首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
An integrated biostratigraphic (foraminifera, calcareous nannofossils, crinoids), chemostratigraphic (stable carbon isotopes) and magnetostratigraphic study of the Bocieniec section (southern Poland) is presented here. The section presents a continuous and lithologically monotonous sedimentary record across the Santonian–Campanian boundary transition. A large number of macrofossil, foraminiferal and calcareous nannofossil bioevents along with several well-identified carbon-isotope excursions of the upper Santonian and lowermost Campanian are documented. The base of the Campanian is well-constrained by the last occurrence (LO) of the crinoid Marsupites testudinarius, and correlates to the onset of the first δ13C positive peak of the Santonian–Campanian Boundary Event (SCBE peak a). A presumable primary Cretaceous paleomagnetic signal highlights the potential presence of the C34N/C33R magnetic reversal although its exact position remains uncertain between peaks a and b of the SCBE. The planktic foraminifer Dicarinella asymetrica is very rare at Bocieniec but a potential LO of this important marker may be recorded in coincidence with peak b of the SCBE. The first occurrence (FO) of calcareous nannofossil Broinsonia parca parca coincides with the lower part of chron C33R and with the early Campanian pilula zone event. A large set of additional nannofossil events and benthic foraminifer events further constrain the stratigraphy of the section and along with the carbon isotopes, allows for correlation with other important sections of the Boreal realm. Although the Bocieniec section is relatively thin and condensed (5.5 m), the successive order of events and presence of all past proposed stratigraphic criteria for the Santonian-Campanian boundary makes it the most complete reference section for this interval at the European and at the global scale. Moreover, this section allows for a precise correlation of the Tethyan and Boreal domains. The Bocieniec section fulfils the geological criteria to be a potential boundary stratotype candidate for the base of the Campanian Stage.  相似文献   

2.
Calyx plates of the crinoid Uintacrinus anglicus are recorded from the top and bottom of a 5 m interval, 4 m above the disappearance of calyx plates of the crinoid Marsupites testudinarius within the Flamborough Chalk Formation at Danes Dyke in North Yorkshire, UK. The U. anglicus Zone, as used here, comprises the interval from the disappearance of M. testudinarius to the disappearance of U. anglicus calyx plates, and therefore includes, but does not comprise, the total range of the index species. Two subzones are recognized in the M. testudinarius Zone; a lower subzone characterized by smooth Marsupites calyx plates and an upper subzone characterized by variably ornamented Marsupites calyx plates. A provisional study of the belemnite indicates the Gonioteuthis granulataquadrata appears in the highest part of the M. testudinarius Zone. The 1983 Copenhagen symposium on Cretaceous stage boundaries proposed that the base of the Campanian Stage should be drawn at a level close to the appearance of G. granulataquadrata. Consequently, the extinction of M. testudinarius is used to define the base of the Campanian here and U. anglicus Zone is placed in the basal Lower Campanian.  相似文献   

3.
New carbon (δ13C) isotope records calibrated by planktonic bioevents provide general support for a late Campanian age assignment of the Shiranish Formation (Fm.) and its boundaries in the Dokan section (NE Iraq). The Shiranish Fm. is characterised at the base by a mid-Campanian unconformity as can be interpreted by absences of nannofossil zones CC20-21. The Shiranish Fm. then spans nannofossil biozones CC22-CC23a (UC15d-eTP to UC16aTP). Results obtained on carbon isotopes suggest that diagenesis affected and compromised a few carbonate samples in the uppermost 50 m of the section. However, once these samples are discarded, pristine trends suggest that the top of the section records a negative carbon isotope excursion that is interpreted as CMBa-c events that straddle the Campanian–Maastrichtian boundary. This interpretation is supported by the lowermost occurrence of planktic foraminifers Rugoglobigerina scotti and Contusotruncana contusa some 30 m above the base of the negative excursion and 10 m below a positive excursion identified as the Maastrichtian M1+ event. Discrepancies in the stratigraphic range of several planktic foraminifer bioevents are highlighted and advocate for the need of many more integrated records of planktic foraminifer and nannofossil biostratigraphy alongside carbon isotope stratigraphy in the eastern Tethys in order to improve regional and global schemes.  相似文献   

4.
Review of biostratigraphical evidence from different regions shows that criteria used by workers on various marine fossil groups to define the Santonian-Campanian boundary differ considerably in relative age and position. Probably the most widely recognizable of these criteria is the extinction of the distinctive crinoid Marsupites testudinarius (North America, Europe, Asia, north Africa, Australia), which, coincides exactly with two separate definitions of the boundary - appearances of the ammonite Placenticeras bidorsatum and the belemnite Gonioteuthis granulataquadrata - and may also coincide with a third - entry of the planktic foraminiferan Globotruncana elevata. A comparison of evidence from upper Santonian and lower Campanian successions in widely separated regions allows us to place a series of important biostratigraphical markers in correct order. Defining the boundary at the extinction of M. testudinarius corresponds to a 87Sr/86Sr of 0.707479, and a small positive excursion in δ13C. The base of magnetochron 33R, generally considered to coincide with, or fall just above the base of the Campanian, is shown to lie within the upper Santonian Uintacrinus socialis Zone.  相似文献   

5.
The base of the Campanian Stage does not have a ratified Global Stratotype Section and Point (GSSP); however, several potential boundary markers have been proposed including the base of the Scaphites leei III ammonite Zone and the base of the paleomagnetic Chron C33r. Calcareous nannofossil assemblages from the Smoky Hill Member of the Niobrara Formation in the central Western Interior Seaway, USA were analyzed from two localities to determine relevant biohorizons and their relationships to these potential boundary markers. In a previous study, the Aristocrat Angus 12-8 core (Colorado) was astrochronologically dated and constrained using macrofossil zonations and radiometric ages. The Smoky Hill Member type area (Kansas) provides an expanded interval with good to excellent nannofossil preservation.Five biohorizons are useful for recognition of the Santonian/Campanian transition within the Smoky Hill Member type area, and three are useful in the Aristocrat Angus 12-8 core. The first occurrences (FOs) of Aspidolithus parcus parcus and Aspidolithus parcus constrictus, as well as the last occurrences (LOs) of Zeugrhabdotus moulladei, Helicolithus trabeculatus specimens larger than 7 μm, and Zeugrhabdotus biperforatus are in close stratigraphic proximity to the base of the Scaphites leei III Zone and the base of Chron C33r.  相似文献   

6.
Re-evaluation of samples from several Texas localities over the Austin Chalk-Taylor Clay boundary for planktic Foraminifera, and comparison with recent work on European and North African successions confirms the general correlation of the Texan formations with the European Stage succession. The sedimentary hiatus indicated by Pessagno (1967) does not appear to be present: the Late Santonian-Early Campanian zonal marker Globigerinita elevata (Brotzen) occurs in the Lower Taylor Clay associated with late representatives of Marginotruncana. The Lower Taylor Clay may belong to the Late Santonian in some localities.  相似文献   

7.
《Cretaceous Research》2008,29(1):40-64
The proposed definition of the Turonian/Coniacian boundary, at the first occurrence of the inoceramid bivalve Cremnoceramus deformis erectus (Meek) (= Cremnoceramus rotundatus (sensu Tröger non Fiege)), prompted a rigorous study of the calcareous nannofossil events through this interval, both for calibration of the calcareous nannofossil biostratigraphy, and to provide an assessment of the suitability, in calcareous nannofossil terms, of the proposed stratotype section. New calcareous nannofossil data are presented here, detailing the biostratigraphy of the boundary interval from four locations. These include the candidate boundary-stratotype, the Salzgitter-Salder Quarry section (northern Germany), as well as the Slupia Nadbrzezna outcrop (central Poland), a potential secondary reference section. Also included is the Brezno Pd-1 Borehole and outcrops in the Brezno Formation (= Priesener Schichten) type-area (north-western Czech Republic), which represents an original boundary candidate (Copenhagen Stage Boundaries Meeting, 1983), and the Langdon Stairs coastal section (south-eastern England), part of the British Chalk succession. The calcareous nannofossil events derived from each section provide a sequence across the boundary of (in stratigraphical order): below the boundary, the first occurrence of Lithastrinus septenarius followed by that of Broinsonia parca expansa; above the boundary, the last occurrence of Helicolithus turonicus followed by the first occurrence of Micula staurophora (= Micula decussata of some authors). This places the boundary within Nannofossil Subzone UC9c. A similar sequence of events has previously been determined from sections in north-eastern England and in the south-eastern Indian Ocean. The presented data and correlations suggest that either the Salzgitter-Salder Quarry section or the Slupia Nadbrzezna outcrop section would make a suitable Global Stratotype Section for the Turonian/Coniacian boundary, as far as calcareous nannofossils are concerned. The use of the calcareous nannofossil Marthasterites furcatus, widely quoted as an indicator of this boundary, is discussed and proved to be untenable.  相似文献   

8.
Distribution of belemnites and benthic foraminifers in the Campanian-Maastrichtian boundary layers of the Aktulagai section, one of Upper Cretaceous reference sections in the east of the European paleobiogeographic region (EPR) is discussed. The base of Lanceolata Beds defined by A.D. Arkhangelsky in 1912 is well-substantiated biostratigraphic level corresponding to boundary between the Campanian and Maastrichtian stages. In spacious outcrops of Upper Cretaceous deposits in the Aktulagai Plateau (Aktyubinsk region, Kazakhstan Republic), “primitive Belemnella forms” (two rostra plates) appearing above that base distinctly replace the genus Belemnitella dominant in the Campanian. Seven successive zonal assemblages of benthic foraminifers (one plate) are established in the boundary interval. The Aktulagai reference section of Upper Cretaceous sediments can be used to trace the Campanian-Maastrichtian boundary from the eastern EPR to Boreal regions of Russia based on abundant micro-and nannofossils.  相似文献   

9.
The Verkhnyaya Kardailovka section is one of the best candidates for the GSSP (Global Stratotype Section and Point) at the base of the Stage (Mississippian). For boundary definition, the first appearance of the conodont Lochriea ziegleri Nemirovskaya, Perret et Meischner, 1994 in the lineage Lochriea nodosa (Bischoff, 1957)?L. ziegleri is used. L. ziegleri appears in the Venevian Substage somewhat below the base of the Serpukhovian in the Moscow Basin. The position of the FAD of L. ziegleri within the Hypergoniatites?Ferganoceras Genozone is confirmed and lies between 19.53 and 19.63 m above the section’s base. Before 2010, deep-water stylonodular limestone containing the boundary in unnamed formation C at Kardailovka was well exposed but only 3 m of Viséan strata cropped out immediately below. Recent trenching exposed another 10 m of underlying Viséan carbonates in formation C and older Viséan siliciclastics and volcanics in unnamed formation B. The contact between formation B and underlying crinoidal limestones in unnamed formation A representing the middle Viséan Zhukovian (Tulian) regional Substage was excavated. The boundary succession, situated in the Magnitogorsk tectonic zone above the Devonian Magnitogorsk arc and Mississippian magmatic and sedimentary rift succession, was deposited west of the Kazakhstanian continent during closure of the Ural Ocean. In the lower part of the section, Viséan tuffaceous siliciclastics and volcanics of formation B record rapid deepening after deposition of neritic middle Viséan crinoid lime grainstone of formation A and subsequent subaerial exposure. The overlying condensed upper Viséan to Serpukhovian succession in formation C comprises deep-water limestone deposited in a sediment-starved basin recording minor turbidite influx and carbonate-mound development. The δ13Ccarb plot shows a positive shift of 1‰ V-PDB (from +2 to +3‰) between 17.0 and 17.75 m (3.05 and 1.97 m below FAD L. ziegleri). The δ18Oapatite graph displays a prominent upward shift from 19.9 to 21.1‰ V-SMOW (at 19.15 to 19.51 m) in the nodosa Zone below FAD of Lochriea ziegleri.  相似文献   

10.
According to known resolution of the IUGS, the International Stratigraphic Commission entrusted its subcommissions with a task to prepare proposals for the official approval of boundaries between Phanerozoic stages. Specially organized working groups were later renamed as special teams for seeking the Global Stratotype Sections and Points (GSSP) for these boundaries. In 2001, the GSSP of lower boundary for the Induan Stage, the basal one in the Triassic System, was officially approved to be in the Meishan section of southern China. The selection appeared to be lame, because the Permian-Triassic boundary layers of the stratotype section are lacking ammonoids. As a result, this boundary is now based only on the first occurrence level (FO) of conodont species Hindeodus parvus. Soon, the proposal of Chinese paleontologists to consider the western Pingdingshan section in the Anhui Province as the GSSP for the lower boundary of the Olenekian Stage may win the official recognition. This boundary between the Olenekian and Anisian stages, which is placed at the FO of conodont species Neospathodus waageni is the least debatable. The Mt. Desli Caira section in northern Dobrogea (Romania) is most appropriate for its global stratotype. In contrast, the Anisian-Ladinian boundary appeared to be most disputable. The Subcommission on Triassic Stratigraphy should select one of three GSSP candidates proposed. The lower Carnian boundary traditionally drawn at the aon Zone base suffered some changes. It is proposed to place it at the FO of the ammonoid genus Daxatina with the GSSP in the Dolomites of Italy. The Norian and Rhaetian boundaries are under discussion.  相似文献   

11.
Recognition of the Campanian stage on the Brazilian Continental Margin, using calcareous nannofossils, has been historically problematic. This paper constitutes an overview of earlier works, showing how nannofossil biostratigraphic ideas have evolved since Troelsen & Quadros provided the first biozonation of this region in 1971. Recent studied have provided data which have helped to clarify these apparent biostratigraphic problems, and allows this region to be placed in a global biostratigraphic context.The earliest researchers identified the Santonian/Campanian boundary by the last occurrences of ‘Lithastrinus grillii’ andPetrobrasiella venata. P. venatawas later abandoned as an index species due to its rarity and, instead, the last occurrences ofMarthasterites furcatusand ‘Lithastrinus grillii’ became the most-used markers. However, the stratigraphic age of these biohorizons diverged from those quoted in the literature. In the Brazilian basins, these extinctions, rather than having occurred in the Campanian as was recorded elsewhere, were considered to mark the top of the Santonian, as suggested by correlations with other microfossil groups (primarily foraminifera and palynomorphs). To explain this phenomenon, the existence of a condensed sequence was postulated for most of the Brazilian marginal basins, where the uppermost Santonian deposits were apparently indistinguishable from those of the lowermost Campanian. In line with current correlations presented in the nannofossil literature, and with new information obtained from core and side-wall samples, it is now believed that the extinction of these speciesdidoccur in the Campanian in the Brazilian basins, whilst the last occurrence ofLithastrinus moratus(previously misidentified asLithastrinus grillii) has become a useful Santonian marker. Thus the Santonian/Campanian boundary in Brazil lies in a stratigraphic position similar to elsewhere in nannofossil terms, that is below CC18.The Campanian/Maastrichtian boundary was initially characterised in nannofossil terms in Brazil by the last occurrence ofBroinsonia parca constricta, and later by the last occurrence ofEiffellithus eximius. Recently acquired data has shown that the sequence of events in the Brazilian marginal basins is similar to that of the Sissingh/Perch-Nielsen standard biozonation scheme through this interval. Again, correlations in the literature with the recently defined boundary (in macrofossil terms) thus allow the boundary to be determined between the last occurrences ofBroinsonia parca constrictaandUniplanarius trifidus, that is, in CC23b.  相似文献   

12.
Dinoflagellate cyst assemblages from a well-exposed uppermost Cretaceous section at Zumaia (northern Spain) provide a basis for comparison with previous biostratigraphic and magnetostratigraphic studies on the problematic location of the Campanian-Maastrichtian boundary in the section. The position of the last occurrence of Corradinisphaeridium horridum and first common occurrence of Alterbidinium acutulum, correspond well with the bioevents defining the Campanian-Maastrichtian boundary in the Global boundary Stratotype Section and Point of Tercis les Bains (130 km to the North). Together with other age-diagnostic dinoflagellate cyst bioevents, we suggest that the boundary should be placed between 239.75 and 224.75 m below the Cretaceous-Palaeogene boundary, about 46 m lower than an interpretation based on the first occurrence of the planktonic foraminifer Pseudoguembelina palpebra and the last occurrence of the nannofossil Broinsonia parca subsp. constricta. A conspicuous acme of the dinoflagellate cyst Thalassiphora cf. delicata is encountered around the lower-upper Maastrichtian boundary (calibrated by foraminiferal, calcareous nannoplankton and magnetic polarity data), which may prove to be a useful correlatable event.  相似文献   

13.
Integration of calcareous nannofossil data, δ13C and δ18O values, and carbonate contents of the lower Paleocene–upper Paleocene sequence that crops out at the Misheiti section, East Central Sinai, Egypt, were used to denote the Danian/Selandian (D/S) and Selandian/Thanetian (S/T) stage boundaries. The study interval belongs to the Dakhla and Tarawan formations. Four calcareous nannofossil zones (NP4, NP5, NP6, and NP7/8) were recognized. The base of the Selandian Stage is tentatively placed at the lowest occurrences (LOs) of taxa ascribable to the second radiation of fasciculiths (i.e., Lithoptychius janii). This level is marked by a sudden drop of δ13C and δ18O values and carbonate content. No distinctive lithological changes were observed across the D/S boundary at the study section. A hiatus at the NP5/NP6 zonal boundary is indicated by the condensation of zones NP5 and NP6.The base of the Thanetian is placed at the base of Zone NP7/8 at the lithological change observed in correspondence to the boundary between the Dakhla and Tarawan formations. The δ13C and δ18O values abruptly decrease slightly above the base of Zone NP7/8. No consistent variations in the carbonate contents were recorded within Zone NP6 or across the NP6/NP7/8 zonal boundary.  相似文献   

14.
The International Union of Geological Science approved the stage boundaries suggested by the international working groups for the Tethyan Triassic. In this work we estimate the possibility of their establishment and correlation in the Boreal sections of Northeast Asia, based on the analyzed distribution of ammonoids and conodonts. As the conodonts of the Induan Stage have not been identified for sure in the region under study, the lower boundary of the Triassic System is defined here at the base of the Otoceras concavum Zone of the ammonoid scale. In addition to the ammonoids Hedenstroemia hedenstroemi (Keyserling), the first occurrence of the conodonts Pseudogondolella nepalensis (Kozur et Mostler) is suggested to be the biomarker of the Olenekian Stage base. The lower boundaries of the Anisian and Ladinian stages, defined respectively at the basal levels of the Paracrochordiceras-Japonites Beds in Northern Dobrogea and the Eoprotrachyceras curionii Zone in the Brescian Prealps are recognizable, though with some reservations, at the base of the Grambergia taimyrensis and Eonathorstites oleshkoi zones in Northeast Asia. According to the priority principle and similarity between the ammonoid faunas of the Daxatina cf. canadensis Subzone and Frankites regoledanus Zone, the lower boundary of the Carnian Stage is defined at the base of the Alpine Trachyceras aon Zone. In Northeast Asia, this boundary is established at the base of the “Protrachyceras” omkutchanicum Zone, as we take into account the fact that the Daxatina and Stolleyites ammonoid genera occur in sections of British Columbia below the stratigraphic level of the Trachyceras forms. The lower boundary of the Norian Stage is concurrent with the base of the Guembelites jandianus Zone in the Alps and equivalent Stikinoceras kerri Zone in North America and Striatosirenites kinasovi Zone in Northeast Asia. The conodont species Norigondolella navicula (Huckriede) that is most important for the Boreal-Tethyan correlation cannot be used as a biomarker of the Norian lower boundary because of its problematic diagnosis and rare occurrence in the Boreal sections. The Rhaetian Stage base is defined at the appearance level of the Misikella conodont genus in the Hallstatt region, Austria, that is simultaneously the disappearance level of the characteristic Norian bivalves (Monotis) and ammonoids (Metasibirites). In Northeast Asia, this boundary is established at the top of the Monotis ochotica Zone. The correlation between the biostratigraphic units of the Middle-Upper Triassic conodont scale established in Northeast Asia and standard ammonoid zonation is verified.  相似文献   

15.
《Gondwana Research》2014,25(3):999-1007
Abundant data have been acquired on the lower Cambrian small shelly fossils (SSFs) of the Yangtze platform during the last three decades, demonstrating that these fossils are an important piece of evidence for the Cambrian radiation and are useful biostratigraphic tools for correlating the lower Cambrian. Here we report SSF associations from the Yanjiahe Formation in the Three Gorges area, South China. The Yanjiahe Formation is well exposed near the Yanjiahe village, and its 40-m-thick sequence can be subdivided on the basis of lithology into five stratigraphic intervals (beds). Small shelly fossils occur mainly in Beds 2 and 5, but abundant SSFs were discovered in thin sections of siliceous–phosphatic nodules from Bed 3 for the first time. No skeletal fossils were discovered in the basal siliceous rock interval (Bed 1), but the negative δ13Ccarb excursion and the occurrence of the acritarch Micrhystridium regulare indicate that it belongs to the basal Cambrian. The SSF associations are somewhat similar to those of East Yunnan, and can be differentiated into three biozones (in ascending order): the Anabarites trisulcatusProtohertzina anabarica assemblage zone (Bed 2), the Purella antiqua assemblage zone (Bed 3), and the Aldanella yanjiaheensis assemblage zone (Bed 5). The occurrence of A. yanjiaheensis in Bed 5 probably indicates that Bed 5 belongs to Cambrian Stage 2, but the Stage 2/Stage 1 boundary is uncertain since Bed 4 lacks fossils. SSF biostratigraphy indicates that the Yanjiahe Formation is pretrilobitic Meishucunian in age (equivalent to the Nemakit–Daldynian to Tommotian of Siberia, Terreneuvian). Five SSF genera occur in Bed 2, more than six genera in Bed 3, and twenty-three genera in Bed 5. The stepwise increase in generic diversity through the Yanjiahe Formation is comparable with the global diversity increase through the Nemakit–Daldynian to early Tommotian interval.  相似文献   

16.
The demarcation of the Lower–Middle Triassic boundary is a disputed problem in global stratigraphic research. Lower–Middle Triassic strata of different types, from platform to basin facies, are well developed in Southwest China. This is favorable for the study of the Olenekian–Anisian boundary and establishing a stratotype for the Qingyan Stage. Based on research at the Ganheqiao section in Wangmo county and the Qingyan section in Guiyang city, Guizhou province, six conodont zones have been recognized, which can be correlated with those in other regions, in ascending order as follows: 1, Neospathodus cristagalli Interval-Zone; 2, Neospathodus pakistanensis Interval-Zone; 3, Neospathodus waageni Interval-Zone; 4, Neospathodus homeri-N. triangularis Assemblage-Zone; 5, Chiosella timorensis Interval-Zone; and 6, Neogongdolella regalis Range-Zone. An evolutionary series of the Early–Middle Triassic conodont genera Neospathodus-Chiosella-Neogongdolella discovered in the Ganheqiao and Qingyan sections has an intermediate type named Neospathodus qingyanensis that appears between Neospathodus homeri and Chiosella timorensis in the upper part of the Neospathodus homeri-N. triangularis Zone, showing an excellent evolutionary relationship of conodonts near the Lower–Middle Triassic boundary. The Lower–Middle Triassic boundary is located at 1.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Qingyan section, whereas this boundary is located 0.5 m below the top of the Ziyun Formation, where Chiosella timorensis Zone first appears in the Ganheqiao section. There exists one nearly 6-m thick vitric tuff bed at the bottom of the Xinyuan Formation in the Ganheqiao section, which is usually regarded as a lithologic symbol of the Lower–Middle Triassic boundary in South China. Based on the analysis of high-precision and high-sensitivity Secondary Ion Mass Spectrum data, the zircon age of this tuff has a weighted mean 206Pb/238U age of 239.0±2.9Ma (2s), which is a directly measured zircon U-Pb age of the Lower–Middle Triassic boundary. The Ganheqiao section in Wangmo county can therefore provide an excellent section through the Lower–Middle Triassic because it is continuous, the evolution of the conodonts is distinctive and the regionally stable distributed vitric tuff near the Lower–Middle Triassic boundary can be regarded as a regional key isochronal layer. This section can be regarded not only as a standard section for the establishment of the Qingyan Stage in China, but also as a reference section for the GSSP of the Lower–Middle Triassic boundary.  相似文献   

17.
A single stem section (pluricolumnal) belonging to a post-Palaeozoic crinoid (sea lily) is reported from a small outcrop of Lower Jurassic Lias Group strata exposed in low cliff near Dunrobin Castle. This is the first Jurassic crinoid recorded from Eastern Scotland and the small fragment has enough diagnostic characters to be assigned to the species Isocrinus cf. robustus; a crinoid found commonly in the Lower Jurassic of England. The Scottish form collected has unusual morphology that is atypical of the genus.  相似文献   

18.
The outcrop of the Marnes Bleues at the Col de Pré-Guittard, 11 km north of the village of Rémuzat in the Départment of Drôme in southeastern France is probably the most intensively studied succession spanning the Aptian/Albian boundary interval. Following the rejection of the proposed GSSP for the base of the Albian Stage (based on the first occurrence of the ammonite Leymeriellla tardefurcata in the section at Le Pillart, Tartonne, Alpes-de-Haute Provence), we re-visit the Pré-Guittard section. A new candidate GSSP defined by the first occurrence of the planktonic foraminifera Microhedbergella renilaevis Huber and Leckie, 2011 is here proposed. This first occurrence is placed in a 100 m section with 28 secondary markers, including calcareous nannofossils, planktonic foraminifera, palynomorphs, an inoceramid bivalve, ammonites, stable carbon isotopes, and local marker beds. The outcrop fulfils most of the physical criteria required of a Global Stratotype Section and Point.  相似文献   

19.
The record of conodonts related to the Mississippian/Pennsylvanian boundary interval was investigated in four sections in Central Iran from two different structural units. Two sections from the Sanandaj–Sirjan trend zone (Asad-abad, and Darchaleh sections) and two from the East-Central Iran Microplate (Shesh-angosht and Kale-Sardar sections) exhibit a nearly complete record previously described across the Mississippian/Pennsylvanian boundary in Iran. The investigated sections can be subdivided in three formations (Ghaleh-, Absheni-, and Zaluda Formation) which belong to the Sardar Group. The mid-Carboniferous boundary was defined by the occurrence of Declinognathus noduliferus s.l.. Bio-event characteristics of the Carboniferous conodont fauna (Mississippian genera Gnathodus and Lochriea have been replaced by Pennsylvanian genera Declinognathus and Idiognathodus) as well as sedimentological changes within overall shallow water deposits were located approximately 33° S of the paleoequator and suggest sea-level changes within the framework of the Late Paleozoic Ice Age (LPIA). Furthermore, a widespread crinoid marker horizon previously described from two localities in Iran can be subdivided into three units of different ages.  相似文献   

20.
The palaeogeographic setting of the studied Ain Medheker section represents an Early Campanian to Early Maastrichtian moderately deep carbonate shelf to distal ramp position with high rates of hemipelagic carbonate production, periodically triggered by mass-flow processes. Syndepositional extensional tectonic processes are confirmed to the Early Campanian. Planktonic foraminifera identified in thin sections and calcareous nannofossils allow the identification of the following biozones: Globotruncanita elevata, Contusotruncana plummerae (replacing former Globotruncana ventricosa Zone), Radotruncana calcarata, Globotruncana falsostuarti, and Gansserina gansseri. The following stable C-isotope events were identified: the Santonian/Campanian boundary Event, the Mid-Campanian Event, and the Late Campanian Event. Together with further four minor isotopic events, they allow for correlation between the western and eastern realms of Tunisia. Frequently occurring turbidites were studied in detail and discussed in comparison with contourites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号