首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We present here the first available estimations of chemical weathering and associated atmospheric CO2 consumption rates as well as mechanical erosion rate for the Lesser Antilles. The chemical weathering (100–120 t/km2/year) and CO2 consumption (1.1–1.4 × 106 mol/km2/year) rates are calculated after subtraction of the atmospheric and hydrothermal inputs in the chemical composition of the river dissolved loads. These rates thus reflect only the low-temperature basalt weathering. Mechanical erosion rates (approx. 800–4000 t/km2/year) are estimated by a geochemical mass balance between the dissolved and solid loads and mean unaltered rock. The calculated chemical weathering rates and associated atmospheric CO2 consumption rates are among the highest values worldwide but are still lower than those of other tropical volcanic islands and do not fit with the HCO3 concentration vs. 1/T correlation proposed by Dessert et al. (2001). The thick soils and explosive volcanism context of the Lesser Antilles are the two possible keys to this different weathering behaviour; the development of thick soils limits the chemical weathering and the presence of very porous pyroclastic flows allows an important water infiltration and thus subsurface weathering mechanisms, which are less effective for atmospheric CO2 consumption.  相似文献   

2.
A detailed geochemical study on river waters of the Australian Victorian Alps was carried out to determine: (i) the relative significance of silicate, carbonate, evaporite and sulfide weathering in controlling the major ion composition and; (ii) the factors regulating seasonal and spatial variations of CO2 consumption via silicate weathering in the catchments. Major ion chemistry implies that solutes are largely derived from evaporation of precipitation and chemical weathering of carbonate and silicate lithologies. The input of solutes from rock weathering was determined by calculating the contribution of halite dissolution and atmospheric inputs using local rain and snow samples. Despite the lack of carbonate outcrops in the study area and waters being undersaturated with respect to calcite, the dissolution of vein calcite accounts for up to 67% of the total dissolved cations, generating up to 90% of dissolved Ca and 97% of Mg. Dissolved sulfate has δ34S values of 16 to 20‰CDT, indicating that it is derived predominantly from atmospheric deposition and minor gypsum weathering and not from bacterial reduction of FeS2. This militates against sulphuric acid weathering in Victorian rivers. Ratios of Si vs. the atmospheric corrected Na and K concentrations range from ~ 1.1 to ~ 4.3, suggesting incongruent weathering from plagioclase to smectite, kaolinite and gibbsite.Estimated long-term average CO2 fluxes from silicate weathering range from ~ 0.012 × 106 to 0.039 × 106 mol/km2/yr with the highest values in rivers draining the basement outcrops rather than sedimentary rocks. This is about one order of magnitude below the global average which is due to low relief, and the arid climate in that region. Time series measurements show that exposure to lithology, high physical erosion and long water–rock contact times dominate CO2 consumption fluxes via silicate weathering, while variations in water temperature are not overriding parameters controlling chemical weathering. Because the atmospheric corrected concentrations of Na, K and Mg act non-conservative in Victorian rivers the parameterizations of weathering processes, and net CO2 consumption rates in particular, based on major ion abundances, should be treated with skepticism.  相似文献   

3.
A small watershed (160 km2) located in the Massif Central (France) has been chemically, isotopically and hydrologically studied through its dissolved load, bed sediments and soils. This watershed is underlain by basaltic bedrock and associated soils in which the vegetation is dominated mainly by meadows.Dissolved concentrations of major ions (Cl, SO4, NO3, HCO3, Ca, Na, Mg, K, Al and Si), trace elements (Rb and Sr) and strontium isotopes have been determined for two different hydrologic periods on the main stream of the Allanche river and its tributaries.The major objectives of this study were to characterize the chemical and isotopic signatures of each reservoir occurring in the watershed. Changes in chemical and isotopic signatures are interpreted in terms of fluctuations of the different components inputs: rainwater, weathering products, anthropogenic addition.Water quality may be influenced by natural inputs (rainwater, weathering processes) and anthropogenic additions (fertilizers, road salts, etc.). Precipitation serves as a major vehicle for dissolved chemical species in addition to the hydrosystem and, in order to constrain rain inputs, a systematic study of rainwaters is carried out over a one year period using an automatic collector. Corrections of rainwater addition using chloride as an atmospheric input reference were computed for selected elements and the Sr/Sr ratio. After such corrections, the geochemical budget of the watershed was determined and the role of anthropogenic additions evaluated through the relationship between strontium isotopes and major and trace element ratios. Thus, 10% of Ca and Na originate in rainwater input, 40 to 80% in fertilizer additions and 15 to 50% in rock weatheringThe cationic denudation rates for this watershed are around 0.3 g s–1 km2 during low water discharge and 0.6 g s–1 km2 in high water stage. This led to a chemical denudation rate of 5.3 mm/1000 years.For solid matter, the normalization of chemical species relative to parent rocks shows the depletion or enrichment in soils and sediments. The use of K and Ca as mobile reference illustrates the weathering state of soils and sediments relative to parent rocks. This weathering state for bed sediments range from 15 to 45% for the K normalization and from 2 to 50% for the Ca normalization. For the soils, the weathering state ranges from 15 to 57% for the K normalization and from 17 to 90% for the Ca normalization.  相似文献   

4.
We determined erosion rates on timescales of 101–104 years for two catchments in the northeastern Rhenish Massif, in order to unravel the Quaternary landscape evolution in a Variscan mountain range typical of central Europe. Spatially averaged erosion rates derived from in situ produced 10Be concentrations in stream sediment of the Aabach and M?hne watersheds range from 47 ± 6 to 65 ± 14 mm/ka and integrate over the last 9–13 ka. These erosion rates are similar to local rates of river incision and rock uplift in the Quaternary and to average denudation rates since the Mesozoic derived from fission track data. This suggests that rock uplift is balanced by denudation, i.e., the landscape is in a steady state. Short-term erosion rates were derived from suspended and dissolved river loads subsequent to (1) correcting for atmospheric and anthropogenic inputs, (2) establishing calibration curves that relate the amount of suspended load to discharge, and (3) estimating the amount of bedload. The resulting solid mass fluxes (suspended and bedload) agree with those derived from the sediment volume trapped in three reservoirs. However, resulting geogenic short-term erosion rates range from 9 to 25 mm/ka and are only about one-third of the rates derived from 10Be. Model simulations in combination with published sediment yield data suggest that this discrepancy is caused by at least three factors: (1) phases with higher precipitation and/or lower evapotranspiration, (2) rare flood events not captured in the short-term records, and (3) prolonged periods of climatic deterioration with increased erosion and sediment transport on hillslopes.  相似文献   

5.
A systematic study of the major ion chemistry of the Ganga source waters—the Bhagirathi, Alaknanda and their tributaries—has been carried out to assess the chemical weathering processes in the high altitude Himalaya. Among major ions, Ca, Mg, HCO3 and SO4 are the most abundant in these river waters. These results suggest that weathering of carbonate rocks by carbonic and sulphuric acids dominates in these drainage basins. On an average, silicate weathering can contribute up to ∼ 30% of the total cations. The concentration of total dissolved salts in the Bhagirathi and the Alaknanda is 104 and 115mg/l, respectively. The chemical denudation rate in the drainage basins of the Bhagirathi and the Alaknanda is, respectively, 110 and 137 tons/km2/yr, significantly higher than that derived for the entire Ganga basin, indicating intense chemical erosion of the Himalaya.  相似文献   

6.
High-resolution siliciclastic grain size and bulk mineralogy combined with clay mineralogy, rubidium, strontium, and neodymium isotopes of Core MD01-2393 collected off the Mekong River estuary in the southwestern South China Sea reveals a monsoon-controlled chemical weathering and physical erosion history during the last 190,000 yr in the eastern Tibetan Plateau and the Mekong Basin. The ranges of isotopic composition are limited throughout sedimentary records: 87Sr/86Sr = 0.7206–0.7240 and εNd(0) = −11.1 to −12.1. These values match well to those of Mekong River sediments and they are considered to reflect this source region. Smectites/(illite + chlorite) and smectites/kaolinite ratios are used as indices of chemical weathering rates, whereas the bulk kaolinite/quartz ratio is used as an index of physical erosion rates in the eastern Tibetan Plateau and the Mekong Basin. Furthermore, the 2.5–6.5 μm/15–55 μm siliciclastic grain size population ratio represents the intensity of sediment discharge of the Mekong River and, in turn, the East Asian summer monsoon intensity. Strengthened chemical weathering corresponds to increased sediment discharge and weakened physical erosion during interglacial periods. In contrast, weakened chemical weathering associated with reduced sediment discharge and intensified physical erosion during glacial periods. Such strong glacial–interglacial correlations between chemical weathering/erosion and sediment discharge imply the monsoon-controlled weathering and erosion.  相似文献   

7.
In this study, eight organic-rich rivers that flow through the Brazilian craton in the southwestern Amazon rainforest are investigated. This investigation is the first of its type in this area and focuses on the effects of lithology, long-term weathering, thick soils, forest cover and hydrological period on the dissolved load compositions in rivers draining cratonic terrain. The major dissolved ion concentrations, alkalinity (TAlk), SiO2, trace element concentrations, and Sr isotope contents in the water were determined between April 2009 and January 2010. In addition, the isotopic values of oxygen and hydrogen were determined between 2011 and 2013. Overall, the river water is highly dilute and dominated by the major dissolved elements TAlk, SiO2 and K+ and the major dissolved trace elements Al, Fe, Ba, Mn, P, Zn and Sr, which exhibit large temporal and spatial variability and are closely correlated with the silicatic bedrock and hydrology. Additionally, rainwater and recycled water vapor and the size of the basin contribute to the geochemistry of the waters. The total weathering flux estimated from our results is 2–4 t km−2.yr−1, which is one of the lowest fluxes in the world. The CO2 consumption rate is approximately 21–61 103 mol km−2 yr−1, which is higher than expected given the stability of the felsic to basic igneous and metamorphic to siliciclastic basement rocks and the thick tropical soil cover. Thus, weathering of the cratonic terrain under intertropical humid conditions is still an important consumer of CO2.  相似文献   

8.
To better understand chemical weathering and controlling processes in the Yalong River of the eastern Tibetan Plateau, this study presents major ion concentrations and stable isotopes of the dissolved loads. The isotopic compositions (δ13C-DIC, δ34S and δ18O-SO4) of the dissolved loads are very useful to quantify solute sources and define the carbon budget related with chemical weathering in riverine systems. The isotopic composition of sulphate demonstrates that most of the sulphate is derived from sulphide oxidation, particularly in the upper reach of the Yalong River. The correlations between δ13C-DIC, water chemistry and isotopes of sulphate, suggest that the carbon dynamics are mainly affected by carbonate weathering by sulphuric acid and equilibration processes. Approximately 13% of the dissolved inorganic carbon in the Yalong River originates from carbonate weathering by strong acid. The CO2 consumption rates are estimated to be 2.8 × 105 mol/km2/yr and 0.9 × 105 mol/km2/yr via carbonate and silicate weathering in the Yalong River, respectively. In this study, the influence of sulphide oxidation and metamorphic CO2 on the carbon budget is estimated for the Yalong River draining the eastern Tibetan Plateau.  相似文献   

9.
Water and suspended sediment samples were collected along a longitudinal transect of the Bhagirathi – a headwater stream of the river Ganga, during the premonsoon and postmonsoon seasons, in order to assess the solute acquisition processes and sediment transfer in a high elevation river basin. Study results show that surface waters were dominated by HCO3 and SO4 in anionic abundance and Ca in cationic concentrations. A high concentration of sulphate in the source region indicates oxidative weathering of sulphide bearing minerals in the drainage basin. The combination of high concentrations of calcium, bicarbonate and sulphate in river water suggests that coupled reaction involving sulphide oxidation and carbonate dissolution are mainly controlling the solute acquisition processes in the drainage basin. The sediment transfer reveals that glacial weathering and erosion is the major influence on sediment production and transfer. The seasonal and spatial variation in ionic concentration, in general, is related to discharge and lithology. The sediment mineralogy and water mineral equilibrium indicate that water composition is in equilibrium with kaolinite. The river Bhagirathi annually delivers 0.74 M.tons of dissolved and 7.88 M.tons of suspended load to the river Ganga at Devprayag. The chemical and physical denudation rate of the Bhagirathi is 95 and 1010 tons/km2/yr, higher than the Indian and global average.  相似文献   

10.
Reactions of CO2 with carbonate and silicate minerals in continental sediments and upper part of the crystalline crust produce HCO3 in river and ground waters. H2SO4 formed by the oxidation of pyrite and reacting with carbonates may produce CO2 or HCO3. The ratio, ψ, of atmospheric or soil CO2 consumed in weathering to HCO3 produced depends on the mix of CO2 and H2SO4, and the proportions of the carbonates and silicates in the source rock. An average sediment has a CO2 uptake potential of ψ = 0.61. The potential increases by inclusion of the crystalline crust in the weathering source rock. A mineral dissolution model for an average river gives ψ = 0.68 to 0.72 that is within the range of ψ = 0.63 to 0.75, reported by other investigators using other methods. These results translate into the CO2 weathering flux of 20 to 24 × 1012mol/yr.  相似文献   

11.
The watershed in the southern Jiangxi Province (Jiangxi Province is called simply Gan) (SGW) and the watershed in the central Guizhou Province (Guizhou Province is called simply Qian) (CQW) are two subtropical watersheds of the Yangtze River in China. Both watersheds have similar latitudes and climate, but distinct differences in basin lithology. These similarities and differences provide a good natural laboratory in which to investigate weathering processes and Sr end-members in river waters. This work aims to identify and contrast the sources, fluxes and controls on Sr isotopic composition in the river waters of these two areas. Results showed that the 87Sr/86Sr in the SGW waters ranged from 0.716501 to 0.724931, with dissolved Sr averaging 27 μg l− 1. Rhyolites and granites are two major sources for the dissolved Sr. The SGW waters receive 42% of their Sr from silicates weathering, 32% from carbonates and 3.2% from evaporites. 87Sr/86Sr in the CQW waters has a lesser variation from 0.707694 to 0.710039, but higher Sr contents (average of 208 μg l− 1). Dolomite, limestone and dolomitic limestone are major sources of Sr in the waters. The CQW waters receive 69% of their Sr from carbonates, 1.7% from silicates and 0.9% from evaporites. The chemical erosion rate and Sr flux in the CQW are 122 t km− 2 a− 1 and 0.079 t km− 2 a− 1, respectively, which are higher than those of the SGW (56 t km− 2 a− 1 and 0.021 t km− 2 a− 1, respectively). These data suggest that the intensive carbonates weathering occurred in the karstic area in the upper-reach of the Yangtze River exert great influence on the high Sr concentration and low Sr isotopic ratios in the River.  相似文献   

12.
We present a weathering mass balance of the presently glaciated Rhône and Oberaar catchments, located within the crystalline Aar massif (central Switzerland). Annual chemical and physical weathering fluxes are calculated from the monthly weighted means of meltwater samples taken from July, 1999 to May, 2001 and are corrected for precipitation inputs. The meltwater composition issuing from the Oberaar and Rhône catchments is dominated by calcium, which represents 81% and 55% of the total cation flux respectively (i.e. 555 and 82-96 keq km−2 yr−1). The six to seven times higher Ca2+ denudation flux from the Oberaar catchment is attributed to the presence of a strongly foliated gneissic zone. The gneissic zone has an elevated calcite content (as reflected by the 4.6 times higher calcite content of the suspended sediments from Oberaar compared to Rhône) and a higher mechanical erosion rate (resulting in a higher flux of suspended sediment). The mean flux of suspended calcite of the Oberaar meltwaters during the ablation period is 7 times greater than that of the Rhône meltwaters. Taking the suspended calcite as a proxy for the total (including sub-glacial sediments) weathering calcite surface area, it appears that the available surface area is an important factor in controlling weathering rates. However, we also observe an increased supply of protons for carbonate dissolution in the Oberaar catchment, where the sulphate denudation flux is six times greater. Carbonic acid is the second important source of protons, and we calculate that three times as much atmospheric CO2 is drawn down (short term) in the Oberaar catchment. Silica fluxes from the two catchments are comparable with each other, but are 100 kmol km2 yr−1 lower than fluxes from physically comparable, non-glaciated basins.  相似文献   

13.
青藏高原东部长江流域盆地陆地化学风化研究   总被引:4,自引:0,他引:4  
长江河水主要离子由流域盆地碳酸盐岩的风化所控制,沱沱河和楚玛尔河受蒸发盐岩影响较为明显;河水溶质载荷Si,Si/TZ *,Si/(Na* K)等指标表明,长江流域盆地地表硅酸盐岩风化还是浅表层次的;金沙江地表化学剥蚀速率为1.74×103mol/yr.km2,雅砻江为1.69×103mol/yr.km2,大渡河为1.57×103mol/yr.km2,岷江为1.88×103mol/yr.km2,长江河源区楚玛尔河为2.32×103mol/yr.km2,沱沱河为1.37×103mol/yr.km2,流域地表化学剥蚀速率可与世界上其它造山带的河流进行对比。  相似文献   

14.
Major ion composition of waters, δ13C of its DIC (dissolved inorganic carbon), and the clay mineral composition of bank sediments in the Brahmaputra River System (draining India and Bangladesh) have been measured to understand chemical weathering and erosion and the factors controlling these processes in the eastern Himalaya. The time-series samples, collected biweekly at Guwahati, from the Brahmaputra mainstream, were also analyzed for the major ion composition. Clay mineralogy and chemical index of alteration (CIA) of sediments suggest that weathering intensity is relatively poor in comparison to that in the Ganga basin. This is attributed to higher runoff and associated physical erosion occurring in the Brahmaputra basin. The results of this study show, for the first time, spatial and temporal variations in chemical and silicate erosion rates in the Brahmaputra basin. The subbasins of the Brahmaputra watershed exhibit chemical erosion rates varying by about an order of magnitude. The Eastern Syntaxis basin dominates the erosion with a rate of ∼300 t km−2 y−1, one of the highest among the world river basins and comparable to those reported for some of the basaltic terrains. In contrast, the flat, cold, and relatively more arid Tibetan basin undergoes much slower chemical erosion (∼40 t km−2 y−1). The abundance of total dissolved solids (TDS, 102-203 mg/L) in the time-series samples collected over a period of one year shows variations in accordance with the annual discharge, except one of them, cause for which is attributable to flash floods. Na* (Na corrected for cyclic component) shows a strong positive correlation with Si, indicating their common source: silicate weathering. Estimates of silicate cations (Nasil+Ksil+Casil+Mgsil) suggest that about half of the dissolved cations in the Brahmaputra are derived from silicates, a proportion higher than that for the Ganga system. The CO2 consumption rate due to silicate weathering in the Brahmaputra watershed is ∼6 × 105 moles km−2 y−1; whereas that in the Eastern Syntaxis subbasin is ∼19 × 105 moles km−2 y−1, similar to the estimates for some of the basaltic terrains. This study suggests that the Eastern Syntaxis basin of the Brahmaputra is one of most intensely chemically eroding regions of the globe; and that runoff and physical erosion are the controlling factors of chemical erosion in the eastern Himalaya.  相似文献   

15.
Nutrient distribution and fluxes into and from dams and into coastal waters from three rivers (NE Algeria) were assessed during a one-year period in three stations for each river: at the entrance and the exit of dam and at the outlet. The main characteristics of the rivers were the high levels of NH4 and PO4, even in dam entrances, contrarily to SiO4 levels that are still low upstream the dams. From the inorganic nutrient incoming fluxes, the dams trapped annually 42 to 93%, depending on the nutrient, but released in great levels dissolved organic forms at their exits. At catchment scale, dissolved nitrogen loadings reach 338 kg/km2/yr, in which the organic fraction forms up to 34%; while those of dissolved phosphorus reach 172 kg/km2/yr, with a great organic fraction. The Si:N ratios decreased while N:P ratios increased at river outlets, indicating large inputs of N over P in the lower catchments.  相似文献   

16.
We examined the fluvial geochemistry of the Huang He (Yellow River) in its headwaters to determine natural chemical weathering rates on the northeastern Qinghai-Tibet Plateau, where anthropogenic impact is considered small. Qualitative treatment of the major element composition demonstrates the dominance of carbonate and evaporite dissolution. Most samples are supersaturated with respect to calcite, dolomite, and atmospheric CO2 with moderate (0.710-0.715) 87Sr/86Sr ratios, while six out of 21 total samples have especially high concentrations of Na, Ca, Mg, Cl, and SO4 from weathering of evaporites. We used inversion model calculations to apportion the total dissolved cations to rain-, evaporite-, carbonate-, and silicate-origin. The samples are either carbonate- or evaporite-dominated, but the relative contributions of the four sources vary widely among samples. Net CO2 consumption rates by silicate weathering (6-120 × 103 mol/km2/yr) are low and have a relative uncertainty of ∼40%. We extended the inversion model calculation to literature data for rivers draining orogenic zones worldwide. The Ganges-Brahmaputra draining the Himalayan front has higher CO2 consumption rates (110-570 × 103 mol/km2/yr) and more radiogenic 87Sr/86Sr (0.715-1.24) than the Upper Huang He, but the rivers at higher latitudes are similar to or lower than the Upper Huang He in CO2 uptake by silicate weathering. In these orogenic zones, silicate weathering rates are only weakly coupled with temperature and become independent of runoff above ∼800 mm/yr.  相似文献   

17.
《Chemical Geology》2007,236(3-4):199-216
The chemical characteristics of freshwaters draining the silicate rocks in the northern part of Okinawa Island were studied to understand solute generation processes, and to determine rates of chemical weathering and CO2 consumption. It was observed that the water chemistry is highly influenced by marine aerosols, contributing more than 60% of total solute. Significant positive correlations observed for chloride versus dissolved silica and chloride versus bicarbonate suggest a strong influence of evapotranspiration on the seasonality of solute concentration. It was also found that chemical weathering has been highly advanced in which the dominant kaolinite minerals are being gibbsitized. Carbonic acid was found to be the major chemical weathering agent, releasing greater than 80% of weathering-derived dissolved cations and silica while the remaining portion was attributed to weathering by sulfuric acid generated via oxidation of pyrite contained in the rocks. The flux of basic cations, weathering-derived silica and CO2 consumption were relatively high due to favourable climatic condition, topography and high rate of mechanical erosion. Silicate weathering rates for basic cations were estimated to be 6.7–9.7 ton km 2 y 1. Carbon dioxide consumed by silicate weathering was 334–471 kmol km 2 y 1 which was slightly higher than that consumed by carbonate weathering. In general, divalent cations (Mg and Ca) and bicarbonate alkalinity derived from carbonate dissolution were higher than those from silicate weathering. As a consequence, the evolution of chemical species in the freshwaters of northern area of Okinawa Island to a large extent could be explained by mixing of two components, characterized by waters with Na+ and Cl as predominant species and waters enriched with Ca2+ and HCO3.  相似文献   

18.
The Alaknanda and Bhagirathi rivers flow through the Higher and Lesser Himalayas and confluence at Devprayag, which represents the origin of the Ganga (or Ganges) river. In the present study, a vast number of temporal and spatial samples of the river waters were collected and analyzed for major cations and anions. In addition, more recent and time series water flow data have been obtained and based on these inputs, a more refined dissolved flux rates have been estimated. The Alaknanda and Bhagirathi rivers show significant variations in chemical compositions during different seasons. Carbonate rock weathering is responsible for more than 70% of the chemical compositions in the river waters. The chemical weathering rates show seasonal variations and are much higher during non-monsoon season. The dissolved flux of Alaknanda river is much higher (1.80 × 106 tons yr?1) as compared to the Bhagirathi river (0.34 × 106 tons yr?1). The chemical weathering rates in the basin vary between 85 and 155 tons km?2 yr?1, which is significantly higher compared to the global average of ~24 tons km?2 yr?1.  相似文献   

19.
Cosmogenic nuclides, measured in quartz from recent river bedload, provide a novel tool to quantify catchment‐wide erosion rates at geologically meaningful time scales. Here we present an analysis of the geomorphological evolution of the 350 km2 Wutach catchment in the uplands of the south‐west German Black Forest. The robustness of the method is demonstrated by the fact that, although the area was affected by river capture at 18 kyr bp , the formed gorge is so narrow that spatially averaged erosion rates were not resolvably perturbed. However, because cosmogenic nuclides preserve an erosion memory of several thousand years, the only perturbation introduced was detected in the minor areas that have been subject to the last maximum glaciation. In unglaciated areas, an important relationship between lithology and erosion can by quantified: sandstone lithologies erode at 12–18 mm kyr?1, granite lithologies at 35–47 mm kyr?1 and limestone lithologies (as deduced from river load gauging) at 70–90 mm kyr?1.  相似文献   

20.
Basalt weathering in Central Siberia under permafrost conditions   总被引:2,自引:0,他引:2  
Chemical weathering of basalts in the Putorana Plateau, Central Siberia, has been studied by combining chemical and mineralogical analysis of solids (rocks, soils, river sediments, and suspended matter) and fluid solution chemistry. Altogether, 70 large and small rivers, 30 soil pore waters and groundwaters and over 30 solids were sampled during July to August 2001. Analysis of multiannual data on discharge and chemical composition of several rivers of the region available from the Russian Hydrological Survey allowed rigorous estimation of mean annual major element concentrations, and dissolved and suspended fluxes associated with basalt weathering. For the rivers Tembenchi and Taimura that drain monolithologic basic volcanic rocks, the mean multiannual flux of total dissolved cations (TDS_c = Ca + Mg + Na + K) corrected for atmospheric input is 5.7 ± 0.5 t/km2/yr. For the largest river Nizhniya Tunguska—draining essentially basic rocks—the TDS_c is 6.1 ± 1.5 t/km2/yr. The overall CO2 consumption flux associated with basalt weathering in the studied region (∼700,000 km2) achieves 0.08 × 1012 mol/yr, which represents only 2.6% of the total CO2 consumption associated with basalt weathering at the Earth’s surface. The fluxes of suspended matter were estimated as 3.1 ± 0.5, 9.0 ± 0.8, and 6.5 ± 2.0 t/km2/yr for rivers Taimura, Eratchimo, and Nizhniya Tunguska, respectively. Based on chemical analyses of river solutes and suspended matter, the relative dissolved versus particulate annual transport of major components is Cinorg ≥ Corg > Na + K > Ca > Mg > Si > Fe ≥ Mn ≥ Ti ≥ Al which reflects the usual order of element mobility during weathering.According to chemical and mineralogical soil and sediment analyses, alteration of basalt consists of (1) replacement of the original basaltic glass by Si-Al-Fe rich amorphous material, (2) mechanical desegregation and grinding of parent rocks, leading to accumulation of “primary” hydrothermal trioctahedral smectite, and (3) transformation of these trioctahedral (oxy)smectites and mixed-layer chlorite-smectite, into secondary dioctahedral smectite accompanied by removal of Ca, Mg, and Fe, and enrichment in Al. No vertical chemical differentiation of fluid and solid phases within the soil profile was identified. All sampled soil pore waters and groundwaters were found to be close to equilibrium with respect to chalcedony, gibbsite, halloysite, and allophanes, but strongly supersaturated with respect to goethite, nontronite, and montmorillonite.Over the annual cycle, the contribution of atmospheric precipitation, permafrost melting, underground reservoirs, litter degradation, and rock and soil mineral weathering for the overall TDS_c transport in the largest river of the region (Nizhniya Tunguska) is 9.3 ± 3, 10 ± 5, 10.5 ± 5, 25 ± 20, and 45 ± 30%, respectively. In the summertime, direct contribution of rocks and soil mineral weathering via solid/fluid interaction does not exceed 20%. The main unknown factors of element mobilization from basalt to the river is litter degradation in the upper soil horizon and parameters of element turnover in the vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号