首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As root water uptake (RWU) is an important link in the water and heat exchange between plants and ambient air, improving its parameterization is key to enhancing the performance of land surface model simulations. Although different types of RWU functions have been adopted in land surface models, there is no evidence as to which scheme most applicable to maize farmland ecosystems. Based on the 2007–09 data collected at the farmland ecosystem field station in Jinzhou, the RWU function in the Common Land Model (CoLM) was optimized with scheme options in light of factors determining whether roots absorb water from a certain soil layer (Wx) and whether the baseline cumulative root efficiency required for maximum plant transpiration (Wc) is reached. The sensibility of the parameters of the optimization scheme was investigated, and then the effects of the optimized RWU function on water and heat flux simulation were evaluated. The results indicate that the model simulation was not sensitive to Wx but was significantly impacted by Wc. With the original model, soil humidity was somewhat underestimated for precipitation-free days; soil temperature was simulated with obvious interannual and seasonal differences and remarkable underestimations for the maize late-growth stage; and sensible and latent heat fluxes were overestimated and underestimated, respectively, for years with relatively less precipitation, and both were simulated with high accuracy for years with relatively more precipitation. The optimized RWU process resulted in a significant improvement of CoLM’s performance in simulating soil humidity, temperature, sensible heat, and latent heat, for dry years. In conclusion, the optimized RWU scheme available for the CoLM model is applicable to the simulation of water and heat flux for maize farmland ecosystems in arid areas.  相似文献   

2.
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux in-to latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.  相似文献   

3.
The Chinese Academy of Meteorological Sciences (CAMS) has been devoted to developing a climate system model (CSM) to meet demand for climate simulation and prediction for the East Asian region. In this study, we evaluated the performance of CAMS-CSM in regard to sensible heat flux (H), latent heat flux (LE), surface temperature, soil moisture, and snow depth, focusing on the Atmospheric Model Intercomparison Project experiment, with the aim of participating in the Coupled Model Intercomparison Project phase 6. We systematically assessed the simulation results achieved by CAMS-CSM for these variables against various reference products and ground observations, including the FLUXNET model tree ensembles H and LE data, Climate Prediction Center soil moisture data, snow depth climatology data, and Chinese ground observations of snow depth and winter surface temperature. We compared these results with data from the ECMWF Interim reanalysis (ERA-Interim) and Global Land Data Assimilation System (GLDAS). Our results indicated that CAMS-CSM simulations were better than or comparable to ERAInterim reanalysis for snow depth and winter surface temperature at regional scales, but slightly worse when simulating total column soil moisture. The root-mean-square differences of H in CAMS-CSM were all greater than those from the ERA-Interim reanalysis, but less than or comparable to those from GLDAS. The spatial correlations for H in CAMS-CSM were the lowest in nearly all regions, except for North America. CAMS-CSM LE produced the lowest bias in Siberia, North America, and South America, but with the lowest spatial correlation coefficients. Therefore, there are still scopes for improving H and LE simulations in CAMS-CSM, particularly for LE.  相似文献   

4.
Towards a better understanding of hydrological interactions between the land surface and atmosphere, land surface models are routinely used to simulate hydro-meteorological fluxes. However, there is a lack of observations available for model forcing, to estimate the hydro-meteorological fluxes in East Asia. In this study, Common Land Model (CLM) was used in offline-mode during the summer monsoon period of 2006 in East Asia, with different forcings from Asiaflux, Korea Land Data Assimilation System (KLDAS), and Global Land Data Assimilation System (GLDAS), at point and regional scales, separately. The CLM results were compared with observations from Asiaflux sites. The estimated net radiation showed good agreement, with r =0.99 for the point scale and 0.85 for the regional scale. The estimated sensible and latent heat fluxes using Asiaflux and KLDAS data indicated reasonable agreement, with r = 0.70. The estimated soil moisture and soil temperature showed similar patterns to observations, although the estimated water fluxes using KLDAS showed larger discrepancies than those of Asiaflux because of scale mismatch. The spatial distribution of hydro-meteorological fluxes according to KLDAS for East Asia were compared to the CLM results with GLDAS, and the GLDAS provided online. The spatial distributions of CLM with KLDAS were analogous to CLM with GLDAS, and the standalone GLDAS data. The results indicate that KLDAS is a good potential source of high spatial resolution forcing data. Therefore, the KLDAS is a promising alternative product, capable of compensating for the lack of observations and low resolution grid data for East Asia.  相似文献   

5.
Based on 3 years (2003-05) of the eddy covariance (EC) observations on degraded grassland and cropland surfaces in a semi-arid area of Tongyu (44°25′N, 122°52′E, 184 m a.s.1.), Northeast China, seasonal and annual variations of water, energy and CO2 fluxes have been investigated. The soil moisture in the thin soil layer (at 0.05, 0.10 and 0.20 m) clearly indicates the pronounced annual wet-dry cycle; the annual cycle is divided into the wet (growing season) and dry seasons (non-growing season). During the growing season (from May to September), the sensible and latent heat fluxes showed a linear dependence on the global solar radiation. However, in the non-growing season, the latent heat flux was always less than 50 W m^-2, while the available energy was dissipated as sensible, rather than latent heat flux. During the growing season in 2003-05, the daily average sensible and latent heat fluxes were larger on the cropland surface than on the degraded grassland surface. The cropland ecosystem absorbed more CO2 than the degraded grassland ecosystem in the growing season in 2003-05. The total evapotranspiration on the cropland was more than the total precipitation, while the total evapotranspiration on the degraded grassland was almost the same as the total annual precipitation in the growing season. The soil moisture had a good correlation with the rainfall in the growing season. Precipitation in the growing season is an important factor on the water and carbon budget in the semi-arid area.  相似文献   

6.
Worldwide, the majority of rapidly growing neighborhoods are found in the Global South. They often exhibit different building construction and development patterns than the Global North, and urban climate research in many such neighborhoods has to date been sparse. This study presents local-scale observations of net radiation (Q * ) and sensible heat flux (Q H ) from a lightweight low-rise neighborhood in the desert climate of Andacollo, Chile, and compares observations with results from a process-based urban energy-balance model (TUF3D) and a local-scale empirical model (LUMPS) for a 14-day period in autumn 2009. This is a unique neighborhood-climate combination in the urban energy-balance literature, and results show good agreement between observations and models for Q * and Q H . The unmeasured latent heat flux (Q E ) is modeled with an updated version of TUF3D and two versions of LUMPS (a forward and inverse application). Both LUMPS implementations predict slightly higher Q E than TUF3D, which may indicate a bias in LUMPS parameters towards mid-latitude, non-desert climates. Overall, the energy balance is dominated by sensible and storage heat fluxes with mean daytime Bowen ratios of 2.57 (observed Q H /LUMPS Q E )–3.46 (TUF3D). Storage heat flux (ΔQ S ) is modeled with TUF3D, the empirical objective hysteresis model (OHM), and the inverse LUMPS implementation. Agreement between models is generally good; the OHM-predicted diurnal cycle deviates somewhat relative to the other two models, likely because OHM coefficients are not specified for the roof and wall construction materials found in this neighborhood. New facet-scale and local-scale OHM coefficients are developed based on modeled ΔQ S and observed Q * . Coefficients in the empirical models OHM and LUMPS are derived from observations in primarily non-desert climates in European/North American neighborhoods and must be updated as measurements in lightweight low-rise (and other) neighborhoods in various climates become available.  相似文献   

7.
高寒草原水热交换的季节性特征显著,土壤冻融过程对地-气水热交换有着重要的影响.本文利用黄河源区汤岔玛小流域2014年5月至2015年5月陆面过程观测数据,将土壤冻融过程划分为完全融化(TT)和完全冻结(FF)两种状态与融冻(T-F)和冻融(F-T)两个过程,并分析了期间高寒草原下垫面净辐射、感热通量、潜热通量和地表热通...  相似文献   

8.
It is well known that the sum of the turbulent sensible and latent heat fluxes as measured by the eddy-covariance method is systematically lower than the available energy (i.e., the net radiation minus the ground heat flux). We examine the separate and joint effects of diurnal and spatial variations of surface temperature on this flux imbalance in a dry convective boundary layer using the Weather Research and Forecasting model. Results show that, over homogeneous surfaces, the flux due to turbulent-organized structures is responsible for the imbalance, whereas over heterogeneous surfaces, the flux due to mesoscale or secondary circulations is the main contributor to the imbalance. Over homogeneous surfaces, the flux imbalance in free convective conditions exhibits a clear diurnal cycle, showing that the flux-imbalance magnitude slowly decreases during the morning period and rapidly increases during the afternoon period. However, in shear convective conditions, the flux-imbalance magnitude is much smaller, but slightly increases with time. The flux imbalance over heterogeneous surfaces exhibits a diurnal cycle under both free and shear convective conditions, which is similar to that over homogeneous surfaces in free convective conditions, and is also consistent with the general trend in the global observations. The rapid increase in the flux-imbalance magnitude during the afternoon period is mainly caused by the afternoon decay of the turbulent kinetic energy (TKE). Interestingly, over heterogeneous surfaces, the flux imbalance is linearly related to the TKE and the difference between the potential temperature and surface temperature, ΔT; the larger the TKE and ΔT values, the smaller the flux-imbalance magnitude.  相似文献   

9.
10.
A dynamic recycling model (DRM) with an analytical moisture trajectory tracking method, together with Japan Meteorological Agency 25-year reanalysis data, is used to study the regional precipitation recycling process across China, by calculating the regional recycling ratio (ρ r ) at the daily time scale during 1979–2010. The distribution of ρ r shows that, in western China, especially the Tibetan Plateau and its surrounding areas, precipitation is strongly dependent on the recycling process associated with regional evaporation. In Southeast China, however, the contribution from the recycling processes is much smaller due to the influence of the summer monsoon. A precipitation threshold value of about 4 mm/day is obtained from detailed analysis of both extreme and all-range ρ r years. According to this threshold, China is classified into three types of sub-regions: low-precipitation sub-regions (mainly in the northwest), high-precipitation sub-regions (mainly in the south), and medium-precipitation sub-regions (mainly in the northeast). It is found that ρ r correlates positively with precipitation, as well as convective precipitation (P CP) and large-scale precipitation (P LP) in the low-precipitation sub-regions. However, negative ρ r ?~?P LP correlations are found in the high-precipitation sub-regions and nonsignificant correlations exist in the medium-precipitation sub-regions. As P CP is mainly locally generated due to mid-latitude mesoscale systems and the cumulus parameterization used in producing the reanalysis, the recycling ratio positively correlates to the ratio P CP/P LP in almost all sub-regions, particularly in the Tibetan Plateau and its surrounding areas. The correlation between radiation flux and ρ r suggests more net radiation supports more evaporation and higher ρ r , especially in the high-precipitation sub-regions. The influence of clouds on shortwave radiation is crucial, since evaporation is suppressed when the amount of cloudiness increases, especially in the high-precipitation sub-regions. Together with the consideration of soil moisture, it can be inferred that limited soil moisture inhibits evaporation in the low-precipitation sub-regions, while the energy or radiation is the dominant factor controlling evaporation in the high-precipitation sub-regions.  相似文献   

11.
An extensive meteorological observational dataset at Dome C, East Antarctic Plateau, enabled estimation of the sensitivity of surface momentum and sensible heat fluxes to aerodynamic roughness length and atmospheric stability in this region. Our study reveals that (1) because of the preferential orientation of snow micro-reliefs (sastrugi), the aerodynamic roughness length \(z_{0}\) varies by more than two orders of magnitude depending on the wind direction; consequently, estimating the turbulent fluxes with a realistic but constant \(z_{0}\) of 1 mm leads to a mean friction velocity bias of \(24\,\%\) in near-neutral conditions; (2) the dependence of the ratio of the roughness length for heat \(z_{0t}\) to \(z_{0}\) on the roughness Reynolds number is shown to be in reasonable agreement with previous models; (3) the wide range of atmospheric stability at Dome C makes the flux very sensitive to the choice of the stability functions; stability function models presumed to be suitable for stable conditions were evaluated and shown to generally underestimate the dimensionless vertical temperature gradient; as these models differ increasingly with increases in the stability parameter z / L, heat flux and friction velocity relative differences reached \(100\,\%\) when \(z/L > 1\); (4) the shallowness of the stable boundary layer is responsible for significant sensitivity to the height of the observed temperature and wind data used to estimate the fluxes. Consistent flux results were obtained with atmospheric measurements at heights up to 2 m. Our sensitivity study revealed the need to include a dynamical parametrization of roughness length over Antarctica in climate models and to develop new parametrizations of the surface fluxes in very stable conditions, accounting, for instance, for the divergence in both radiative and turbulent fluxes in the first few metres of the boundary layer.  相似文献   

12.
利用藏东南峡谷地区排龙站、丹卡站、卡布站、墨脱站四个站点2018年11月至2019年10月的涡动协方差仪观测资料,分析藏东南峡谷地区不同位置入口、中段和末端地表通量变化的特征及其与局地降水的关系.研究表明:地表通量月平均日变化特征为夜间潜热通量大于感热通量,日间呈单峰变化特征.排龙站和丹卡站感热11月至次年4月较强,5...  相似文献   

13.
The sensible heat flux (H) is determined using large-aperture scintillometer (LAS) measurements over a city centre for eight different computation scenarios. The scenarios are based on different approaches of the mean rooftop-level \((z_{H})\) estimation for the LAS path. Here, \(z_{H}\) is determined separately for wind directions perpendicular (two zones) and parallel (one zone) to the optical beam to reflect the variation in topography and building height on both sides of the LAS path. Two methods of \(z_{H}\) estimation are analyzed: (1) average building profiles; (2) weighted-average building height within a 250 m radius from points located every 50 m along the optical beam, or the centre of a certain zone (in the case of a wind direction perpendicular to the path). The sensible heat flux is computed separately using the friction velocity determined with the eddy-covariance method and the iterative procedure. The sensitivity of the sensible heat flux and the extent of the scintillometer source area to different computation scenarios are analyzed. Differences reaching up to 7% between heat fluxes computed with different scenarios were found. The mean rooftop-level estimation method has a smaller influence on the sensible heat flux (?4 to 5%) than the area used for the \(z_{H}\) computation (?5 to 7%). For the source-area extent, the discrepancies between respective scenarios reached a similar magnitude. The results demonstrate the value of the approach in which \(z_{H}\) is estimated separately for wind directions parallel and perpendicular to the LAS optical beam.  相似文献   

14.
利用2007—2008年辽宁锦州玉米农田生态系统野外观测站资料,基于CoLM模型对玉米根分布在陆-气水热通量模拟中的影响进行研究,结果表明:模型模拟性能随年际气象条件的差异而不同,与2007年相比,2008年生长季内降水偏多,感热和潜热模拟精度明显提高;决定根分布形态的50%和95%根总量土层深度(d50和d95)两个参数中,d50比d95敏感;根分布对土壤湿度的影响在极端干旱条件下很小,在一定土壤湿度范围内随土壤湿度及土层深度的增大而减小;在水汽通量各分量中,植物蒸腾受根分布影响最大,其次是土壤蒸发,而叶片蒸发不受影响;根分布对潜热和感热模拟的影响随土壤湿度增大而减小。  相似文献   

15.
针对陆面模式Noah-MP对兰州大学半干旱气候与环境观测站(SACOL)2009年8月地表热通量模拟值偏差大的问题,通过分析相关物理过程和模拟试验来探究偏差的来源,并确定合适的参数化方案:采用Chen97方案计算感热输送系数可以改善感热通量的模拟;采用Jarvis气孔阻抗方案能增大植被蒸腾,改进模式对潜热通量的模拟效果,同时也使热通量在感热和潜热间的分配比例合理;采用LP92方案可减小土壤蒸发阻抗并有利于土壤蒸发,使得模式对潜热通量的模拟效果变好。不同参数化方案的组合试验表明:同时采用2组或3组新的参数化方案组合可以进一步减小模拟的地表感热和潜热通量的均方根误差,但是土壤湿度和温度的模拟效果并没有同步改善。  相似文献   

16.
Summary A land-air parametrization scheme (LAPS) describes mass, energy and momentum transfer between the land surface and the atmosphere. The scheme is designed as a software package which can be run as part of an atmospheric model or a stand-alone scheme. A single layer approach is chosen for the physical and biophysical scheme background. The scheme has six prognostic variables: two temperatures (one for the canopy vegetation and one for soil surface), one interception storage, and three soil moisture storage variables. The scheme's upper boundary conditions are: air temperature, water vapour pressure, wind speed, radiation and precipitation at some reference level within the atmospheric boundary layer. The sensible and latent heat are calculated using resistance representation. The evaporation from the bare soil is parametrized using the scheme. The soil part is designed as a three-layer model which is used to describe the vertical transfer of water in the soil.The performances of the LAPS scheme were tested using the results of meteorological measurements over a maize field at the experimental site De Sinderhoeve (The Netherlands). The predicted partitioning of the absorbed radiation into sensible and latent heat fluxes is in good agreement with observations. Also, the predicted leaf temperature agrees quite well with the observed values.With 9 Figures  相似文献   

17.
To evaluate the damaging effect of tropospheric ozone on vegetation, it is important to evaluate the stomatal uptake of ozone. Although the stomatal flux is a dominant pathway of ozone deposition onto vegetated surfaces, non-stomatal uptake mechanisms such as soil and cuticular deposition also play a vital role, especially when the leaf area index \({LAI}< 4\). In this study, we partitioned the canopy conductance into stomatal and non-stomatal components. To calculate the stomatal conductance of water vapour for sparse vegetation, we firstly partitioned the latent heat flux into effects of transpiration and evaporation using the Shuttleworth–Wallace (SW) model. We then derived the stomatal conductance of ozone using the Penman–Monteith (PM) theory based on the similarity to water vapour conductance. The non-stomatal conductance was calculated by subtracting the stomatal conductance from the canopy conductance derived from directly-measured fluxes. Our results show that for short vegetation (LAI \(=\) 0.25) dry deposition of ozone was dominated by the non-stomatal flux, which exceeded the stomatal flux even during the daytime. At night the stomatal uptake of ozone was found to be negligibly small. In the case of vegetation with \({LAI}\approx 1\), the daytime stomatal and non-stomatal fluxes were of the same order of magnitude. These results emphasize that non-stomatal processes must be considered even in the case of well-developed vegetation where cuticular uptake is comparable in magnitude with stomatal uptake, and especially in the case of vegetated surfaces with \({LAI}< 4\) where soil uptake also has a role in ozone deposition.  相似文献   

18.
In June 1991 the EFEDA-field experiment (ECHIVAL Field Experiment in a Desertification-Threatened Area) was carried out in the Spanish province Castilla-La Mancha, to improve the understanding of the interactions between the soil, the vegetation and the atmosphere.Here results of energy balance studies at the Barrax site are given, one of the three intensively studied experimental sites within Castilla-La Mancha. This area is characterized by a large fraction of irrigated fields (40%) while the remaining 60% was fallow land at the end of June 1991. The energy balances over these two characteristic land-use classes totally differ. While for the irrigated fields the evapotranspiration is dominant, for the non-irrigated fields the sensible and the soil heat fluxes dominate and the latent heat flux is nearly negligible.In order to achieve areally averaged turbulent fluxes, surface, SODAR and aircraft data have been used. Comparing the surface fluxes from all three facilities, it can be found that:The sensible heat flux estimation from SODAR (w-method) gives reliable results when a calibration of w is done with another independent system (e.g. aircraft).Aircraft measurements in conjunction with energy budget methods yield surface fluxes of sensible heat, which are about 20% lower than the areally averaged values calculated by the surface measurements. The areally averaged latent heat fluxes from aircraft and surface measurements agree better than the sensible heat fluxes.  相似文献   

19.
A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere–land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W $\text{ m }^{-2}$ , due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.  相似文献   

20.
This paper examines the computation of surface-level vertical fluxes of total energy in a moist atmosphere. A flux equation is derived which includes the enthalpy of water, the temperature dependence of the latent heat of condensation and variable moisture composition of air. The complete formulation requires keeping track of liquid water fluxes. However, if this is not possible, then the total energy flux is best approximated by neglecting the enthalpy of all net fluxes of water substance. An important finding is that sensible heat fluxes derived using a moist specific heat at constant pressure are not compatible with usual formulations of latent heat unless the net vapor flux is neglected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号