variations with a period of 10–30 years (13.1%) and a long-term trend with a period greater than 30 years (9.3%).Temperature and thickness gradients from the Tibet–Himalaya–Karakoram–Hindu Kush highlands to eight strong highs show a significant correlation with rainfall during the onset and withdrawal phases of summer monsoon in the EGP.  相似文献   

12.
Variability and associated mechanisms of summer rainfall over east China are identified and described using both observations and a general circulation model (GCM) simulation. The observations include two data sets: the 90-station, 1470–1988 annual drought/flood index and the 60-station, 1889–1988 monthly mean precipitation measurements. The GCM data set is a 100-year equilibrium simulation of the present climate. Spectra of the drought/flood index indicate decadal cycles which decrease from north (47 y) to south (21 y). Correlation coefficients show decadal variability in the relationship between index values along the Yangtse River valley and those over northeast and southeast China. Analysis of the measured data confirms this result; for example, the correlation was small during 1889–1918, but significantly negative during 1930–1959. When compared with precipitation measurements, the GCM better simulates monthly means and variances along the Yangtse River valley. Three distinct 30-year periods of interannual variability in summer rainfall are found over this area. During each period, rainfall is negatively correlated with spring surface temperature over a remote region and is identified with variations in a specific component of the east Asian monsoon circulation: (1) when Eurasian temperatures decrease, the thermal contrast across the Mei-Yu front increases and frontal rainfall intensities; (2) lower temperatures over the Sea of Japan/northwest Pacific Ocean are identified with enhanced easterly flow, moisture transport and rainfall; (3) when tropical east Pacific Ocean temperatures decrease, rainfall associated with the low latitude monsoon trough increases. Given that the GCM generates decadal changes in the relationship between the physical mechanisms, the east Asian monsoon and planetary general circulations and east China rainfall, future studies should focus on the predictability of these changes with the use of improved and much longer GCM simulations.  相似文献   

13.
Climate change has affected the temperature and rainfall characteristics worldwide. However, the changes are not equal for all regions and have localized intensity and must be quantified locally to manage the natural resources. Orissa is an eastern state in India where agricultural activities mainly depends on the rainfall and thus face problems due to changing patterns of rainfall due to changing climate. In the present study, attempts were made to study temporal variation in monthly, seasonal and annual rainfall over the state during the period from 1871 to 2006. Long term changes in rainfall characteristics were determined by both parametric and non-parametric tests. The analysis revealed a long term insignificant decline trend of annual as well as monsoon rainfall, where as increasing trend in post-monsoon season over the state of Orissa. Rainfall during winter and summer seasons showed an increasing trend. Statistically monsoon rainfall can be considered as very dependable as the coefficient of variation is 14.2%. However, there is decreasing monthly rainfall trend in June, July and September, where as increasing trend in August. This trend is more predominant in last 10?year. Based on departure from mean, rainfall analysis also showed an increased number of dry years compared to wet years after 1950. This changing rainfall trend during monsoon months is major concern for the rain-fed agriculture. More over, this will affect hydro power generation and reservoir operation in the region.  相似文献   

14.
Summary The relationship between the all-India summer monsoon rainfall and surface/upper air (850, 700, 500 and 200 mb levels) temperatures over the Indian region and its spatial and temporal characteristics have been examined to obtain a useful predictor for the monsoon rainfall. The data series of all-India and subdivisional summer monsoon rainfall and various seasonal air temperatures at 73 surface observatories and 9 radiosonde stations (1951–1980) have been used in the analysis. The Correlation Coefficients (CCs) between all-India monsoon rainfall and seasonal surface air temperatures with different lags relative to the monsoon season indicate a systematic relationship.The CCs between the monsoon rainfall and surface-air temperature of the preceding MAM (pre-monsoon spring) season are positive over many parts of India and highly significant over central and northwestern regions. The average surface air temperature of six stations i.e., Jodhpur, Ahmedabad, Bombay, Indore, Sagar and Akola in this region (Western Central India, WCI) showed a highly significant CC of 0.60 during the period 1951–1980. This relationship is also found to be consistently significant for the period from 1950 to present, though decreasing in magnitude after 1975. WCI MAM surface air temperature has shown significant CCs with the monsoon rainfall over eleven sub-divisions mainly in northwestern India, i.e., north of 15 °N and west of 80 °E.Upper air temperatures of the MAM season at almost all the stations and all levels considered show positive CCs with the subsequent monsoon rainfall. These correlations are significant at some central and north Indian stations for the lower and middle tropospheric temperatures.The simple regression equation developed for the period 1951–1980 isy = – 183.20 + 8.83x, wherey is the all-India monsoon rainfall in cm andx is the WCI average surface air temperature of MAM season in °C. This equation is significant at 0.1% level. The suitability of this parameter for inclusion in a predictive regression model along with five other global and regional parameters has been discussed. Multiple regression analysis for the long-range prediction of monsoon rainfall, using several combinations of these parameters indicates that the improvement of predictive skill considerably depends upon the selection of the predictors.With 9 Figures  相似文献   

15.
Mann?CKendall non-parametric test was employed for observational trend detection of monthly, seasonal and annual precipitation of five meteorological subdivisions of Central Northeast India (CNE India) for different 30-year normal periods (NP) viz. 1889?C1918 (NP1), 1919?C1948 (NP2), 1949?C1978 (NP3) and 1979?C2008 (NP4). The trends of maximum and minimum temperatures were also investigated. The slopes of the trend lines were determined using the method of least square linear fitting. An application of Morelet wavelet analysis was done with monthly rainfall during June?CSeptember, total rainfall during monsoon season and annual rainfall to know the periodicity and to test the significance of periodicity using the power spectrum method. The inferences figure out from the analyses will be helpful to the policy managers, planners and agricultural scientists to work out irrigation and water management options under various possible climatic eventualities for the region. The long-term (1889?C2008) mean annual rainfall of CNE India is 1,195.1?mm with a standard deviation of 134.1?mm and coefficient of variation of 11%. There is a significant decreasing trend of 4.6?mm/year for Jharkhand and 3.2?mm/day for CNE India. Since rice crop is the important kharif crop (May?COctober) in this region, the decreasing trend of rainfall during the month of July may delay/affect the transplanting/vegetative phase of the crop, and assured irrigation is very much needed to tackle the drought situation. During the month of December, all the meteorological subdivisions except Jharkhand show a significant decreasing trend of rainfall during recent normal period NP4. The decrease of rainfall during December may hamper sowing of wheat, which is the important rabi crop (November?CMarch) in most parts of this region. Maximum temperature shows significant rising trend of 0.008°C/year (at 0.01 level) during monsoon season and 0.014°C/year (at 0.01 level) during post-monsoon season during the period 1914?C2003. The annual maximum temperature also shows significant increasing trend of 0.008°C/year (at 0.01 level) during the same period. Minimum temperature shows significant rising trend of 0.012°C/year (at 0.01 level) during post-monsoon season and significant falling trend of 0.002°C/year (at 0.05 level) during monsoon season. A significant 4?C8?years peak periodicity band has been noticed during September over Western UP, and 30?C34?years periodicity has been observed during July over Bihar subdivision. However, as far as CNE India is concerned, no significant periodicity has been noticed in any of the time series.  相似文献   

16.
Lightning activity and rainfall over the central Indian region (lat, 15.5° N to 25.5° N and lon, 75° E to 85° E) from the TRMM satellite have been analyzed. Ten years' data of monthly lightning and hourly averaged monthly rainfall from 1998 to 2007 have been used for analysis, which shows quite different relationships between lightning and rainfall in monsoon and premonsoon seasons in this region. Very good positive correlation is observed between rainfall and lightning during the premonsoon period, however, in the monsoon period a correlation between them is not so good. The different relationship between lightning and rainfall in the monsoon and premonsoon has been attributed to the low updraft during the monsoon period due to low cloud base height and low aerosol concentration during this period. This analysis shows that deep electrified convective systems do form over the central Indian region during active monsoon periods; however the relationship between convective rainfall and lightning frequency during this period is not as consistent as during the premonsoon period.  相似文献   

17.

This study has been undertaken to examine the occurrence of climate change in Tamil Nadu, the southernmost state of India and its impact on rainfall pattern which is a primary constraint for agricultural production. Among the five sample stations examined across the state, the minimum temperature has increased significantly in Coimbatore while the same has decreased significantly in Vellore whereas both minimum and maximum temperatures have increased significantly in Madurai since 1969 with climate change occurring between late 1980s and early 1990s. As a result, the south-west monsoon has been disturbed with August rainfall increasing with more dispersion while September rainfall decreasing with less dispersion. Thus, September, the peak rainfall month of south-west monsoon before climate change, has become the monsoon receding month after climate change. Though there has been no change in the trend of the north-east monsoon, the quantity of October and November rainfall has considerably increased with increased dispersion after climate change. On the whole, south-west monsoon has decreased with decreased dispersion while north-east monsoon has increased with increased dispersion. Consequently, the season window for south-west monsoon crops has shortened while the north-east monsoon crops are left to fend against flood risk during their initial stages. Further, the incoherence in warming, climate change and rainfall impact seen across the state necessitates devising different indigenous and institutional adaptation strategies for different regions to overcome the adverse impacts of climate change on agriculture.

  相似文献   

18.
夏季索马里越赤道气流垂直结构的年代际变化   总被引:2,自引:0,他引:2  
基于1950—2010年美国国家环境预报中心/国家大气研究中心(NCEP/NCAR)再分析月平均资料、哈得来中心月平均海温资料,定义夏季索马里越赤道气流(简称SMJ)垂直结构指数VS1和VS2,分别表征索马里越赤道气流全区一致、上下反相两种分布型。接着利用合成分析、奇异值分解方法探讨夏季索马里越赤道气流垂直结构的年代际变化,寻找可能影响其变化的环流因子和海温信号,并进一步分析垂直结构与亚洲夏季风活动的年代际关系,主要结论如下:(1)两个指数在年代际尺度上的阶段性变化特征十分显著,VS1在20世纪80年代中期发生由负转正的年代际变化;VS2在70年代初和90年代中期分别发生由负转正、由正转负的年代际变化。(2)合成分析表明,VS1和VS2的年代际变化与同期大气环流联系紧密,南极涛动可能是影响VS1年代际变化的一个重要因子。(3)印度洋海温变化可能对夏季索马里越赤道气流两类垂直结构的年代际变化起调控指示作用。VS1的年代际变化与夏季全印度洋海温增暖的趋势是一致的,VS2与夏季南印度洋偶极型振荡事件关系显著。(4)高VS1年代里,印度半岛至中南半岛夏季风偏弱,纬向水汽供应减少,降水偏少,东亚夏季风亦偏弱,使得华北地区纬向和经向水汽输送均偏弱,同时水汽辐合减弱,华北地区偏旱,而在江南地区由于水汽辐合,降水偏多;反之亦然。高VS2年代,东亚季风区内中国西南、华南地区夏季风减弱,使得经向和纬向水汽输送均偏弱,水汽供应减少,因此华南、西南地区偏旱,日本地区夏季风偏弱,西风水汽输送亦偏弱,降水亦偏少,反之亦然。  相似文献   

19.
Some evidence of climate change in twentieth-century India   总被引:1,自引:0,他引:1  
The study of climate changes in India and search for robust evidences are issues of concern specially when it is known that poor people are very vulnerable to climate changes. Due to the vast size of India and its complex geography, climate in this part of the globe has large spatial and temporal variations. Important weather events affecting India are floods and droughts, monsoon depressions and cyclones, heat waves, cold waves, prolonged fog and snowfall. Results of this comprehensive study based on observed data and model reanalyzed fields indicate that in the last century, the atmospheric surface temperature in India has enhanced by about 1 and 1.1°C during winter and post-monsoon months respectively. Also decrease in the minimum temperature during summer monsoon and its increase during post-monsoon months have created a large difference of about 0.8°C in the seasonal temperature anomalies which may bring about seasonal asymmetry and hence changes in atmospheric circulation. Opposite phases of increase and decrease in the minimum temperatures in the southern and northern regions of India respectively have been noticed in the interannual variability. In north India, the minimum temperature shows sharp decrease of its magnitude between 1955 and 1972 and then sharp increase till date. But in south India, the minimum temperature has a steady increase. The sea surface temperatures (SST) of Arabian Sea and Bay of Bengal also show increasing trend. Observations indicate occurrence of more extreme temperature events in the east coast of India in the recent past. During summer monsoon months, there is a decreasing (increasing) trend in the frequency of depressions (low pressure areas). In the last century the frequency of occurrence of cyclonic storms shows increasing trend in the month of November. In addition there is increase in the number of severe cyclonic storms crossing Indian Coast. Analysis of rainfall amount during different seasons indicate decreasing tendency in the summer monsoon rainfall over Indian landmass and increasing trend in the rainfall during pre-monsoon and post-monsoon months.  相似文献   

20.
The FAO Penman–Monteith (F-PM) method is a frequently applied approach for calculating the daily reference evapotranspiration (ET0). This method requires long records of meteorological data, which makes it quite hard to employ in locations with no or limited available data. Evaporation pans are widely used to estimate the reference ET0, but this method requires reliable estimates of the pan coefficient (K p). The objectives of this study were to determine the proper values of monthly and annual K p, as well as the best method among those available for the estimation of K p values in the study area. Measured weather data from 1992 to 2006 were obtained from 18 stations in the North and Northwest of Iran. Daily ET0 calculated using methods by Bernardo et al. and Pereira et al. were compared with those calculated by the F-PM method. The employed methods at all stations, except those located in the north of the study area with high relative humidity, overestimated the ET0 compared to the F-PM method. The constant parameters of these methods were optimized by a trial and error scheme to minimize the root mean square error. The results indicated that modified K p coefficients from Bernardo et al.’s method ranged between 0.41 and 0.87 and the optimal coefficient of Pereira et al.’s method ranged between 0.49 and 0.95. Modified monthly K p from Bernardo et al.’s method ranged between 0.3 and 1.07 and those from Pereira et al.’s method ranged between 0.4 and 1.18. Modified K p of the methods by Bernardo et al. and Pereira et al. showed the higher estimation accuracy of daily ET0 values. In general, the performance of the modified K p of Bernardo et al.’s method was higher than Pereira et al.’s method for all stations. Thus, in the study region and under the same climatic conditions [in areas with only pan evaporation (E p) records], the use of climatic monthly modified K p to calculate ET0 based on class A E p is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号