首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinels, Fe–Ti oxide minerals, apatites, and carbonates hosted in ophiolitic serpentinites and metagabbros of Gabal Garf (southern ED) and Wadi Hammariya (central ED) of Egypt are discussed. Microscopic and electron probe studies on these minerals are made to evaluate their textural and compositional variations. Alteration of chromites led to form ferritchromite and magnetite; rutile–magnetite intergrowths and martite are common in serpentinites. Fine trillis exsolution of ilmenite–magnetite and ilmenite–hematite and intergrowth of rutile–magnetite and ilmenite–sphene are recorded. Composite intergrowth grains of titanomagnetite–ilmenite trellis lamellae are common in metagabbros. The formation of ilmenite trellis and lamellae in magnetite and titanomagnetite indicate an oxidation process due to excess of oxygen contained in titanomagnetite; trapped and external oxidizing agents. This indicates the high P H2O and oxygen fugacity of the parental magma. The sulfides minerals include pyrrhotite, pyrite and chalcopyrite. Based on the chemical characteristics, the Fe–Ti oxide from the ophiolitic metagabbros in both areas corresponds to ilmenite. The patites from the metagabbros are identified as fluor-apatite. Carbonates are represented by dolomites in serpentinites and calcite in metagabbros. Spinel crystals in serpentinites are homogenous or zoned with unaltered cores of Al-spinel to ferritchromit and Cr-magnetite toward the altered rims. Compared to cores, the metamorphic rims are enriched in Cr# (0.87–1.00 vs. 0.83–0.86 for rims and cores, respectively) and impoverished in Mg# (0.26–0.48 vs. 0.56–0.67) due to Mg–Fe and Al (Cr)–Fe3+ exchange with the surrounding silicates during regional metamorphism rather than serpentinization process. The Fe–Ti oxides have been formed under temperature of ~800 °C for ilmenite. Al-spinels equilibrated below 500–550 °C, while the altered spinel rims correspond to metamorphism around 500–600 °C. Geochemical evidence of the podiform Al-spinels suggest a greenschist up to lower amphibolite facies metamorphism (at 500–600 °C), which is isofacial with the host rocks. Al-spinel cores do not appear to have re-equilibrated completely with the metamorphic spinel rims and surrounding silicates, suggesting relic magmatic composition unaffected by metamorphism. The composition of Al-spinel grains suggest an ophiolitic origin and derivation by crystallization of boninitic magma that belonging to a supra-subduction setting could form either in forearcs during an incipient stage of subduction initiation or in back-arc basins.  相似文献   

2.
The Lesser Himalayan low- to medium-grade metamorphic rocks in central Nepal are rich in K-white micas occurring as porphyroclasts and in matrix defining S1 and S2. Porphyroclasts are usually zoned with celadonite-poor cores and celadonite-rich rims. The cores are the relics of igneous or high grade metamorphic muscovites, and the rims were re-equilibrated or overgrown under lower T metamorphic conditions. The matrix K-white micas defining S1, pre-dating the Main Central Thrust activity, are generally celadonite-rich. They show heterogeneous compositional zoning with celadonite-rich cores and celadonite-poor rims. They were recrystallized at lower T condition prior to the Main Central Thrust activity, most probably prior to the India–Asia collision (pre-Himalayan metamorphism). The matrix K-white micas along S2, synchronous to the Main Central Thrust activity (Neohimalayan metamorphism), are relatively celadonite-poor and were recrystallized under relatively higher T condition. K-white micas defining S1 also were partially re-equilibrated during the Neohimalayan metamorphism. The average compositions of recrystallized K-white micas defining both S1 and S2 become gradually poor in (Fe + Mg)- and Si-contents and rich in Al- and Ti-contents from south to north showing an increase of metamorphic grade from structurally lower to higher parts in the Lesser Himalaya. This shows that the metamorphism is inverted throughout the inner Lesser Himalaya. The tectono-metamorphic significance of the published K–Ar and 40Ar / 39Ar K-white micas ages from the Lesser Himalaya need re-evaluation in the context of observed intrasample compositional variation and zoning, and possible higher closure temperature (500 °C) for K–Ar system.  相似文献   

3.
Compositions of chrome-spinels in peridotites from the layered igneous rocks of Rhum and of the Ben Buie intrusion, Mull, show evidence of post-depositional reaction relationships with the cumulus olivine and/or the intercumulus liquid. Some seam-forming spinels in the Ben Buie intrusion are highly aluminous, more so than those in the Rhum intrusion. Occasional zoned spinels, in both intrusions, show enrichment in Al towards their rims. The evidence suggests that the spinel reaction trend involving Cr-Al exchange proceeds in the direction of Al-enrichment. Equilibrium between chrome-spinel and cumulus olivine appears to have been attained rarely, thus limiting the application of the olivine-spinel geothermometer.  相似文献   

4.
Hassan M. Helmy   《Ore Geology Reviews》2005,26(3-4):305-324
Melonite group minerals and other tellurides are described from three Cu–Ni–PGE prospects in the Eastern Desert of Egypt: Gabbro Akarem, Genina Gharbia and Abu Swayel. The prospects are hosted in late Precambrian mafic–ultramafic rocks and have different geologic histories. The Gabbro Akarem prospect is hosted in dunite pipes where net-textured and massive sulfides are associated with spinel and Cr-magnetite. Michenerite, merenskyite, Pd–Bi melonite and hessite occur mainly as inclusions in sulfides. Typical magmatic textures indicate a limited role of late- and post-magmatic hydrothermal processes. At Genina Gharbia, ore forms either disseminations in peridotite or massive patches in hornblende-gabbro in the vicinity of metasedimentary rocks. Actinolitic hornblende, epidote, chlorite and quartz are common secondary silicates. Sulfide textures and host rock petrography suggest a prolonged late-magmatic hydrothermal event. Michenerite, merenskyite, Pd–Bi melonite, altaite, hessite, tsumoite, sylvanite and native Te are mainly present in secondary silicates. The Abu Swayel prospect occurs in conformable, lens-like mafic–ultramafic rocks in metasedimentary rocks and along syn-metamorphic shear zone. The sulfide ore and host rocks are metamorphosed (amphibolite facies; 550 to 650 °C, 4 to 5 kbar) and syn-metamorphically sheared. Melonite group minerals are represented by merenskyite and Pd–Bi melonite. Other tellurides comprise hessite, altaite and joséite-B. Melonite group minerals and tellurides occur as inclusions in mobilized sulfides and along cracks in metamorphic garnet and plagioclase.The different geological history of the three prospects permits an examination of the role played by magmatic, late-magmatic and metamorphic processes on the mineralogy of melonite group minerals and diversity of tellurides. The contents of PGE and Te in the ore and temperature of crystallization control the mineralogy and compositional trends of the melonite group minerals. Crystallization of the melonite group minerals over a wide range of temperatures in a Te-rich environment enhances the elemental substitutions. Merenskyite dominates the mineralogy of the group at low Te activity, while Pd–Bi melonite is the common phase at high Te activity.  相似文献   

5.
Fulai Liu  Zhiqin Xu  Huaimin Xue 《Lithos》2004,78(4):411-429
Orthogneisses are the major country rocks hosting eclogites in the Sulu UHP terrane, eastern China. All of the analyzed orthogneiss cores from the main drilling hole of the Chinese Continental Scientific Drilling Project (CCSD-MH) have similar major and trace element compositions and a granite protolith. These rocks have relatively high LREE/HREE ratios, strong negative Eu anomalies (Eu/Eu*=0.20–0.39), and negative Ba anomalies (Ba/Ba*=0.25–0.64). Coesite and coesite-bearing UHP mineral assemblages are common inclusions in zircons separated from orthogneiss, paragneiss, amphibolite, and (retrograded) eclogite of the CCSD-MH. This suggests that the eclogite, together with its country rocks, experienced in situ ultrahigh-pressure (UHP) metamorphism. Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircons from the orthogneisses are zoned and that they have distinct mineral inclusions in the different zones. Most zircons retain early magmatic cores with abundant low-pressure mineral inclusions, which are mantled with metamorphic zircon-containing inclusions of coesite and other UHP minerals. The outermost rims on these grains contain low-pressure mineral inclusions, such as quartz and albite. SHRIMP U–Pb dating of the zoned zircons gives three discrete and meaningful groups of ages: Proterozoic ages for the protolith, 227±2 Ma for the coesite-bearing mantles, and 209±3 Ma for the amphibolite facies retrograde rims. The widespread occurrence of UHP mineral inclusions in zircons from the Sulu metamorphic belt dated at about 227 Ma suggests that voluminous continental crust experienced late Triassic subduction to depths of at least 120 km and perhaps more than 200 km. Eighteen million years later, the terrane was rapidly exhumed to midcrustal levels, and the UHP rocks were overprinted by amphibolite facies metamorphism. The exhumation rate deduced from the zircon age data and previously obtained metamorphic PT data is estimated to be 5.6–11.0 km/Ma. Such rapid exhumation of the Sulu UHP terrane may be due to the buoyancy forces produced by subduction of low-density continental material into the deep mantle.  相似文献   

6.
Eclogite inclusions from kimberlitic diatremes on the Colorado Plateau contain intricately zoned garnet and pyroxene and unusual textures. Detailed electron microprobe traverses for a clinopyroxene-garnet-phengite-lawsonite-rutile assemblage show garnet zoning from Alm69Gr21Py10 (core) to Alm61Gr13Py26 (rim) and pyroxene zoning from Jd50 (core) through Jd77 to Jd55 (rim). Pyroxene cores are Cr-rich in another rock. Sharp compositional discontinuities and zoning reversals are preserved in garnet and pyroxene. Oscillatory zoning occurs in both phases on a 10–20 m scale, with variations of up to 6% Py in garnet and 15% Jd in pyroxene. Phengite is unzoned and contains 74% celadonite endmember.Skeletal, pyroxene-filled garnet crystals are common in some rocks, and garnets in other rocks clearly began growth as shell-like crystals. Some rocks contain domains of coarse, prismatic pyroxene with very fine-grained, interstitial magnesium silicates. The texture appears to have resulted from crystallization in the presence of a fluid phase, and water pressure is inferred to have equalled total pressure during crystallization. Eclogite formation at high water pressure may reflect subcrustal crystallization.An analysis of error propagation shows that ferrous iron calculations from electron probe data are not meaningful for these jadeitic pyroxenes, and temperature differences between core and rim crystallization cannot be documented. The garnet textures and oscillatory zoning are unusual for metamorphic rocks, and they suggest disequilibrium crystallization after overstepping of reaction boundaries. All data fit a model of eclogite formation during cooling and metasomatism of basaltic dikes intruded into a cool upper mantle, but the results here do not preclude other origins, such as subduction zone metamorphism.  相似文献   

7.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   

8.
Tourmalinites that are distally associated with tungsten deposits of the Pampa del Tamboreo area, San Luis, Argentina, contain tourmalines retaining evidence for its origin and evolution. Tourmaline grains uncommonly contain small grains of detrital tourmaline. Analysis of a single detrital tourmaline grain reveals that it is a Ca-rich “oxy-dravite”. Proximal to the detrital cores there are inner domains of asymmetric tourmaline overgrowths that developed during low grade metamorphism. Volumetrically dominant tourmaline overgrowths in the outer domain are concentrically zoned aluminous dravite and “oxy-dravite” with Al/(Al + Fe + Mg) = 0.71–0.74 and Mg/(Mg + Fe) = 0.64–0.71. Variability of Al is primarily controlled by the deprotonation substitution R + OH = Al + O2− (where R = Fe + Mg), and is a function of the activity of H2O. A likely evolutionary scenario is one in which volcanogenic material is altered by hydrothermal fluids in the sea floor resulting in an aluminous and magnesian residuum. With further hydrothermal circulation and incipient metamorphism, boron-rich fluids are expelled from metasedimentary and metavolcanic basement rocks and develop Mg-rich tourmalinites in the aluminous, magnesian host rocks. The tourmalinization process occurs over a range of metamorphic conditions and with fluids of variable activity of H2O.  相似文献   

9.
The age of a basement gneiss of the Dom Feliciano Belt along the coast of Rio Grande do Sul has been determined by zircon U–Pb SHRIMP to be about 2.08 Ga for the K-granitic magmatism and 800–590 Ma for the associated low-angle and sub-vertical shear zone deformations. The gneiss is the G3 granitic phase of the Arroio dos Ratos Complex of previous authors, and it now defines a geotectonic environment of juvenile accretion of island arcs in the Paleoproterozoic. The superposition of deformation events during the Neoproterozoic precludes the precise determination of the age of each event in this investigation, but we suggest that the collisional low-angle shear zones occurred at ca. 800 Ma and the sub-vertical shear zones at ca. 600 Ma. Th/U ratios are typically magmatic (about 0.4) in the homogeneous cores of zircons (about 2000 Ma), but are metamorphic (0.01) in the zoned euhedral rims (about 590 Ma).All the Paleoproterozoic gneisses in the region are part of the Encantadas Complex. Archean units, such as the Santa Maria Chico granulites, were all deformed in this major event of the Transamazonian Cycle. The dated gneiss may be correlative with the Epupa Complex north and south of the Kaoko Belt of SW Africa. Ages of the Neoproterozoic deformation are younger in the Kaoko Belt of Namibia than in its Brazilian counterpart.  相似文献   

10.
Chrome-spinels from the layered Peridotilte Series of the unmetamorphosed, anorogenic 60 Ma Cuillin Igneous Complex, Isle of Skye, display a wide variety of compositions. Cumulus (within seams) chrome-spinels from the lowest exposed portion of the Peridotite Series exhibit features indicative of textural equilibrium, are rich in Al and Mg, and have low values of the ratio Cr/(Cr+Al). Cumulus chrome-spinels from higher up in the series are different from these: particularly, textural disequilibrium is evident, intercumulus plagioclase and olivine are present, and the chrome-spinels are rich in Cr, Fe and Ti, with high values of the ratio Cr/(Cr+Al). Intercumulus (dispersed) chrome-spinels tend towards anhedral forms and define enrichment trends towards Fe (both Fe2+ and Fe3+) with decreasing Mg, Cr and Al, and towards Al, with decreasing Fe2+ and Cr (and increasing Mg). Individual crystals are completely homogeneous and are devoid of reaction rims. The observed textural characteristics and compositional data of the chrome-spinels documented here suggest that the semi-quantitative peritectic reaction: aluminous chrome-spinel + meltplagioclase + olivine + chromian chrome-spinel, is responsible for the observed parageneses, and that both the environment of crystallization (eumulus or intercumulus) and the role of plagioclase ±olivine crystallization are critical parameters for this geochemical trend in spinels within upper crustal magmatic systems. The effects of pyroxene crystallization on the development of this geochemical trend are also considered. This investigation highlights the need to consider the role of post-cumulus mineral-melt reactions and their influences upon the final compositions of major oxide and silicate phases within layered intrusions.  相似文献   

11.
The 5-km deep Chinese Continental Scientific Drilling Main Hole penetrated a sequence of ultrahigh pressure (UHP)-metamorphic rocks consisting mainly of eclogite, gneiss and garnet-peridotite with minor schist and quartzite. Zircon separates taken from thin layers of schist and gneiss within eclogite were investigated. Cathodoluminescence images of zircon grains show that they have oscillatory zoned magmatic cores and unzoned to patchy zoned metamorphic rims. Zircon rims contain rare coesite and calcite inclusions whereas cores contain inclusions of both low- P minerals (e.g. feldspar, biotite and quartz) and coesite and other eclogite-facies minerals such as phengite and jadeite. The zircon cores give highly variable 206Pb/238U ages ranging from 760 to 431 Ma for schist and from 698 to 285 Ma for gneiss, and relatively high but variable Th/U ratios (0.16–1.91). We suggest that the coesite and other eclogite facies mineral inclusions in zircon cores were not magmatic but formed through metasomatic processes caused by fluids during UHP metamorphism, and that the fluids contain components of SiO2, Al2O3, K2O, FeO, MgO, Na2O and H2O. Metasomatism of the Sulu UHP rocks during continental subduction to mantle depths has partly altered magmatic zircon cores and reset isotopic systems. This study provides key evidence that mineral inclusions within magmatic zircon domains are not unequivocal indicators of the formation conditions of the respective domain. This finding leads us to conclude that the routine procedure for dating of metamorphic events solely based on the occurrence of mineral inclusions in zoned zircon could be misleading and the data should be treated with caution.  相似文献   

12.
The Penjwin meta-peridotite rock represents one of the five main metamorphosed ultramafic bodies in Kurdistan region, Northwest Zagros Thrust Zone. It underwent at least two successively low-retrograde metamorphic events with one progressive one which all modified the original mineralogy and texture of primary dunite and harzburgite. The primary upper mantle mineral assemblage olivine?+?orthopyroxene?+?chromian spinel is replaced by olivine?+?tremolite–actiolite?+?anthopylite?+?talc?+?ferichromite?+?Cr-chlorite assemblage of amphibolite facies. The further retrograde metamorphic amphibolite facies assemblage is replaced by lizardite–chrysotile?+?Cr-chlorite?+?syn-serpentinization Cr-magnetite of lower greenschist facies. Later at the main Zagros thrust fault, low greenschist facies underwent progressive metamorphism due to the local effect of shear stress as a result of the exhumation and obduction of Penjwin ophiolite suite over Merga Red bed series during Tertiary. Lizardite–chrysotile transformed to antigorite and producing antigorite?+?carbonate?+?syn-serpentinization Cr-magnetite?+?Cr-chlorite assemblage of upper greenschist facies. Chromian spinel is concentrically zoned as a result of multi-stages retrogressive metamorphic events, in which the Cr # (Cr/(Cr?+?Al)) increases from core to rim (0.5 to 1). Three zones can be identified from core to rim: The core is primary Al-rich and mantled by ferrichromite of amphibolite facies. The most outer zone of chromian spinel grains is represented by syn-serpentinization Cr-magnetite of greenschist facies.  相似文献   

13.
Serpentinized harzburgites from southern Tuscany (Italy) host different kinds of spinels: (a) relic, magmatic Al-spinels, (b) hydrothermally altered spinels, occurring as ferritchromit rims, (c) syn- and post-serpentinization magnetites. The composition of relic Al-spinels suggests 5–15% partial melting of a fertile, spinel lherzolite. After the main serpentinization, Al-spinels are progressively replaced by ferritchromit rims by a dissolution–recrystallization process. Transmission electron microscopic investigation shows that ferritchromit actually consists of a complex, nanometric association of Cr-magnetite (Mg0.03 Fe0.972+ Al0.11 Cr0.89 Fe3+ 1.00 O4), chlorite and lizardite, with (001)chl/liz always parallel to (111)Cr-mag. Mg and Al, released during the Al-spinel ferritchromit replacement, interact with mesh-textured serpentine, giving rise to chloritic aureoles (i.e., randomly intergrown chlorite, lizardite and septechlorite) that overgrow and postdate mesh textures.  相似文献   

14.
Detrital tourmaline grains and their associated tourmaline overgrowths provide a means to unravel the provenance and petrogenetic history of low grade clastic metasedimentary rocks. Evidence derives from tourmaline grains found in a lithic wacke metamorphosed to chlorite zone conditions. The detrital tourmaline cores are diagnostic indicators of the source rocks of the sediment whereas the overgrowths record both diagenetic and metamorphic reactions in the rock. Tourmaline grains consist of a detrital core surrounded by asymmetric overgrowths comprised of inner and outer rims. Abrupt chemical discontinuities between each of these zones implies that volume diffusion within tourmaline was minor under the conditions of formation. Compositions of the detrital cores vary widely, yet can be correlated with source rock types that are consistent with lithic fragments recognizable in the metawacke. At either the analogous or antilogous pole, inner rim compositions proximal to the detrital cores converge, despite the substrate tourmaline composition, indicating an approach to chemical equilibrium. However, significant dufferences in Al and X-site vacancies at the expense of Mg, Na and Ti between the analogous and antilogous poles of the inner rims demonstrate the presence of significant amounts of compositional polarity. Outer rim compositions at either pole also converge but compositional polarity between the analogous and antilogous poles persists. The presence of the inner and outer rims separated by a compositional discontinuity suggests punctuated evolution of the overgrowth. This implies that boron was sporadically available during diagenesis and metamorphism. Based on boron contents of minerals, this may correspond to a mechanism such as boron release due to polytypic change of illite or consumption of illite and/or muscovite. As such, tourmaline growth stages may serve as a monitor of chemical reactions in low grade metamorphic rocks.  相似文献   

15.
The textural features and mineralogy of chrome-spinel bearing rocks from the layered ultrabasic intrusion of Rhum indicate that in situ reaction of chromite with olivine, plagioclase and interstitial liquid has taken place. The compositions of the chrome-spinels vary throughout parts of the intrusion and also in a systematic way across a thin picotite rich seam at a feldspar cumulate — olivine cumulate junction. The origin of the chrome-spinel is discussed in relation to other occurrences of chromite in layered ultrabasic rocks.  相似文献   

16.
This paper reports a study of the metamorphic evolution of pelitic, semi-pelitic migmatites and mafic granulites of the Chafalote Metamorphic Suite (CMS), Uruguay, which represents the southernmost exposures of high-grade metamorphic rocks in the Dom Feliciano Belt, Uruguain—Sul-Rio-Grandense shield, South America. This belt is one of the Brasiliano orogens that crop out along the Brazilian and Uruguayan Atlantic margin, and the CMS is one of several disconnected segments of supracrustal rock in a dominantly granitic terrain. Petrological evidence from CMS mafic granulites and semi-pelitic migmatites indicates four distinct metamorphic assemblages. The early prograde assemblage (M1) is preserved only as inclusions in porphyroblasts of the peak-metamorphic (M2) assemblage. Peak-metamorphism was followed by near-isothermal decompression (M3), which resulted in symplectites and coronitic textures in the mafic granulites and compositional zoning of Ca in garnet (decreasing rimwards) and plagioclase (increasing rimwards) in the semi-pelitic migmatites. The retrograde metamorphic assemblage (M4) is represented by hydration reaction textures replacing minerals of the M2 and M3 assemblages. Average PT calculations using the program THERMOCALC and conventional thermobarometric methods yield peak-metamorphic (M2) PT conditions of 7–10 kbar and 830–950 °C, near-decompressional (M3) PT conditions of 4.8–5.5 kbar and 788–830 °C and M4 retrograde PT conditions of 3–6 kbar and 600–750 °C. The calculated PT path for the CMS rocks is ‘clockwise’ and incorporates a near-isothermal decompression segment followed by minor cooling, consistent with a history of crustal thickening followed by extensional collapse at ca. 650–600 Ma. The metamorphism recorded by rocks of this crustal segment may be correlated with 650 Ma metamorphism in the Coastal Terrane of the Kaoko Belt in Namibia, being the first unequivocal match between South America and Africa provided by crystalline rocks south of the Congo Craton.  相似文献   

17.
The Jeori-Wangtu Gneissic Complex (JWGC) exposed as a tectonic window in the Lesser Himalayas represents one of the oldest Gneissic Complex of the Himalayas. Foliated granite and the metapelite constitute the dominant lithologies of the JWGC. The western margin of the JWGC is bounded by a brittle shear while in the east, the tectonic surface is a ductile shear zone.Kyanite schist, chloritoid schist, staurolite schist (St-1), garnet schist and staurolite schist (St-2) are present in a west to east sequence beginning from near to the Jhakhri thrust and up to the contact with the JWGC granite. Mica schist is intermittently present and is the dominant metapelite. Low to medium grade regional metamorphic conditions has been inferred for these rocks.Calc silicate enclaves within the JWGC granite preserve the contact metamorphic effects. These are reflected in development of narrow zones of disequilibrium assemblages of calcareous garnet (grs53), clinopyroxene, K feldspar, calcic plagioclase (An86), quartz, zoned sphene, zoned allanite, amphiboles, calcite and epidote.Recording of contact metamorphic assemblage of 1.80 Ga granite witin the enclave calc silicates and in the host metapelites over an earlier, relict low to medium grade assemblage indicates that the JWGC preserves palaeoproterozoic metamorphic imprints.  相似文献   

18.
The thermal evolution of Corsica as recorded by zircon fission-tracks   总被引:1,自引:0,他引:1  
New zircon fission-track (ZFT) ages from Corsica record multiple thermal events that can be tied to the structural evolution of the western Mediterranean region. The Corsican zircons have a wide scatter of ZFT grain ages (243–14 Ma), which together define several age domains. Western Corsica consists largely of stable Hercynian basement characterized by ZFT ages in the range 161–114 Ma. We interpret these ages (Late Jurassic–Early Cretaceous) as the product of a long-lived Tethyan thermal event related to continental rifting and subsequent drifting during the separation of the European and African plates and the formation of the Liguro–Piemontese ocean basin. In contrast to Hercynian Corsica, Alpine Corsica (northeast Corsica) experienced widespread deformation and metamorphism in Late Cretaceous(?)–Tertiary time. Dated samples from Alpine Corsica range in age from 112 to 19 Ma and all are reset or partially reset by one or more Alpine thermal events. The youngest ZFT grain ages are from the northernmost Alpine Corsica and define an age population at  24 Ma that indicates cooling after Tertiary thermal events associated with the Alpine metamorphism and the opening of the Liguro–Provençal basin. A less well-defined ZFT age population at  72 Ma is present in both Alpine Corsica and Hercynian basement rocks. The thermal history of these rocks is not clear. One interpretation is that the ZFT population at  72 Ma reflects resetting during a Late Cretaceous event broadly synchronous with the early Alpine metamorphism. Another interpretation is that this peak is related to variable fission-track annealing and partial resetting during the Tertiary Alpine metamorphic event across central to north-eastern Corsica. This partial age resetting supports the presence of a fossil ZFT partial annealing zone and limits the peak temperature in this area below 300 °C, for both the affected pre-Alpine and Alpine units.  相似文献   

19.
Back-scattered electron (BSE) imaging and X-ray element mapping of monazite in low-grade metasedimentary rocks from the Paleoproterozoic Stirling Range Formation, southwestern Australia, reveal the presence of distinct, high-Th cores surrounded by low-Th, inclusion-rich rims. Previous geochronology has shown that the monazite cores are older than 1.9 Ga and overlap with the ages of detrital zircon grains (∼3.5–2.0 Ga), consistent with a detrital origin. Many cores have scalloped and embayed surfaces indicating partial dissolution of former detrital grains. Textural evidence links the growth of the monazite rims (∼1.2 Ga) to deformation and regional metamorphism during the Mesoproterozoic Albany-Fraser orogeny. These results indicate that high-Th detrital monazite is unstable under low-grade metamorphic conditions (<400°C) and was partially or completely dissolved. Dissolution was followed by near-instantaneous reprecipitation and the formation of low-Th monazite and ThSiO4. This reaction is likely to operate in other low-grade metasedimentary rocks, resulting in the progressive replacement of detrital monazite by metamorphic monazite during regional prograde metamorphism.  相似文献   

20.
刘福来  许志琴  宋彪 《地质学报》2003,77(4):533-539
通过隐藏在锆石微区矿物包体激光拉曼的系统鉴定和阴极发光图像特征的详细研究,配合相应的锆石微区SHRIMP U-Pb定年测试,发现苏鲁地体超高压变质带中确实存在非超高压变质的花岗质片麻岩。该类岩石中的锆石晶体自核部到边部所保存的矿物包体以不含超高压矿物为特征,相应的阴极发光图像具有典型岩浆结晶锆石的核部和幔部,以及变质的再生边的特点。其中岩浆结晶锆石微区记录的~(238)U-~(206)Pb年龄为404~748Ma,表明原岩中部分锆石可能经历了Pb丢失,也不排除后期热事件因素的影响,原岩的形成年龄应大于748 Ma;而锆石的再生边所记录的~(238)U-~(206)Pb。年龄为204~214 Ma,与研究区经历超高压变质的副片麻岩和花岗质片麻岩锆石微区所记录的苏鲁地体快速折返过程中角闪岩相退变质年龄(~(238)U-~(206)Pb年龄的平均值为211±4 Ma,刘福来等,2003a)十分相似。上述特征表明,苏鲁地体超高压变质带中的部分花岗质片麻岩在超高压变质事件之前就已经形成,但并未“参与”深俯冲—超高压的变质演化过程,而是在苏鲁地体快速折返的角闪岩相退变质过程中与超高压岩片“拼贴”在一起。该项成果不仅为正确识别非超高压变质岩石提供了一个新的研究方法,而且对进一步深入探讨苏鲁地体超高压和非超高压岩片的“拼贴”机制有着重  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号