首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest management practices often result in significant changes to hydrologic and geomorphic responses at or near the earth's surface. A well‐known, but not fully tested, hypothesis in hillslope hydrology[sol ]geomorphology is that a near‐surface permeability contrast, caused by the surface compaction associated with forest roads, can result in diverted subsurface flow paths that produce increased up‐slope pore pressures and slope failure. The forest road focused on in this study is located in a steep forested, zero‐order catchment within the H. J. Andrews Experimental Forest (Oregon). A three‐phase modelling effort was employed to test the aforementioned hypothesis: (i) two‐dimensional (vertical slice), steady‐state, heterogeneous, saturated subsurface flow simulations at the watershed scale for establishing the boundary conditions for the catchment‐scale boundary‐value problem in (ii); (ii) two‐dimensional (vertical slice), transient, heterogeneous, variably saturated subsurface flow simulations at the catchment scale for estimating near‐surface hydrologic response and pore pressure distributions; and (iii) slope stability analyses, using the infinite slope approach, driven by the pore pressure distributions simulated in (ii), for assessing the impact of the forest road. Both observed and hypothetical rainfall events are used to drive the catchment‐scale simulations. The results reported here support the hypothesis that a forest road can have an effect on slope stability. The permeability contrast associated with the forest road in this study led to a simulated altering of slope‐parallel subsurface flow with increased pore pressures up‐slope of the road and, for a large rainfall event, a slope failure prediction. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Model predictions concerning the endangerment of on‐site and off‐site damages due to runoff, soil erosion and sedimentation under alternative design and operation policies are of particular importance in recent catchment planning and management. By using the raster‐based model approach, linear landscape elements, such as streets and roads, and their impacts on flow paths are often neglected. Therefore, the aim of this study was to analyse the effects of linear landscape elements on patterns of soil erosion, sediment transport and sedimentation. To accomplish this, roads are considered while determining flow paths. Simulations in the well‐investigated catchment of the Wahnbach River (54 km²) in a low mountain range in Germany were carried out using a combination of different models for hydrology and soil erosion. Although the study focuses on the catchment scale of the Wahnbach River, detailed investigations concerning the sub‐catchment scale (21 ha) were also conducted. The simulation results show that these spatial structures mainly affect the pattern of soil erosion and sedimentation. On the sub‐catchment scale, improved identification of active zones for sediment dynamic becomes possible. On the catchment scale, the predicted runoff is about 20% higher, and sediment outputs were four times larger than predicted when roads were considered. Soil erosion increases by 37% whereas sedimentation is reduced by 29%. The model improvement could not be evaluated on the catchment scale because of the high variability and heterogeneity of land use and soils, but road impacts could be explained by simulations on the sub‐catchment scale. It can be concluded that runoff concentration due to rerouted flow paths leads to lower non‐concentrated and higher concentric‐linear surface runoff. Thus, infiltration losses decline and surface runoff and soil erosion increase because sedimentation is reduced. Further, runoff concentration can cause soil erosion hot spots. In the model concept used in this study, buffering of runoff and sediments on the upslope side of roads and in local depressions adjacent to roads cannot be simulated. Flow paths will only be rerouted because of road impacts, but the temporal ponding of water is not simulated. Therefore, the drastic increase of predicted sediment output due to road impact does not seem to be reliable. However, results indicate that the consideration of roads when determining flow paths enabled more detailed simulations of surface runoff, soil erosion and sedimentation. Thus, progress in model‐based decision‐making support for river catchment planning and management can be achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Approximately 80% of the road network in Brazil is unpaved and shows evidences of a high erosion potential. In the semi-arid Caatinga Biome in the northeast of the country, a monitoring programme has been done for two years in order to analyze runoff and sediment production from unpaved rural road-ways and from embankments. Sediment production ranged from 0.30 to 0.92 Mg/ha yr, higher than in undisturbed areas, but generally lower than that reported for unpaved roads in other regions. However, this is a semi-arid area with low rainfall and runoff and, hence, with a limited hydrological connectivity and sediment production. Sediment production on an embankment with no vegetation was around ten times higher than on an embankment with vegetation. On the road surface, annual sediment production (normalized for gradient) in a section with traffic was three times higher than for a road surface without traffic. In addition, events that occurred after roadway maintenance activities generated peaks of sedi-ment concentration of over 5000 mg/L. These results suggest that sediment production from roads and embankments with bare surfaces is at least one order of magnitude higher than in undisturbed catch-ment areas. Maintenance activity and vehicle traffic contribute to an increase in sediment availability and impact on the sediment concentration, but less intensely on sediment loads, which depend on the runoff magnitude of the events occurring after roadway maintenance. It was also found that the natural vegetation of the semi-arid region potentially captures sediment on roadway embankments;thereby playing an important role in breaking connectivity between the sediment flow from unpaved roads and the natural drainage system of the catchment.  相似文献   

4.
Previous studies have identified unpaved roads as the primary source of erosion on St John in the US Virgin Islands, but these studies estimated road erosion rates only as annual averages based primarily on road rill measurements. The goal of this project was to quantify the effect of unpaved roads on runoff and sediment production on St John, and to better understand the key controlling factors. To this end runoff and sediment yields were measured from July 1996 to March 1997 from three plots on naturally vegetated hillslopes, four plots on unpaved road surfaces and two cutslope plots. Sediment yields were also measured from seven road segments with contributing areas ranging from 90 to 700 m2. With respect to the vegetated plots, only the two largest storm events generated runoff and there was no measurable sediment yield. Runoff from the road surface plots generally occurred when storm precipitation exceeded 6 mm. Sediment yields from the four road surface plots ranged from 0·9 to 15 kg m−2 a−1, and sediment concentrations were typically 20–80 kg m−3. Differences in runoff between the two cutslope plots were consistent with the difference in upslope contributing area. A sprinkler experiment confirmed that cross‐slope roads intercept shallow subsurface stormflow and convert this into surface runoff. At the road segment scale the estimated sediment yields were 0·1 to 7·4 kg m−2 a−1. Road surface runoff was best predicted by storm precipitation, while sediment yields for at least three of the four road surface plots were significantly correlated with storm rainfall, storm intensity and storm runoff. Sediment yields at the road segment scale were best predicted by road surface area, and sediment yields per unit area were most strongly correlated with road segment slope. The one road segment subjected to heavy traffic and more frequent regrading produced more than twice as much sediment per unit area than comparable segments with no truck traffic. Particle‐size analyses indicate a preferential erosion of fine particles from the road surface and a rapid surface coarsening of new roads. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

5.
A. Cuomo  D. Guida 《水文研究》2016,30(24):4462-4476
The paper deals with the hydro‐chemical analysis performed in order to reveal processes, sources, paths and timing of the runoff generation in an experimental catchment representative of the hilly, terrigenous and forested watershed in the Mediterranean humid eco‐region of southern Italy. The analysis is based on the data recorded at the outlet of the catchment during 2013–2014. A mixing law procedure was applied on discharge (Q) and electrical conductivity (EC) data, by using the Q–EC end members previously collected at selected groundwater, sub‐surficial and surficial stations. In this way, we found four bound curves delimiting fields in a Q–EC plot, each with hydro‐chemograph value ranges. At annual time scale, the analysis revealed a seasonal behaviour of the hydrological response, different for the wet period, when the aquifer is recharging, and the dry periods, when the aquifer is discharging, despite frequent summer rain showers. At event time scale, the catchment seems to show the behaviour of a typical hydro‐geomorphic threshold system. We interpreted this behaviour as due to a progressive addition of water from distinctive components (i.e. deep aquifer, riparian corridor, hillslope and hollow), each with originally different mechanisms of runoff production (i.e. groundwater, groundwater ridging, saturation excess, infiltration excess and soil pipe exfiltration) and response time. During the event, the contributing areas enlarge upward the riparian corridors and the zero‐order basins, where the aforementioned components become superposed and the mechanisms interact more and more. We hypothesize that the threshold values between different states of the system are defined by the intersections of the boundary curves on the Q–EC plot. Different patterns in the Q–EC hysteretic cycles are prevalently related to the pre‐event soil saturation and groundwater contributions to stormflow and recharge mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Factors affecting rill erosion of unpaved loess roads in China   总被引:1,自引:0,他引:1       下载免费PDF全文
This study explores factors that affect road surface erosion in a small watershed on the Loess Plateau. Global positioning system (GPS)‐assisted field surveys and geographical information system methods were applied. The results show that road surface rills in the watershed are more easily formed on main roads, which are disturbed by intensive human activities. Secondary unpaved road networks occupied the largest road surface area and contributed 49% of the total road surface rill volumes. Spatial analysis reveals that roads near residential areas or leading to other human‐disturbed land‐use types are at high risk of soil loss. In each road segment, slope gradient, road segment length and drainage area have impacts on surface rill formation and development. Among these factors, slope gradients have been verified as a controlling factor of rill erosion intensification. Both road segment length (R = 0.83, N = 82) and drainage area (R = 0.72 for road segment and 0.76 for upslope drainage areas, N = 82) significantly influence total road surface rill volumes. The interaction variable of road segment length multiplied by slope is more closely correlated with road segment soil loss than that of the independent variables alone. Linear equations composed of slope gradient, road segment length and upslope drainage area are proposed. The new equation performs much better at predicting surface soil loss from secondary road segments compared with the previous models, which have not considered upslope drainage areas. The relationships and equations from this study will be helpful for road erosion evaluation in a small watershed of the study area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The relative contribution of forest roads to total catchment exports of suspended sediment, phosphorus, and nitrogen was estimated for a 13 451 ha forested catchment in southeastern Australia. Instrumentation was installed for 1 year to quantify total in‐stream exports of suspended sediment, phosphorus, and nitrogen. In addition, a total of 101 road–stream crossings were mapped and characterized in detail within the catchment to identify the properties of the road section where the road network and the stream network intersect. Sediment and nutrient generation rates from different forest road types within the catchment were quantified using permanent instrumentation and rainfall simulation. Sediment and nutrient generation rates, mapped stream crossing information, traffic data and annual rainfall data were used to estimate annual loads of sediment, phosphorus, and nitrogen from each stream crossing in the catchment. The annual sum of these loads was compared with the measured total catchment exports to estimate the proportional contribution of loads from roads within the catchment. The results indicated that 3·15 ha of near‐stream unsealed road surface with an average slope of 8·4% delivered an estimated 50 t of the 1142 t of total suspended sediment exported from the catchment, or about 4·4% of the total sediment load from the forest. Stream discharge over this period was 69 573 Ml. The unsealed road network delivered an estimated maximum of 22 kg of the 1244 kg of total phosphorus from the catchment, or less than 1·8% of the total load from the forest. The average sediment and phosphorous load per crossing was estimated at 0·5 t (standard deviation 1·0 t) and 0·22 kg (standard deviation 0·30 kg) respectively. The lower proportional contribution of total phosphorus resulted from a low ratio of total phosphorus to total suspended sediment for the road‐derived sediment. The unsealed road network delivered approximately 33 kg of the 20 163 kg of total nitrogen, about 0·16% of the total load of nitrogen from the forest. The data indicate that, in this catchment, improvement of stream crossings would yield only small benefits in terms of net catchment exports of total suspended sediment and total phosphorus, and no benefit in terms of total nitrogen. These results are for a catchment with minimal road‐related mass movement, and extrapolation of these findings to the broader forested estate requires further research. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second‐growth forests and old‐growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site‐scale and landscape‐scale variables in predicting SOC accumulation in treated road prisms and second‐growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second‐growth and old‐growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second‐growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The impact of road‐generated runoff on the hydrological response of a zero‐order basin was monitored for a sequence of 24 storm events. The study was conducted in a zero‐order basin (C1; 0·5ha) with an unpaved mountain road; an adjacent unroaded zero‐order basin (C2; 0·2 ha) with similar topography and lithology was used to evaluate the hydrological behaviour of the affected zero‐order basin prior to construction of the road. The impact of the road at the zero‐order basin scale was highly dependent on the antecedent soil‐moisture conditions, total storm precipitation, and to some extent rainfall intensity. At the beginning of the monitoring period, during dry antecedent conditions, road runoff contributed 50% of the total runoff and 70% of the peak flow from the affected catchment (C1). The response from the unroaded catchment was almost insignificant during dry antecedent conditions. As soil moisture increased, the road exerted less influence on the total runoff from the roaded catchment. For very wet conditions, the influence of road‐generated runoff on total outflow from the roaded catchment diminished to only 5·4%. Both catchments, roaded and unroaded, produced equivalent amount of outflow during very wet antecedent conditions on a unit area basis. The lag time between the rainfall and runoff peaks observed in the unroaded catchment during the monitoring period ranged from 0 to 4 h depending on the amount of precipitation and antecedent conditions, owing mainly to much slower subsurface flow pathways in the unroaded zero‐order basin. In contrast, the lag time in the roaded zero‐order basin was virtually nil during all storms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Field investigations indicate that unpaved roads are the largest sediment source on St John, US Virgin Islands. Cross-sectional measurements of eroded road surfaces were used to establish an empirical relationship to predict annual road surface erosion as a function of road gradient and contributing drainage area. A model (ROADMOD) for estimating and mapping average annual sediment production from a road network was developed by combining this empirical relationship with a series of network algorithms to analyse road data stored in a vector geographic information system. ROADMOD was used to estimate road surface erosion in two St John catchments with very different road densities but similar land cover, topography and soils. Unpaved roads were found to increase sediment production in the more densely roaded catchment by a factor of three to eight, and in the less-roaded catchment by a factor of 1·3–2·0. Turbidity measurements in the receiving bays of these two catchments are consistent with model predictions and observed sediment delivery processes. Although this model was developed specifically for St John, it can easily be adapted to other locations by substituting a locally derived predictive equation for road erosion. Model assumptions, limitations and potential improvements are discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Many forested steeplands in the western United States display a legacy of disturbances due to timber harvest, mining or wildfires, for example. Such disturbances have caused accelerated hillslope erosion, leading to increased sedimentation in fish‐bearing streams. Several restoration techniques have been implemented to address these problems in mountain catchments, many of which involve the removal of abandoned roads and re‐establishing drainage networks across road prisms. With limited restoration funds to be applied across large catchments, land managers are faced with deciding which areas and problems should be treated first, and by which technique, in order to design the most effective and cost‐effective sediment reduction strategy. Currently most restoration is conducted on a site‐specific scale according to uniform treatment policies. To create catchment‐scale policies for restoration, we developed two optimization models – dynamic programming and genetic algorithms – to determine the most cost‐effective treatment level for roads and stream crossings in a pilot study basin with approximately 700 road segments and crossings. These models considered the trade‐offs between the cost and effectiveness of different restoration strategies to minimize the predicted erosion from all forest roads within a catchment, while meeting a specified budget constraint. The optimal sediment reduction strategies developed by these models performed much better than two strategies of uniform erosion control which are commonly applied to road erosion problems by land managers, with sediment savings increased by an additional 48 to 80 per cent. These optimization models can be used to formulate the most cost‐effective restoration policy for sediment reduction on a catchment scale. Thus, cost savings can be applied to further restoration work within the catchment. Nevertheless, the models are based on erosion rates measured on past restoration sites, and need to be updated as additional monitoring studies evaluate long‐term basin response to erosion control treatments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Although unpaved roads are well‐recognized as important sources of Hortonian overland flow and sediment in forested areas, their role in agriculturally‐active rural settings still lacks adequate documentation. In this study, we assessed the effect of micro‐catchment size, slope, and ground cover on runoff and sediment generation from graveled roadbeds servicing a rural area in southern Brazil. Fifteen replications based on 30‐min‐long simulated rainfall experiments were performed at constant rainfall intensities of 22–58 mm h?1 on roadbeds with varying characteristics including ~3–7 m2 micro‐catchment areas, 2–11° slopes, 2–9.7‐m‐long shallow rill features, and 30–100% gravel cover. The contributions of micro‐catchment size and rill length were the most important physical characteristics affecting runoff response and sediment production; both the size of the micro‐catchment and the length of the rills were inversely related to sediment loss and this contradicts most of the rill erosion literature. The effect of micro‐catchment size on runoff and sediment response suggests a potentially problematic spatial‐scale subjectivity of experimental plot results. The inverse relationship between rill length and sediment generation is interpreted here as related to the predominance of coarse fragments within rills, the inability of the shallow flows generated during the simulations to erode this sediment, and their role as zones of net sediment storage. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Nonpoint source pollution and hydromodification are the leading causes of impairment to our nation's rivers and streams. Roadside ditch networks, ubiquitous in both rural and urban landscapes, intercept and shunt substantial quantities of overland runoff and shallow groundwater to stream systems. By altering natural flowpaths, road ditches contribute not only to hydromodification but also potentially to nonpoint‐source (NPS) pollution by acting as hydrological links between agricultural fields and natural streams. Unfortunately, the impacts of these alterations on watershed hydrology and water quality are not well understood. Through a series of field measurements, including field surveys and discharge monitoring, this study examined the effect of road ditch networks on basin morphometry, field‐ and watershed‐scale hydrology, and pollutant transport in a 38 km2 agricultural watershed in south‐central NY. Salient findings include the following: (i) 94% of road ditches discharged to natural streams, effectively doubling the drainage density; (ii) on average, road ditches increased peak and total event flows in their receiving streams by 78% and 57%, respectively, but displayed significant variation across ditches; and (iii) ditches intercepted large quantities of surface and subsurface runoff from agricultural fields and therefore represent efficient conduits for the transport of agricultural NPS pollutants to sensitive receiving waterbodies. Our results provide useful information for hydrologists who wish to further understand how artificial drainage may be affecting watershed hydrology and for managers and engineers tasked with designing appropriate flood and NPS pollution control measures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This study aims to assess watershed‐scale impacts of changing climate on sediment, phosphorus, nitrogen and pesticide (atrazine) fluxes over the 21st century at the watershed scale. In particular, changes in dissolved and particulate forms of water quality constituents in response to climate change are investigated. The hydrologic model Soil and Water Assessment Tool was calibrated and evaluated in a primarily agricultural watershed in the Midwestern United States to simulate hydrologic and water quality processes on a daily basis over the 2015–2099 time horizon. The model was then driven with 112 distinct statistically downscaled climate projections representing Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) low, moderate and high greenhouse gas emission scenarios. Projected hydrologic and water quality responses were categorized according to the three IPCC SRES emission scenarios for summarizing and synthesizing results over early‐century (2015–2034), mid‐century (2045–2064) and late‐century (2080–2099) assessment. Results revealed clear warming trends in the study area, whereas small increases in precipitation were predicted. Streamflow, sediment and total nutrient loads did not differ noticeably between assessment periods. However, the proportion of dissolved to total nutrients increased significantly from early‐century to late‐century periods. With the exception of total atrazine in the mid‐century period, predicted pollutant loads for a given assessment period did not differ between emission pathways for a given assessment period. Changes in pollutant fluxes showed pronounced monthly variability. The projected increase in readily available forms of nutrients has important implications for the ecological health of water systems and management of drinking water supplies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
High and moderate severity wildfires should increase sediment production from unpaved roads due to the increased surface runoff from upslope, and increase road–stream connectivity due to the decrease in downslope surface roughness as well as the increase in surface runoff and erosion. Because no study has documented these effects, we surveyed road surface erosion features and quantified road–stream connectivity as a function of fire severity and road segment characteristics. The data were collected one year after the High Park wildfire from 141 hydrologically distinct road segments along 6.8 km of an unpaved road west of Fort Collins, Colorado. Road segments below areas burned at high and moderate severity had significantly more rills than road segments below areas that burned at low severity. Road segment slope was an important control on the proportion of segment length with rills, and the strength of the relationship between road segment slope and the amount of rilling increased with burn severity. Flatter road segments tended to capture the sediment eroded from upslope burned areas. In areas burned at high and moderate severity all of the road segments had drainage features extending to a stream, and 78% of the segments in areas burned at low severity also were connected. These exceptionally high rates of road–stream connectivity are attributed to the increased runoff from upslope, the segment‐scale collection and funneling of hillslope and road surface runoff to a single drainage point, and the reduced infiltration and trapping capacity of the burned area below the road. The results show the need to either outslope the roads or increase the frequency of constructed drainage features after wildfires, particularly for steeper road segments in areas burned at high or moderate severity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In the work reported here the comprehensive physics‐based Integrated Hydrology Model (InHM) was employed to conduct both three‐ and two‐dimensional (3D and 2D) hydrologic‐response simulations for the small upland catchment known as C3 (located within the H. J. Andrews Experimental Forest in Oregon). Results from the 3D simulations for the steep unchannelled C3 (i) identify subsurface stormflow as the dominant hydrologic‐response mechanism and (ii) show the effect of the down‐gradient forest road on both the surface and subsurface flow systems. Comparison of the 3D results with the 2D results clearly illustrates the importance of convergent subsurface flow (e.g. greater pore‐water pressures in the hollow of the catchment for the 3D scenario). A simple infinite‐slope model, driven by subsurface pore‐water pressures generated from the 3D and 2D hydrologic‐response simulations, was employed to estimate slope stability along the long‐profile of the C3 hollow axis. As expected, the likelihood of slope failure is underestimated for the lower pore pressures from the 2D hydrologic‐response simulation compared, in a relative sense, to the higher pore pressures from the 3D hydrologic response simulation. The effort reported herein provides a firm quantitative foundation for generalizing the effects that forest roads can have on near‐surface hydrologic response and slope stability at the catchment scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
The purpose of this paper is to identify simple connections between observations of hydrological processes at the hillslope scale and observations of the response of watersheds following rainfall, with a view to building a parsimonious model of catchment processes. The focus is on the well‐studied Panola Mountain Research Watershed (PMRW), Georgia, USA. Recession analysis of discharge Q shows that while the relationship between dQ/dt and Q is approximately consistent with a linear reservoir for the hillslope, there is a deviation from linearity that becomes progressively larger with increasing spatial scale. To account for these scale differences conceptual models of streamflow recession are defined at both the hillslope scale and the watershed scale, and an assessment made as to whether models at the hillslope scale can be aggregated to be consistent with models at the watershed scale. Results from this study show that a model with parallel linear reservoirs provides the most plausible explanation (of those tested) for both the linear hillslope response to rainfall and non‐linear recession behaviour observed at the watershed outlet. In this model each linear reservoir is associated with a landscape type. The parallel reservoir model is consistent with both geochemical analyses of hydrological flow paths and water balance estimates of bedrock recharge. Overall, this study demonstrates that standard approaches of using recession analysis to identify the functional form of storage–discharge relationships identify model structures that are inconsistent with field evidence, and that recession analysis at multiple spatial scales can provide useful insights into catchment behaviour. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
《国际泥沙研究》2016,(4):386-394
Identification of areas contributing disproportionately high amount of pollutants (i.e., critical source areas (CSAs)) to streams is important to efficiently and effectively target best management practices (BMPs). Process-based models are commonly used to identify CSAs and evaluate the impact of alternative management practices on pollutant load reductions. The objective of this study was to use the Soil and Watershed Assessment Tool (SWAT) to identify CSAs at the subwatershed level and evaluate the impact of alternative BMPs on sediment and total phosphorus (TP) load reductions in the Pleasant Valley watershed (50 km2) in South Central Wisconsin (USA). The Nash-Sutcliffe efficiency, percent bias, and coefficient of determination ranged from 0.58 to 0.71, ? 12.87 to 38.33, and 0.67 to 0.79, respectively, indicating that SWAT was able to predict stream flow, sediment and TP loadings at a monthly time-step with sufficient accuracy. Based on the SWAT simulation results, annual average (2006–2012) sub-watershed yield for sediment and TP ranged from 0.06 to 3.14 tons ha?1 yr?1 and 0.04 to 1.9 kg ha ? 1 yr ? 1, respectively. The croplands were the major source of sediment and TP in this watershed ( Z 84%). Reduction in sediment and TP loading ranged from 66%to 99%at the subwatershed level after conversion of croplands to Conservation Reserve Program (CRP) grasslands in subwatersheds identified as CSAs. On the other hand, reduction in sediment and TP loading with implementation of no-till practices ranged from only 14%to 25%. At the watershed outlet, sediment and TP loading reduction was r 15% after conversion of croplands to CRP grasslands and implementation of no-till practices because only about 8%of the watershed area was targeted for BMPs and/or resuspension of sediment deposited on the stream bed masked the downstream improvements in water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号