首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the measurements of the Jicamarca digisonde to examine the variations in F2 layer peak electron density (NmF2), its height (hmF2), and the F2 layer thickness parameter (B0) near the dip equator. The hourly ionograms during geomagnetic quiet-conditions for a 12-month period close to the maximum solar activity, April 1999–March 2000, are used to calculate the monthly averages of these parameters, for each month. The averages are compared with the International Reference Ionosphere (IRI)-2001 model values. The results show that the higher hmF2 values during daytime, associated with the upward velocity, are mainly responsible for the greater values of NmF2 and B0; while the nighttime lower hmF2, related to the downward velocity, are responsible for the smaller NmF2 and B0. For daytime, hmF2 and NmF2 are correlated with the solar activity in the equinoctial and summer months. The hmF2 and B0 peaks at sunset with an associated sharp decrease in NmF2 are presented in the equinoctial and summer months, but not in the winter months. Comparison of the measured hmF2 values with the International Radio Consultative Committee (CCIR) maps used in IRI-2001 (IRI-CCIR) reveals an IRI overestimate in hmF2 during daytime. The most significant discrepancy is that the IRI-CCIR does not model the post-sunset peak in hmF2. For the NmF2 comparison, the values obtained from both the CCIR and URSI maps are generally close to the observed values. For the B0 comparison, the highest discrepancy between the observation and the Gulyaeva option (IRI-Gulyaeva) is the location of the annual maximum for the daytime values, also the winter daytime predictions are too low. Additionally, the significant negative difference between the observation and the B0-table option (IRI-B0-table) provides a slightly better prediction, except for 0400–1000 LT when the model significantly overestimates. The post-sunset peak in B0 at some months is predicted by neither the IRI-Gulyaeva nor the IRI-B0-table options.  相似文献   

2.
Ionosonde measurements obtained at Tucumán are used to check the validity of the International Reference Ionosphere model to predict the maximum electron density of the F2 region (NmF2) and its height (hmF2) over this station. Data corresponding to different months and solar activity conditions are considered. CCIR and URSI options are used to model calculations. The results show that, generally, the predictions of hmF2 are better than those of NmF2. Disagreements between predicted and measured NmF2 values are observed and the consequences in the vertical total electron content modeling are stressed.  相似文献   

3.
Arecibo (18.4 N, 66.7 W) incoherent scatter (IS) observations of electron density N(h) are compared with the International Reference Ionosphere (IRI-95) during midday (10/14 h), for summer, winter and equinox, at solar maximum (1981). The N(h) profiles below the F2 peak, are normalized to the peak density NmF2 of the F region and are then compared with the IRI-95 model using both the standard B0 (old option) and the Gulyaeva-B0 thickness (new option). The thickness parameter B0 is obtained from the observed electron density profiles and compared with those obtained from the IRI-95 using both the options. Our studies indicate that during summer and equinox, in general, the values of electron densities at all the heights given by the IRI model (new option), are generally larger than those obtained from IS measurements. However, during winter, the agreement between the IRI and the observed values is reasonably good in the bottom part of the F2 layer but IRI underestimates electron density at F1 layer heights. The IRI profiles obtained with the old option gives much better results than those generated with the new option. Compared to the observations, the IRI profiles are found to be much thicker using Gulyaeva-B0 option than using standard B0.  相似文献   

4.
A comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2, which were observed by the Kokubunji, Okinawa, Manila, Vanimo, and Darwin ionospheric sounders and by the middle and upper (MU) atmosphere radar, have been used to study the time-dependent response of the low-latitude ionosphere to geomagnetic forcing during a time series of geomagnetic storms from 22 to 26 April 1990. The reasonable agreement between the model results and data requires the modified equatorial meridional E×B plasma drift, the modified HWM90 wind, and the modified NRLMSISE-00 neutral densities. We found that changes in a flux of plasma into the nighttime equatorial F2-region from higher L-shells to lower L-shells caused by the meridional component of the E×B plasma drift lead to enhancements in NmF2 close to the geomagnetic equator. The equatorward wind-induced plasma drift along magnetic field lines, which cross the Earth equatorward of about 20° geomagnetic latitude in the northern hemisphere and about −19° geomagnetic latitude in the southern hemisphere, contributes to the maintenance of the F2-layer close to the geomagnetic equator. The nighttime weakening of the equatorial zonal electric field (in comparison with that produced by the empirical model of Fejer and Scherliess [Fejer, B.G., Scherliess, L., 1997. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. 102, 24047–24056] or Scherliess and Fejer [Scherliess, L., Fejer, B.G., 1999. Radar and satellite global equatorial F region vertical drift model. J. Geophys. Res. 104, 6829–6842) in combination with corrected equatorward nighttime wind-induced plasma drift along magnetic field lines in the both geomagnetic hemispheres are found to be the physical mechanism of the nighttime NmF2 enhancement formation close to the geomagnetic equator over Manila during 22–26 April 1990. The model crest-to-trough ratios of the equatorial anomaly are used to study the relative role of the main mechanisms of the equatorial anomaly suppression for the 22–26 April 1990 geomagnetic storms. During the most part of the studied time period, a total contribution from geomagnetic storm disturbances in the neutral temperature and densities to the equatorial anomaly changes is less than that from meridional neutral winds and variations in the E×B plasma drift. It is shown that the latitudinal positions of the crests are determined by the E×B drift velocity and the neutral wind velocity.  相似文献   

5.
This paper deals with the diurnal and seasonal variations of height of the peak electron density of the F2-layer (hmF2) derived from digital ionosonde measurements at a low–middle-latitude station, New Delhi (28.6°N, 77.2°E, dip 42.4°N). Diurnal and seasonal variations of hmF2 are examined and comparisons of the observations are made with the predictions of the International Reference Ionosphere (IRI-2001) model. Our study shows that during both the moderate and low solar activity periods, the diurnal pattern of median hmF2 reveals a more or less similar trend during all the seasons with pre-sunrise and daytime peaks during winter and equinox except during summer, where the pre-sunrise peak is absent. Comparison of observed median hmF2 values with the IRI during moderate and low solar activity periods, in general, reveals an IRI overestimation in hmF2 during all the seasons for local times from about 06 LT till midnight hours except during summer for low solar activity, while outside this time period, the observed hmF2 values are close to the IRI predictions. The hmF2 representation in the IRI model does not reproduce pre-sunrise peaks occurring at about 05 LT during winter and equinox as seen in the observations during both the solar activity periods. The noontime observed median hmF2 values increase by about 10–25% from low (2004–2005) to high solar activity (2001–2002) during winter and equinox, while the IRI in the same time period and seasons shows an increase of about 10–20%. During summer, however, the observed noontime median hmF2 values show a little increase with the solar activity, as compared to the IRI with an increase of about 12%.  相似文献   

6.
The monthly median values of the height of peak electron density of the F2-layer (hmF2) derived from ionosonde measurements at three high latitude stations, namely Narssarssuaq (NAR) (61.2 °N, 314.6 °E), Sondrestrom (SON) (67°N, 309.1°E) and College (COL) (69.9°N, 212.2°E) were analyzed and compared with the International Reference Ionosphere (IRI-2001) model, using Comité Consultatif International des Radio communications) (CCIR and Union Radio-Scientifique Internationale (URSI) options. The analysis covers hmF2 values for March Equinox (February, March, April), June Solstice (May, June, July), September Equinox (August, September, October), and December Solstice (November, December, January), during periods of high (2000–2001), medium (2004–2005) and low (2007–2008) solar activity. Generally, the IRI-2001 prediction follow fairly well the diurnal and seasonal variation patterns of the observed values of hmF2 at all the stations. However, IRI-2001 overestimates and underestimates hmF2 at different times of the day for all solar activity periods and in all the seasons considered. The percentage deviation never exceeded 20%, except during DEC SOLS at COL and SON and during MARCH EQUI at SON during low solar activity period. For all solar activity periods considered, both the URSI and CCIR options of the IRI-2001 model give hmF2 values close to the ones measured, but the URSI option performed better than the CCIR option.  相似文献   

7.
The annual and semi-annual variations of the ionosphere are investigated in the present paper by using the daytime F2 layer peak electron concentration (NmF2) observed at a global ionosonde network with 104 stations. The main features are outlined as follows. (1) The annual variations are most pronounced at magnetic latitudes of 40–60° in both hemispheres, and usually manifest as winter anomalies; Below magnetic latitude of 40° as well as in the tropical region they are much weaker and winter anomalies that are not obvious. (2) The semi-annual variations, which are usually peak in March or April in most regions, are generally weak in the near-pole regions and strong in the far-pole regions of both hemispheres. (3) Compared with their annual components, the semi-annual variations in the tropical region are more significant.In order to explain the above results, we particularly analyze the global atomic/molecular ratio of [O/N2] at the F2 layer peak height by the MSIS90 model. The results show that the annual variation of [O/N2] is closely related with that of NmF2 prevailing in mid-latitudes and [O/N2] annual variation usually may lead to the winter anomalies of NmF2 occurring in the near-pole region. Moreover, NmF2 semi-annual variations appearing in the tropical region also have a close relationship with the variation of [O/N2]. On the other hand, the semi-annual variations of NmF2 in the far-pole region cannot be simply explained by that of [O/N2], but the variation of the solar zenith angle may also have a significant contribution.  相似文献   

8.
Independent of the possible sources (solar activity, geomagnetic activity, greenhouse effect, etc.) of a global change in the upper atmosphere, it is the sign of a long-term trend of temperature that might reveal the cause of a global change.Long-term change of temperature in the F region of the ionosphere has been studied and is assumed to be expressed in terms of thickness of the bottomside F2 layer characterized by the difference between height of the maximum electron density of the F2 layer hmF2 and altitude of the lower boundary of the F region represented by h′F. Using the difference of two ionospheric parameters has the advantage that it reduces the effect of changes resulting from alteration of equipment and scaling personnel. In this study, in summer only night values of the difference hmF2−h′F and in winter both day and night values have been taken into account considering that h′F might indicate the lower boundary of the F region in these periods. The study of the behaviour of hmF2−h′F taking separately the stations and determining yearly the mean measure (trend) of the variation of hmF2−h′F with solar and geomagnetic activities found that this difference increases significantly with enhanced solar activity, but trends of the solar activity effect exerted on this difference themselves do not practically change with increasing sunspot number. Further, hmF2−h′F decreases only insignificantly with growing geomagnetic activity. Trends of the geomagnetic activity effect related to hmF2−h′F change only insignificantly with increasing Ap; however, trends of the geomagnetic activity effect decreased with increasing latitude.As a result of this investigation it has been found that hmF2−h′F regarded as thickness of the bottomside F2 layer shows an effect of the change of solar activity during the last three solar cycles, indicating temperature change in the upper atmosphere to be expected on the basis of changing solar activity. Furthermore, though a long-term variation of solar activity considering only years around solar activity minima is relatively small, the difference hmF2−h′F indicates a trend opposing the change of solar activity; that is, it decreases slightly during the first three 20, 21, 22 solar cycle minima (1964–1986), but decreases more abruptly according to the change of solar activity towards the minimum of solar cycle 23 (1986–1996), thus also indicating variation of temperature in the F region. However, this variation cannot be explained by the change of solar and geomagnetic activities alone, but assumes some other source (e.g. greenhouse gases) too.  相似文献   

9.
The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December–January–February (DJF), March–April–May (MAM), June–July–August (JJA) and September–October–November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14–16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10–18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.  相似文献   

10.
用北半球陆地上48个地面电离层垂测站资料,以及国际参考电离层IRI 90模式,考察1985年1月6~7日F2层电子密度最大值日变化的纬度剖面和经度效应. 结果表明,在亚洲地区的20°N~30°N内,F2层赤道异常“喷泉效应”产生的NmF2“北驼峰”最高,其最大值出现在中午,或稍迟时间. 30°N ~50°N区域内,NmF2的白天峰值幅度逐渐下降,峰值时间移至午前约10:00 LT. 更高纬度(50°N~62°N )台站上,中午前后NmF2出现双峰,傍晚有谷值,夜间又再次抬升. 欧、美地区的低纬台站很少,但借助IRI 90模式分析可发现,在270°E经圈上,“喷泉效应”造成的“北驼峰”幅度最小,而且随纬度增大时,NmF2白天幅度下降也不明显,即纬度剖面的经度效应非常显著. 对中国、日本地区台站资料的小范围经度差异分析表明,在驼峰区的90°E~140°E内,各站NmF2无明显差别;但在中纬地区30°N~50°N内,中国西部上空NmF2白天变化幅度较大,且较为陡直,而中国东部和日本台站上空则相对平缓.  相似文献   

11.
Total electron content (TEC) and foF2 ionosonde data obtained at Tucumán (26.9°S; 65.4°W) from April 1982 to March 1983 (high solar activity period) are analyzed to show the seasonal variation of TEC, NmF2 (proportional to square of foF2) and the equivalent slab thickness EST. Bimonthly averages of the monthly median for January–February, April–May, July–August and October–November have been considered to represent summer, autumn, winter and spring seasons, respectively. The results show that the higher values of TEC and maximum electron density of F2-layer NmF2 are observed during the equinoxes (semiannual anomaly). During daytime, both in TEC and in NmF2 the seasonal or winter anomaly can be seen. At nighttime, this effect is not observed. Also, the observed NmF2 values are used to check the validity of International Reference Ionosphere (IRI) to predict the seasonal variability of this parameter. In general, it is found that averaged monthly medians (obtained with the IRI model) overestimate averaged monthly median data for some hours of the day and underestimate for the other hours.  相似文献   

12.
This study compares the observed behavior of the F region ionosphere over Millstone Hill with calculations from the IZMIRAN model for solar minimum for the geomagnetically quiet period 23–25 June 1986, when anomalously low values of hmF2(<200 km) were observed. We found that these low values of hmF2 (seen as a G condition on ionograms) exist in the ionosphere due to a decrease of production rates of oxygen ions resulting from low values of atomic oxygen density. Results show that determination of a G condition using incoherent scatter radar data is sensitive both to the true concentration of O+ relative to the molecular ions, and to the ion composition model assumed in the data reduction process. The increase in the O+ + N2 loss rate due to vibrationally excited N2 produces a reduction in NmF2 of typically 5–10%, but as large as 15%, bringing the model and data into better agreement. The effect of vibrationally excited NO+ ions on electron densities is negligible.  相似文献   

13.
Using ionosonde made observations at Concepción (36.8°S; 73.0°W) for the 1958–1994 interval, long-term trends of critical frequency (foF2) and peak height (hmF2) of the ionospheric F2-layer are analysed. The trends found for different times-of-day and all seasons are consistent with an increasing diurnal-variation amplitude of both foF2 and hmF2. An increasing hmF2 trend of up to 1.5 km/year found between midnight and dawn during winter has no precedent. It is suggested that these long-term amplitude changes may be associated with changes in the prevailing thermospheric meridional neutral winds.  相似文献   

14.
Using digital ionosonde observations at low-latitude station, Delhi (28.6 N, 77.2 E, mag. dip 42.4 N), the diurnal and seasonal variations of the critical frequency of F2 layer (foF2) are analyzed from August 2000 to July 2001 during a high solar activity period. Also, noontime bottomside electron density (Ne-h) profiles, below the F2-peak, are derived from ionogram, using the POLAN (Report UAG-93, WDC-A, for Solar Terrestrial Physics, Boulder, Co.) program during the same period, and these profiles are then normalized to the peak height and density (hmF2, NmF2) of the F2-region. These observations are used to assess the predictability of the International Reference Ionosphere, IRI-2000 model (Radio Sc. 36(2) (2001) 261). Results show in general, a large variability, (1σ, σ is standard deviation), in foF2 during nighttime than daytime during winter and equinox, the variability of foF2 about the mean is about ±25% by night and ±15% by day. The IRI model shows a fairly good agreement with foF2 observations during daytime, however during nighttime, the discrepancies between the two exist. Comparative studies of the normalized observed profiles with those obtained with the IRI model (Bilitza, 2001) using both the options namely: Gulyaeva's (Adv. Space Res. 7 (1987) 39) model and B0-Table (Adv. Space Res. 25(1) (2000) 89), show that during all the seasons, in general, the B0-Tab option, reveals a better agreement with the observations, while the IRI model using Gulyaeva's option, overestimates the electron density distribution during summer and equinox, however, during winter, the model is close to the observations. The comparisons of average profile shape parameters (B0,B1) derived from noontime observed profiles, with those obtained, using B0-Tab option, in the IRI model, show a good agreement during all the seasons. However, B0, B1 obtained, using Gulyaeva's option in the IRI model, show a disagreement with the derived B0, B1 values during all the seasons, except during winter, for B0 parameter.  相似文献   

15.
The thermosphere–ionosphere–mesosphere-electrodynamics coupled model TIME-GCM, coupled to NCEP lower atmosphere data, is used to simulate the noontime ionospheric peak electron density NmF2 at low latitudes for year 2002. Model output are compared with observations a three ionosonde stations: Jicamarca, Ascension Island and Darwin, stations at geomagnetic latitudes of 3°S, 10°S and 22°S, respectively. The modeled electron density at the peak of the F2-layer (NmF2) matches the general trend of the data fairly well at noon throughout the year. The shapes of the diurnal curves of NmF2 vs. local time are not well produced in the model, and particularly so at the two stations away from the geomagnetic equator. At all sites the day-to-day variability of NmF2, assessed using the percent standard deviation about the monthly mean, is about twice the modeled variability. Possible sources of this shortfall in the model may be due to the under-representation of coupling from below and/or from auroral sources.  相似文献   

16.
NeQuick ionospheric electron density model produces the full electron density profile in the ionosphere using the F2 layer peak values (foF2 and hmF2) as anchor points. Each part of the profile is modeled using Epstein layer formalism. Simple empirical relations are used to compute the thicknesses of each semi-Epstein layer. It has been observed that when NeQuick model is used to estimate total electron content at low latitudes the modeled values tend to underestimate the observed ones. Beside the F2 peak values, the most important profile parameter is the thickness of the F2 layer bottomside. The present study focuses on NeQuick model behavior at low latitudes comparing modeled profiles parameters with the ones extracted from experimental data mostly from African and Indian sector at different levels of solar activity and different time of the day. Possible model improvements are discussed.  相似文献   

17.
The monthly means of the ionospheric F2 peak parameters (foF2 and hmF2) over three stations in South Africa (Grahamstown, 33.3°S, 26.5°E, Madimbo, 22.4°S, 26.5°E, and Louisvale, 28.5°S, 21.2°E) were analyzed and compared with IRI-2001, using CCIR (Comité Consultatif International des Radio communications) and URSI (Union Radio-Scientifique Internationale coefficients) options. The analysis covers a few selected quiet and disturbed days during various seasons represented by the months of January, April, July and October 2003. IRI-2001 generally overestimates hmF2 for both quiet and disturbed days and it overestimates and underestimates foF2 at different times for all the stations. In general, foF2 is predicted more accurately by IRI-2001 than hmF2, and on average, the CCIR option performed better than the URSI option when predicting both foF2 and hmF2.In general, the model generates good results, although some improvements are still necessary to be implemented in order to obtain better predictions. There are no significant differences in the model predictions of hmF2 and foF2 for quiet and disturbed days.  相似文献   

18.
A novel approach is described which can help to determine, from ground-based data, which of the possible production mechanisms for the mid-latitude F-region ionospheric trough is dominant during a particular event. This approach involves numerically modelling the possible causal mechanisms of the mid-latitude trough to see how each will affect the altitude of the F2-layer electron-concentration peak (hmF2), and then comparing these predictions with the observed variation of hmF2 during trough formation. The modelling work predicts that, if the neutral-wind velocity does not vary, hmF2 will remain almost constant if the trough is formed via stagnation, but will rise if it is formed as a result of high ion velocities or neutral upwelling. Observations made at Halley (76°S, 27°W, L=4.2), Antarctica, show that most frequently the only changes in hmF2 during trough formation are those expected due to variations in the neutral wind, which suggests that stagnation is the most common production mechanism. During the most geomagnetically active night studied, on which Ap varied between 18 and 32, there was a rise in hmF2 that cannot be explained by changes in the neutral wind. On this night the plasma also decayed faster, and the poleward edge of the trough was seen earlier than on other nights. These differences, together with the fact that the ion velocities remained relatively low, suggest the trough was caused by a change in neutral composition, possibly advected into the observing area.  相似文献   

19.
The results derived from processing vertical-incidence ionograms obtained with the chirp-ionosonde at Irkutsk for different winter time intervals (February) and at equinox are presented. The peak height hmF2 was determined by Dudeney's formula based on ionogram parameters, including the coefficient M(3000). The algorithm is suggested for determining the coefficient M(3000) in the automatic mode using the conventional form of the transfer curve method without invoking a standard transparency called the “transfer curve”. The parameters foF2 and hmF2 are compared with the international reference ionosphere (IRI-95) model. It is found that in most cases the values of the foF2 and hmF2 parameters, calculated in the IRI-95 model, are similar to the median ones. It is confirmed that for practical purposes where it is necessary to know the radio wave propagation conditions along the propagation path, the IRI model is convenient and attractive.  相似文献   

20.
A comparison of the diurnal and seasonal variations in the ionospheric equivalent slab thickness (τ) and bottomside slab thickness (B0) is presented based on the observation during high solar activities at a mid-latitude station—Wuhan (114.4°E, 30.6°N). The investigated data include foF2, hmF2, B0, B1, and TEC, and are derived from the measured ionogram and GPS receiver over Wuhan from April 1999 to March 2000. The results show that τ and B0 are highly/weakly correlated during the day/night, respectively. Furthermore, a comprehensive discussion of the relation between τ, B0, and hmF2 for geomagnetic storm events is provided in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号