首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind- and water-driven erosion. Much of the fire-related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water-driven erosion under high-intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow-dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold-season hydrology. Current understanding is limited regarding fire effects on the interaction of wind- and cold-season hydrologic-driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow-dominated mountainous sagebrush site over a 2-year period post-fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop-box v-notch weir. Wildfire consumed nearly all above-ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post-fire period. Widespread wind-driven sediment loading of swales was observed over the first month post-fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north- and south-facing aspects averaged 0.99–8.62 t ha−1 at the short-hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long-hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short- to long-hillslope scales (0.02–0.04 t ha−1), but was similar to first-year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold-season hydrologic processes, including rain-on-snow, rain-on-frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post-fire period and subsequent flushing of these sediments by runoff from cold-season hydrologic processes. Our results suggest that the interaction of aeolian and cold-season hydrologic-driven erosion processes is an important component for consideration in post-fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, we proposed a new approach for linking event sediment sources to downstream sediment transport in a watershed in central New York. This approach is based on a new concept of spatial scale, sub‐watershed area (SWA), defined as a sub‐watershed within which all eroded soils are transported out without deposition during a hydrological event. Using (rainfall) event data collected between July and November, 2007 from several SWAs of the studied watershed, we developed an empirical equation that has one independent variable, mean SWA slope. This equation was then used to determine event‐averaged unit soil erosion rate, QS/A, (in kg/km2/hr) for all SWAs in the studied watershed and calculate event‐averaged gross erosion Eea (in kg/hr). The event gross erosion Et (in kilograms) was subsequently computed as the product of Eea and the mean event duration, T (in hours) determined using event hydrographs at the outlet of the studied watershed. Next, we developed two linear sediment rating curves (SRCs) for small and big events based on the event data obtained at the watershed outlet. These SRCs, together with T, allowed us to determine event sediment yield SYe (in kilograms) for all events during the study period. By comparing Et with SYe, developing empirical equations (i) between Et and SYe and (ii) for event sediment delivery ratio, respectively, we revealed the event dynamic processes connecting sediment sources and downstream sediment transport. During small events, sediment transport in streams was at capacity and dominated by the deposition process, whereas during big events, it was below capacity and controlled by the erosion process. The key of applying this approach to other watersheds is establishing their empirical equations for QS/A and appropriately determining their numbers of SWAs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Previous studies have identified unpaved roads as the primary source of erosion on St John in the US Virgin Islands, but these studies estimated road erosion rates only as annual averages based primarily on road rill measurements. The goal of this project was to quantify the effect of unpaved roads on runoff and sediment production on St John, and to better understand the key controlling factors. To this end runoff and sediment yields were measured from July 1996 to March 1997 from three plots on naturally vegetated hillslopes, four plots on unpaved road surfaces and two cutslope plots. Sediment yields were also measured from seven road segments with contributing areas ranging from 90 to 700 m2. With respect to the vegetated plots, only the two largest storm events generated runoff and there was no measurable sediment yield. Runoff from the road surface plots generally occurred when storm precipitation exceeded 6 mm. Sediment yields from the four road surface plots ranged from 0·9 to 15 kg m−2 a−1, and sediment concentrations were typically 20–80 kg m−3. Differences in runoff between the two cutslope plots were consistent with the difference in upslope contributing area. A sprinkler experiment confirmed that cross‐slope roads intercept shallow subsurface stormflow and convert this into surface runoff. At the road segment scale the estimated sediment yields were 0·1 to 7·4 kg m−2 a−1. Road surface runoff was best predicted by storm precipitation, while sediment yields for at least three of the four road surface plots were significantly correlated with storm rainfall, storm intensity and storm runoff. Sediment yields at the road segment scale were best predicted by road surface area, and sediment yields per unit area were most strongly correlated with road segment slope. The one road segment subjected to heavy traffic and more frequent regrading produced more than twice as much sediment per unit area than comparable segments with no truck traffic. Particle‐size analyses indicate a preferential erosion of fine particles from the road surface and a rapid surface coarsening of new roads. Published in 2001 by John Wiley & Sons, Ltd.  相似文献   

5.
To maintain a reasonable sediment regulation system in the middle reaches of the Yellow River, it is critical to determine the variation in sediment deposition behind check‐dams for different soil erosion conditions. Sediment samples were collected by using a drilling machine in the Fangta watershed of the loess hilly–gully region and the Manhonggou watershed of the weathered sandstone hilly–gully (pisha) region. On the basis of the check‐dam capacity curves, the soil bulk densities and the couplet thickness in these two small watersheds, the sediment yields were deduced at the watershed scale. The annual average sediment deposition rate in the Manhonggou watershed (702.0 mm/(km2·a)) from 1976 to 2009 was much higher than that in the Fangta watershed (171.6 mm/(km2·a)) from 1975 to 2013. The soil particle size distributions in these two small watersheds were generally centred on the silt and sand fractions, which were 42.4% and 50.7% in the Fangta watershed and 60.6% and 32.9% in the Manhonggou watershed, respectively. The annual sediment deposition yield exhibited a decreasing trend; the transition years were 1991 in the Fangta watershed and 1996 in the Manhonggou watershed (P < 0.05). In contrast, the annual average sediment deposition yield was much higher in the Manhonggou watershed (14011.1 t/(km2·a)) than in the Fangta watershed (3149.6 t/(km2·a)). In addition, the rainfalls that induced sediment deposition at the check‐dams were greater than 30 mm in the Fangta watershed and 20 mm in the Manhonggou watershed. The rainfall was not the main reason for the difference in the sediment yield between the two small watersheds. The conversion of farmland to forestland or grassland was the main reason for the decrease in the soil erosion in the Fangta watershed, while the weathered sandstone and bare land were the main factors driving the high sediment yield in the Manhonggou watershed. Knowledge of the sediment deposition process of check‐dams and the variation in the catchment sediment yield under different soil erosion conditions can serve as a basis for the implementation of improved soil erosion and sediment control strategies, particularly in semi‐arid hilly–gully regions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Increasing population and intensification of agriculture increase erosion rates and often result in severe land degradation and sedimentation of reservoirs. Finding effective management practices to counteract the increasing sediment load is becoming increasingly urgent especially in the Ethiopian highlands where the construction of the hydroelectric Grand Renaissance Dam on the Blue Nile is underway. In this paper, we examine the results of 9 years of a watershed experiment in which discharge and sediment losses were observed in the 113 ha Anjeni watershed of the Blue Nile Basin. The study period encompasses conditions before, during, and after the installation of graded FanyaJuu (“throw uphill” bunds) soil and water conservation practices (SWCP), which had the ultimate goal of creating terraces. We use a saturation‐excess runoff model named the parameter‐efficient distributed model as a mathematical construct to relate rainfall with discharge and sediment losses at the outlet. The parameter‐efficient distributed model is based on landscape units in which the excess rainfall becomes direct runoff or infiltrates based on topographic position or hardpan characteristics. Deviations in this rainfall–discharge–sediment loss relationship are ascribed to the changes in infiltration characteristics caused by SWCPs on the hillslopes. With this technique, we found that in the Anjeni basin, the Fanya‐Juu SWCPs are only effective in increasing the infiltration and thereby reducing the direct runoff and sediment concentrations in the first 5 years. At the end of the 9‐year observation period, the direct runoff and sediment concentrations were barely reduced compared to the levels before SWCP were installed. In addition, we found that the model structure based on landscape units was able to represent the varying runoff and erosion processes during the 9 years well by varying mainly the portion of degraded land (and thereby representing the effectiveness of the Fanya‐Juu to reduce runoff by increasing infiltration).  相似文献   

7.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Fine sediment sources were characterized by chemical composition in an urban watershed, the Northeast Branch Anacostia River, which drains to the Chesapeake Bay. Concentrations of 63 elements and two radionuclides were measured in possible land‐based sediment sources and suspended sediment collected from the water column at the watershed outlet during storm events. These tracer concentrations were used to determine the relative quantity of suspended sediment contributed by each source. Although this is an urbanized watershed, there was not a distinct urban signature that can be evaluated except for the contributions from road surfaces. We identified the sources of fine sediment by both physiographic province (Piedmont and Coastal Plain) and source locale (streambanks, upland and street residue) by using different sets of elemental tracers. The Piedmont contributed the majority of the fine sediment for seven of the eight measured storms. The streambanks contributed the greatest quantity of fine sediment when evaluated by source locale. Street residue contributed 13% of the total suspended sediment on average and was the source most concentrated in anthropogenically enriched elements. Combining results from the source locale and physiographic province analyses, most fine sediment in the Northeast Branch watershed is derived from streambanks that contain sediment eroded from the Piedmont physiographic province of the watershed. Sediment fingerprinting analyses are most useful when longer term evaluations of sediment erosion and storage are also available from streambank‐erosion measurements, sediment budget and other methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Eight runoff plots, located within a small catchment within the Walnut Gulch Experimental Watershed, southern Arizona, were constructed to test the argument that sediment yield (kg m?2) decreases as plot length increases. The plots ranged in length from 2 m to 27·78 m. Runoff and sediment loss from these plots were obtained for ten natural storm events. The pattern of sediment yield from these plots conforms to the case in which sediment yield first increases as plot length increases, but then subsequently decreases. Data from the present experiment indicate that maximum sediment yield would occur from a plot 7 m long. Analysis of both runoff and sediment yield from the plots indicates that the relationship of sediment yield to plot length derives both from the limited travel distance of individual entrained particles and from a decline in runoff coefficient as plot length increases. Particle‐size analysis of eroded sediment confirms the role of travel distance in controlling sediment yield. Whether in response to the finite travel distance of entrained particles or the relationship of runoff coefficient to plot length, the experiment clearly demonstrates that the erosion rates for hillslopes and catchments cannot be simply extrapolated from plot measurements, and that alternative methods for estimating large‐area erosion rates are required. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Experimental research in the Ethiopian highlands found that saturation excess induced runoff and erosion are common in the sub‐humid conditions. Because most erosion simulation models applied in the highlands are based on infiltration excess, we, as an alternative, developed the Parameter Efficient Distributed (PED) model, which can simulate water and sediment fluxes in landscapes with saturation excess runoff. The PED model has previously only been tested at the outlet of a watershed and not for distributed runoff and sediment concentration within the watershed. In this study, we compare the distributed storm runoff and sediment concentration of the PED model against collected data in the 95‐ha Debre Mawi watershed and three of its nested sub‐watersheds for the 2010 and 2011 rainy seasons. In the PED model framework, the hydrology of the watershed is divided between infiltrating and runoff zones, with erosion only taking place from two surface runoff zones. Daily storm runoff and sediment concentration values, ranging from 0.5 to over 30 mm and from 0.1 to 35 g l?1, respectively, were well simulated. The Nash Sutcliffe efficiency values for the daily storm runoff for outlet and sub‐watersheds ranged from 0.66 to 0.82, and the Nash–Sutcliffe efficiency for daily sediment concentrations were greater than 0.78. Furthermore, the model uses realistic fractional areas for surface and subsurface flow contributions, for example between saturated areas (15%), degraded areas (30%) and permeable areas (55%) at the main outlet, while close similarity was found for the remaining hydrology and erosion parameter values. One exception occurred for the distinctly greater transport limited parameter at the actively gullying lower part of the watershed. The results suggest that the model based on saturation excess provides a good representation of the observed spatially distributed runoff and sediment concentrations within a watershed by modelling the bottom lands (as opposed to the uplands) as the dominant contributor of the runoff and sediment load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Sediment waves in river systems have been widely reported, although few studies have examined the interaction between these waves and the morphology of the reaches through which they pass. This interaction determines how waves are modified as they propagate downstream. This study documents the origin and downstream passage of an avulsion-generated sediment wave through a 374 m study reach of the Allt Dubhaig, Scotland. A nested survey framework was adopted, with volumes calculated from cross-sections spaced between 10 and 40 m apart documenting the origin and downstream passage of the wave. The wave moved through an intensively (c. 1 m cross-section spacing) monitored 120 m stretch (Reach A) within the study reach, allowing assessment of sediment exchanges between the incoming wave and the local morphology. Successive surveys show the movement of the wave through and out of the reach, and also that areas where wave sediment was deposited did not always correspond with areas of subsequent erosion. Reach A was divided into three morphologically distinct sub-reaches (1A, 2A and 3A) within which sediment fluxes and the three-dimensional distribution of erosion/deposition were estimated. Sediment wave input into 1A and 2A (relatively stable sub-reaches) caused forced bar aggradation and erosion of sediment from elsewhere within the reach, which then became part of the wave. The downstream transfer of this sediment into unstable 3A caused aggradation and, in response, widespread erosion which increased the magnitude of the sediment wave as it exited reach A. Sediment exchange between the recipient reach and the wave depends upon local morphological stability and is a crucial process affecting wave magnitude and attenuation. The macroscale sediment wave interacted with, rather than overwhelmed, the recipient morphology. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

Soil erosion and eroded sediment are serious threats to sound land management. However, less attention has been given to quantifying the importance of different soil erosion features based on appropriate control measures that could be designated. Accordingly, this research was planned to quantify the contribution of potential sediment sources, i.e. sheet, rill and gully erosion, in Idelo watershed in Zanjan Province, Iran, using composite fingerprinting. Toward this aim, 16 geochemical and organic tracers were detected in sediment sources and sediment deposited at the outlet. The results of applying the composite fingerprinting technique, with a relative error of 16%, showed that sheet, rill and gully sources contributed 56%, 44% and 0%, respectively, to sediment yield. It was also apparent from the results that the composite fingerprinting approach could be successfully utilized to assess the provenance of sediment deposited at the main outlet of the study watershed by soil erosion type.

Editor Z.W. Kundzewicz  相似文献   

13.
Despite widespread bench‐terracing, stream sediment yields from agricultural hillsides in upland West Java remain high. We studied the causes of this lack of effect by combining measurements at different spatial scales using an erosion process model. Event runoff and sediment yield from two 4‐ha terraced hillside subcatchments were measured and field surveys of land use, bench‐terrace geometry and storage of sediment in the drainage network were conducted for two consecutive years. Runoff was 3·0–3·9% of rainfall and sediment yield was 11–30 t ha−1 yr−1 for different years, subcatchments and calculation techniques. Sediment storage changes in the subcatchment drainage network were less than 2 t ha−1, whereas an additional 0·3–1·5 t ha−1 was stored in the gully between the subcatchment flumes and the main stream. This suggests mean annual sediment delivery ratios of 86–125%, or 80–104% if this additional storage is included. The Terrace Erosion and Sediment Transport (TEST) model developed and validated for the studied environment was parameterized using erosion plot studies, land use surveys and digital terrain analysis to simulate runoff and sediment generation on the terraced hillsides. This resulted in over‐estimates of runoff and under‐estimates of runoff sediment concentration. Relatively poor model performance was attributed to sample bias in the six erosion plots used for model calibration and unaccounted covariance between important terrain attributes such as slope, infiltration capacity, soil conservation works and vegetation cover. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Numerical simulation experiments of water erosion at the local scale (20 × 5 m) using a process‐based model [Plot Soil Erosion Model_2D (PSEM_2D)] were carried out to test the effects of various environmental factors (soil type, meteorological forcing and slope gradient) on the runoff and erosion response and to determine the dominant processes that control the sediment yield at various slope lengths. The selected environmental factors corresponded to conditions for which the model had been fully tested beforehand. The use of a Green and Ampt model for infiltration explained the dominant role played by rainfall intensity in the runoff response. Sediment yield at the outlet of the simulated area was correlated positively with rainfall intensity and slope gradient, but was less sensitive to soil type. The relationship between sediment yield (soil loss per unit area) and slope length was greatly influenced by all environmental factors, but there was a general tendency towards higher sediment yield when the slope was longer. Contribution of rainfall erosion to gross erosion was dominant for all surfaces with slope lengths ranging from 4 to 20 m. The highest sediment yields corresponded to cases where flow erosion was activated. An increase in slope gradient resulted in flow detachment starting upstream. Sediment exported at the outlet of the simulated area came predominantly from the zone located near the outlet. The microrelief helped in the development of a rill network that controlled both the ratio between rainfall and flow erosion and the relationship between sediment yield and slope length. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Streambank erosion is a pathway for sediment and nutrient loading to streams, but insufficient data exist on the magnitude of this source. Riparian protection can significantly decrease streambank erosion in some locations, but estimates of actual sediment load reductions are limited. The objective of this research was to quantify watershed‐scale streambank erosion and estimate the benefits of riparian protection. The research focused on Spavinaw Creek within the Eucha‐Spavinaw watershed in eastern Oklahoma, where composite streambanks consist of a small cohesive topsoil layer underlain by non‐cohesive gravel. Fine sediment erosion from 2003 to 2013 was derived using aerial photography and processed in ArcMap to quantify eroded area. ArcMap was also utilized in determining the bank retreat rate at various locations in relation to the riparian vegetation buffer width. Box and whisker plots clearly showed that sites with riparian vegetation had on average three times less bank retreat than unprotected banks, statistically significant based on non‐parametric t‐tests. The total soil mass eroded from 2003 to 2013 was estimated at 7.27 × 107 kg yr.?1, and the average bank retreat was 2.5 m yr.?1. Many current erosion models assume that fluvial erosion is the dominant stream erosion process. Bank retreat was positively correlated with stream discharge and/or stream power, but with considerable variability, suggesting that mass wasting plays an important role in streambank erosion within this watershed. Finally, watershed monitoring programs commonly characterize erosion at only a few sites and may scale results to the entire watershed. Selection of random sites and scaling to the watershed scale greatly underestimated the actual erosion and loading rates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended‐sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies, it is assumed that rating curves have a power‐law form (i.e. C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) how well to the parameters, a and b, characterize trends in the data, and (ii) are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers but rather strongly dependent on b and Q. Here, it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge‐normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q‐values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time‐dependent rates and trends of river water, sediment concentrations and sediment discharge. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   

17.
On the basis of detailed rill surveys carried out on bare plots of different lengths at slopes of 12 per cent, basic rill parameters were derived. Rill width and maximum depth increased with plot length, whereas rill amount and cross‐sectional area, expressed per unit length, remained similar. On smaller plots, all rills were connected in a continuous transport system reaching the plot outlet, whilst on larger plots (10 and 20 m long) part of the rills ended with a deposition areas inside the plots. Amounts of erosion, calculated from rill volume and soil bulk density, were compared with soil loss measured at the plot outlets. On plots 10 and 20 m long, erosion estimated from volume of all rills was larger than measured soil loss. The latter was larger than erosion estimated from volume of contributing rills. To identify contributing soil loss area on these plots, two methods were applied: (i) ratio of total soil loss to maximum soil loss per unit area, and (ii) partition of plot area according to the ratio of contributing to total rill volume. Both methods resulted in similar areas of 21·8–23·5 m2 for the plot 10 m long and 31·2 m2 for the plot 20 m long. Identification of contributing areas enabled rill (5·9 kg m?2) and interrill (2·6 kg m?2) erosion rate to be calculated, the latter being very close to the value predicted from the Universal Soil Loss Equation. Although rill and interrill rates seemed to be similar on all plots, their ratio increased slightly with plot length. Application of this ratio to compute slope length factor of the Revised Universal Soil Loss Equation resulted in similar values to those predicted with the model. The achieved balance of soil loss suggested that all the sediment measured at the plot outlet originated from contributing rills and associated contributing rill areas. The results confirmed the utility of different plot lengths as a research tool for analysing the dynamic response of soil to rainfall–runoff. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Sediment yield in the San Pedro Lake watershed, inferred from sedimentation in the lake, can be related to land use changes shown on aerial photographs taken during the period 1943–1994. In this watershed, which covers 4·5 km2 of mountainous terrain in San Pedro County, central Chile, the area of native forest species decreased from 70 per cent in 1943 to 13 per cent in 1994. During this same period, the area of pine plantations increased from 4 to 46 per cent. To study effects of these changes, we took a core from the centre of the lake and estimated sedimentation rates by 210Pb dating, which we checked with 137Cs and pine pollen. The results show that sedimentation rate ranged from 5 mg cm−2 a−1 in the late 1800s to 60 mg cm−2 a−1 in the late 1960s. These rates, together with assumptions about the production and delivery of the sediment, give corresponding figures for sediment yields with maximum values close to 1 t ha−1 a−1. Sediment yield between 1955 and 1994 closely tracks the total land use change that can be detected, irrespective of land use type, on sets of aerial photographs taken four to 18 years apart. However, this measure of land use change, while convenient and successful as a predictor of historical erosion, may be unreliable because it probably excludes many changes that occurred in long intervals between successive photographs. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Although extensive data exist on runoff erosion and rates for non‐sandy hillslopes, data for arid dune slopes are scarce, owing to the widespread perception that the high infiltrability of sand will reduce runoff. However, runoff is generated on sandy dunes in the Hallamish dune field, western Negev Desert, Israel (P ≈ 95 mm) due to the presence of a thin (usually 1–3 mm) microbiotic crust. The runoff in turn produces erosion. Sediment yield was measured on ten plots (140–1640 m2) on the north‐ and south‐facing slopes of longitudinal dunes. Two plots facing north and two facing south were subdivided into three subplots. The subplots represented the crest of the active dune devoid of crust, the extensively crusted footslope of the dune, and the midslope section characterized by a patchy crust. The remaining plots extended the full length of the dune slope. No runoff and consequently no water‐eroded sediments were obtained from the crest subplots devoid of crust. However, runoff and sediment were obtained from the mid‐ and footslope crusted subplots. Sediment yield from the footslope subplots was much higher than from the midslopes, despite the higher sediment concentration that characterized the midslope subplots. The mean annual sediment yield at the Hallamish dune field was 432 g per metre width and was associated with high average annual concentrations of 32 g l?1. The data indicate that owing to the presence of a thin microbiotic crust, runoff and water erosion may occur even within arid sandy dune fields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Wildfire has been shown to increase erosion by several orders of magnitude, but knowledge regarding short‐term variations in post‐fire sediment transport processes has been lacking. We present a detailed analysis of the immediate post‐fire sediment dynamics in a semi‐arid basin in the southwestern USA based on suspended sediment rating curves. During June and July 2003, the Aspen Fire in the Coronado National Forest of southern Arizona burned an area of 343 km2. Surface water samples were collected in an affected watershed using an event‐based sampling strategy. Sediment rating parameters were determined for individual storm events during the first 18 months after the fire. The highest sediment concentrations were observed immediately after the fire. Through the two subsequent monsoon seasons there was a progressive change in rating parameters related to the preferential removal of fine to coarse sediment. During the corresponding winter seasons, there was a lower supply of sediment from the hillslopes, resulting in a time‐invariant set of sediment rating parameters. A sediment mass‐balance model corroborated the physical interpretations. The temporal variability in the sediment rating parameters demonstrates the importance of storm‐based sampling in areas with intense monsoon activity to characterize post‐fire sediment transport accurately. In particular, recovery of rating parameters depends on the number of high‐intensity rainstorms. These findings can be used to constrain rapid assessment fire‐response models for planning mitigation activities. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号