首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Research on the climate and vegetation of the Cretaceous is fundamental to understanding the present environment. The present study focuses on the Lower Cretaceous Guyang Formation (Inner Mongolia), which yields unique macrofossils and diverse palynological assemblages that are used to understand the palaeoecology. In total, 56 genera are identified in the examined assemblage, which are dominated by spores and pollen of pteridophytes and gymnosperms. The gymnosperm pollen is dominated by Taxodiaceae, which belong to Coniferales, and a large proportion of pollen attributable to the Cycadophyta and Ginkgopsida. The pteridophyte spores are dominated by taxa attributable to the Lygodiaceae and Cyatheaceae. Quantitative analysis based on the geographical distribution of modern plant communities and the Sporomorph Ecogroup (SEG) model, the palynomorph associations are used to infer the presence of a closed coniferous forest dominated by Podozamitales, Picea and Podocarpus with understory vegetation comprising ferns prevailed. The fossil palyno flora indicates a warm and humid subtropical climate during Early Cretaceous of Inner Mongolia.  相似文献   

2.
The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modern pollen data with contemporary vegetation and climate, and the differences between the pollen assemblages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region(desert, steppe, meadow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the different relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of surface lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the tendency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae(A/C) ratio in pollen assemblages of surface lake sediments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.  相似文献   

3.
Terrestrial transect study on driving mechanism of vegetation changes   总被引:1,自引:0,他引:1  
In terms of Chinese climate-vegetation model based on the classification of plant functional types, to- gether with climatic data from 1951 to 1980 and two future climatic scenarios (SRES-A2 and SRES-B2) in China from the highest and the lowest emission scenarios of greenhouse gases, the distribution patterns of vegetation types and their changes along the Northeast China Transect (NECT) and the North-South Transect of Eastern China (NSTEC) were simulated in order to understand the driving mechanisms of vegetation changes under climatic change. The results indicated that the vegetation distribution patterns would change significantly under future climate, and the major factors driving the vegetation changes were water and heat. However, the responses of various vegetation types to the changes in water and heat factors were obviously different. The vegetation changes were more sensi- tive to heat factors than to water factors. Thus, in the future climate warming will significantly affect vegetation distribution patterns.  相似文献   

4.
A series of dust pollen samples was collected along N-S transects in east China (18°N to 53°N latitudes). Sample sites extend from the cold-temperate zone in the north to the tropical region in the south. Pollen taxa characterize each region and reflect the natural and devastated vegetation as well as corre- sponding climatic zones. The quantitative pollen data can be used to estimate the spatial distribution of planted and introduced species. Valuable information of human disturbance of the natural forest is evaluated by quantitative comparison between dust pollen and in-situ pollen of protected forest. In addition, percentages of grass pollen vary regularly from north to south that is consistent with spatial distribution of net primary productivity in east China. Among all grasses, Artemisia and the Gramineae carry the clearest signal: their ratio increases northwards and therefore represent a suitable and con- venient tool for palaeoclimate reconstructions.  相似文献   

5.
We collected, processed, identified, and analyzed the spores and pollen samples from the Zhuanchengzi Bed of the Yixian Formation in the Yingwoshan area of western Liaoning. As a result, we confirm a palynomorph assemblage of Cicatricosisporites-Protoconiferus. The pollen was primarily from gymnosperms, dominated especially by conifer pollen. Pteridophyte spores were less common and some questionable angiosperm pollen occurred occasionally. The age of the palynomorph assemblage is dated as the late Valanginian or Hauterivian-Barremian stage, the Early Cretaceous. The study applies the concept of Palynological Vegetation based on palynological spectra and the paleoecological characteristics of palynological taxa for the first time. Palynological vegetation type, climatic zone type, and humidity type are divided quantitatively for the Zhuanchengzi Bed in the Yixian Formation of western Liaoning. We then obtained the evolutionary trends. The results showed that the overall climate was warm and humid during the deposition period of the Zhuanchengzi Bed in the Yixian Formation. Palynological vegetation types are various and include coniferous forest, deciduous broadleaf forest, evergreen broad-leaved forest, grass, and shrubs. The local temperature changed from warm to much warmer and from a semi-humid to humid climate. Palynological vegetation types are always dominated by coniferous forest. The coexistence of deciduous broad-leaved forest, evergreen broad-leaved forest, shrubs, grass, and some xerophytic plants indicates vertical zonation and seasonal climate change The vertical vegetation types and the warm humid climate may imply a large geomorphological contrast in the Yixian Formation of western Liaoning.  相似文献   

6.
Pollen-based reconstruction of vegetation patterns of China in mid-Holocene   总被引:1,自引:0,他引:1  
Biomization provides an important way to assign pollen taxa to biomes and to simulate palaeo-vegetation patterns, so that pollen data can be mapped to reconstruct biogeography and climate. The authors have tested the applicability of this procedure to assign modern pollen surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to 6 ka B. P. fossil pollen samples, the reconstructions showed that the forest zones were systematically shifted northwards ca. 300–500 km beyond their present northern limits in eastern China; the area of desert and steppe vegetation was reduced compared to the present in northwestern China; the area of tundra was reduced largely on the Tibetan Plateau. This research is a contribution to the project of BIOME 6000 in Pacific-Asian regions. Project supported by the Funding for Returned Students from the Overseas of the State Education Commission of China, the Postdoctoral Station, and State Pilot Laboratory of Coast & Island Development of Nanjing University, Financial support has also been provided by European Community (EV5V-CT95-0075) and by the Swedish Natural Science Research Council (G-AA/GU 09334-321).  相似文献   

7.
Khum N.  Paudayal 《Island Arc》2005,14(4):328-337
Abstract   The Thimi Formation, constituting the upper part of the sedimentary sequence of the Kathmandu Valley, is characterized by alternation of fine- to medium-grained sand, silt, silty clay and clay deposited by a distal fluvial system in the Late Pleistocene. Palynostratigraphy based on 40 samples revealed the dominance of gymnosperm taxa over angiosperms and herbaceous members. As the different species Pinus and Quercus grow at different altitudes in Nepal today, an attempt was made to identify these taxa up to species level for climate interpretations. Gymnosperms, such as Pinus wallichiana , Pinus roxburghii, Abies spectabilis , Tsuga dumosa and Picea smithiana , were dominant over the woody angiosperms, such as Quercus lanata, Quercus lamellosa , Quercus leucotrichophora , Quercus semecarpifolia, Betula, Juglans, Myrica, Castanopsis and Symplocos . The pollen diagram of the Thimi Formation shows only minor fluctuations in assemblage. The pollen assemblages indicate the prevalence of a cool and temperate climate during the late Pleistocene. This is confirmed by the high percentages of Poaceae and other herbaceous plants, with very few woody angiosperms.  相似文献   

8.
Airborne pollen is indicative of vegetation and climatic conditions. This study investigates airborne pollen trapping in the Betula microphylla-dominated wetland of Ebinur Lake in Northwestern China from September 2012 to August 2015 using Pearson correlation analysis and the Hybrid Single-particle Lagrangian Integrated Trajectory model. Higher temperatures and moderate precipitation during the flowering period facilitated an increase in birch pollen with more exotic spruce pollen carried from the Tianshan Mountains by airflows, leading to the highest arbor pollen concentrations from September 2012 to August2013. Peak pollen concentrations from September 2013 to August 2014 were possibly due to an increase in herbaceous pollen resulting from higher temperatures, lower precipitation and more exotic pollen from the desert of southwest Ebinur Lake and Central Asia in summer and autumn. Between September 2014 and August 2015, unfavorable climate conditions in summer and autumn decreased the pollen dispersal of xerophytes such as Artemisia and Chenopodiaceae, with little pollen transported from the Kazakh hilly area in late summer, resulting in the lowest pollen concentrations. Climatic parameters and air mass movements both greatly affected the atmospheric pollen concentration. The results provide information concerning the dispersion and distribution of birch pollen, paleoenvironmental reconstruction and wetland conservation.  相似文献   

9.
The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China.Artemisia,Chenopodiaceae,Poaceae,Cyperaceae,and Asteraceae are the dominant pollen types in pollen assemblages,reflecting the typical steppe communities well.The five dominant pollen types and six common types(Thalictrum,Iridaceae,Potentilla,Ephedra,Brassicaceae,and Ulmus)have strong wind transport abilities;the estimated Relevant Source Area of Pollen(RSAP)is ca.1000 m when the sediment basin radius is set at 0.5 m.Ulmus,Artemisia,Brassicaceae,Chenopodiaceae,and Thalictrum have relative high RPPs;Poaceae,Cyperaceae,Potentilla,and Ephedra pollen have moderate RPPs;Asteraceae and Iridaceae have low RPPs.The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction.However,the RPPs of Asteraceae and Iridaceae are obviously underestimated,and those of Poaceae,Chenopodiaceae,and Ephedra are either slightly underestimated or slightly overestimated,suggesting that those RPPs should be considered with caution.These RPPs were applied to estimating plant abundances for two fossil pollen spectra(from the Lake Bayanchagan and Lake Haoluku)covering the Holocene in typical steppe area,using the"Regional Estimates of Vegetation Abundance from Large Sites"(REVEALS)model.The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae,Cyperaceae,and Artemisia plants flourished in this area before 6500–5600 cal yr BP,and then was replaced by present typical steppe.  相似文献   

10.
Cretaceous climate was warmer than today.The Songliao Basin contains one of the most important Late Cretaceous non-marine deposits in China for the research of the paleoenvironment and paleoclimate.This research is based on core samples from the SK1(S)borehole.The strata sampled are the upper part of the Quantou Formation to member 2 of the Nenjiang Formation,where spores,pollen,dinoflagellates,and other microfossils are abundantly preserved.Based on analysis of the spores and pollen fossils from the core samples,the following six fossil assemblage zones have been recognized in ascending order:The Cicatricosisporites-Cyathidites-Pinuspollenites,Schizaeoisporites-Cyathidites-Classopollis,Cyathidites-Schizaeoisporites,Schizaeoisporites-Cyathidites-Proteacidites,Proteacidites-Cyathidites-Dictyotriletes,and the Lythraites-Callistipollenites-Schizaeoisporites zones.The six fossil zones range from the late Cenomanian to early Campanian.The Late Cretaceous dinoflagellate cysts in the Songliao Basin are of high abundance and low diversity.Specific phytoplankton types reflect salinity changes of the Songliao Lake.Paleoecology of the dinoflagellates suggests that sediments of members 2 and 3 of the Yaojia Formation(K2y2+3)were deposited in a freshwater environment,whereas members 2 and 3 of the Qingshankou Formation(K2q2+3)and members 1 and 2 of the Nenjiang Formation(K2n1+2)were deposited in freshwater to brackish water environments.Combined with the paleoecology of dinoflagellates and the palynomorph biozones,valuable information of the paleoclimate was provided.The quantitative analyses of spores and pollen fossils,such as vegetation type,climate type,and humidity type,diversity and dominance,indicate a relatively sub-humid,mid-subtropical paleoclimate,with slight climatic fluctuation and/or temporal change.  相似文献   

11.
Reconstructing the spatial patterns of regional climate and vegetation during specific intervals in the past is important for assessing the possible responses of the ecological environment under future global warming scenarios. In this study, we reconstructed the history of regional vegetation and climate based on six radiocarbon-dated pollen records from the North China Plain. Combining the results with existing pollen records, we reconstruct the paleoenvironment of the North China Plain during the Last Glacial Maximum(LGM) and the Holocene Climatic Optimum(HCO). The results show that changes in the regional vegetation since the LGM were primarily determined by climatic conditions, the geomorphic landscape and by human activity.During the LGM, the climate was cold and dry; mixed broadleaf-coniferous forest and deciduous-evergreen broadleaf forest developed in the southern mountains, and cold-resistant coniferous forest and mixed broadleaf-coniferous forest were present in the northern mountains. The forest cover was relatively low, with mesophytic and hygrophilous meadow occupying the southern part of the plain, and temperate grassland and desert steppe were distributed in the north; Chenopodiaceae-dominated halophytes grew on the exposed continental shelf of the Bohai Sea and Yellow Sea. During the HCO, the climate was warm and wet;deciduous broadleaf forest and deciduous-evergreen broadleaf forest, with subtropical species, developed in the southern mountains, and deciduous broadleaf forest with thermophilic species was present in northern mountains. Although the degree of forest cover was greater than during the LGM, the vegetation of the plain area was still dominated by herbs, while halophytes had migrated inland due to sea level rise. In addition, the expansion of human activities, especially the intensification of cultivation,had a significant influence on the natural vegetation. Our results provide data and a scientific basis for paleoclimate modelling and regional carbon cycle assessment in north China, with implications for predicting changes in the ecological environment under future global warming scenarios.  相似文献   

12.
Mountain and lowland watersheds are two distinct geographical units with considerably different hydrological processes. Understanding their hydrological processes in the context of future climate change and land use scenarios is important for water resource management. This study investigated hydrological processes and their driving factors and eco-hydrological impacts for these two geographical units in the Xitiaoxi watershed, East China, and quantified their differences through hydrological modelling. Hydrological processes in 24 mountain watersheds and 143 lowland watersheds were simulated based on a raster-based Xin'anjiang model and a Nitrogen Dynamic Polder (NDP) model, respectively. These two models were calibrated and validated with an acceptable performance (Nash-Sutcliffe efficiency coefficients of 0.81 and 0.50, respectively) for simulating discharge for mountain watersheds and water level for lowland watersheds. Then, an Indicators of Hydrological Alteration (IHA) model was used to help quantify the alterations to the hydrological process and their resulting eco-hydrological impacts. Based on the validated models, scenario analysis was conducted to evaluate the impacts of climate and land use changes on the hydrological processes. The simulation results revealed that (a) climate change would cause a larger increase in annual runoff than that under land use scenario in the mountain watersheds, with variations of 19.9 and 10.5% for the 2050s, respectively. (b) Land use change was more responsible for the streamflow increment than climate change in the lowland watersheds, causing an annual runoff to increase by 27.4 and 16.2% for the 2050s, respectively. (c) Land use can enhance the response of streamflow to the climatic variation. (d) The above-mentioned hydrological variations were notable in flood and dry season in the mountain watersheds, and they were significant in rice season in the lowland watersheds. (e) Their resulting degradation of ecological diversity was more susceptible to future climate change in the two watersheds. This study demonstrated that mountain and lowland watersheds showed distinct differences in hydrological processes and their responses to climate and land use changes.  相似文献   

13.
Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra. Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been conducted, but little attention has been paid to pollen assemblages of surface lake sediments. In this study, modern pollen assemblages of surface lake sediments from 34 lakes in the steppe and desert zones of the Tibetan Plateau are investigated and results indicate that the two vegetation zones are dominated by non-arboreal pollen taxa and show distinctive characteristics. The pollen assemblages from the desert zone contain substantially high relative abundance of Chenopodiaceae while those from the steppe zone are dominated by Cyperaceae. Pollen ratios show great potential in terms of separating different vegetation zones and to indicate climate changes on the Tibetan Plateau. The Artemisia/Chenopodiaceae ratio and arboreal/non-arboreal pollen ratio could be used as proxies for winter precipitation. Artemisia/Cyperaceae ratio and the sum of relative abundance of xerophilous elements increase with enhanced warming and aridity. When considering the vegetation coverage around the lakes, hierarchical cluster analysis suggests that the studied sites can be divided into four clusters: meadow, steppe, desert-steppe, and desert. The pollen-based vegetation classification models are established using a random forest algorithm. The random forest model can effectively separate the modern pollen assemblages of the steppe zone from those of the desert zone on the Tibetan Plateau. The model for distinguishing the four vegetation clusters shows a weaker but still valid classifying power. It is expected that the random forest model can provide a powerful tool to reconstruct the palaeovegetation succession on the Tibetan Plateau when more pollen data from surface lake sediments are included.  相似文献   

14.
Quantitative relationship between pollen and vegetation in northern China   总被引:14,自引:0,他引:14  
205 surface pollen samples from different communities in Northern China were analyzed to understand the quantitative relationship between pollen and its original vegetation. Pollen analysis and vegetation investigation show that the pollen assemblages differ a lot in different vegetation regions. Arboreal pollen account for more than 30% in temperate broad-deciduous forests region. In temperate steppe regions, herb pollen percentages are more than 90%, where Artemisia and Chenopodiaceae are domi- nant pollen types with Artemisia percentages more than 30%. In temperate desert, Chenopodiaceae pollen percentages are more than Artemisia, where ferns are rare. Cyperaceae pollen percentages are more than 20% in sub-alpine or cold meadows. The relations between pollen percentages and vegeta- tion cover indicate that most arboreal pollen shows a close relationship with parent plant covers, most shrubby pollen types have more or less correlations, but most herbs do not show clear correlations. For arboreal pollen types, Picea pollen shows the closest correlation with spruce trees coverage, then is Quercus and Carpinus. Betula, Larix and Juglans have also high correlation coefficients with their plants coverage, but Betula pollen is of overrepresented pollen type and more than 40% in birch forest, while Larix and Juglans pollen is underrepresented and pollen percentages are more than 10% in Larix or Juglans pure forests. Pinus is of overrepresented pollen type, and pollen percentages have some relations with plants cover. Pine forest might present when Pinus pollen percentages are more than 30%. The relations between Ulmus and Populus pollen percentages and vegetation cover are not close, where they are mixed with other arbors, they cannot be recorded easily, but if their pollen percentages are more than 1%, Ulmus or Populus trees should exist. For shrubby pollen types, the correlation be- tween Vitex pollen percentages and vegetation cover is the highest, then is Corylus, Tamariaceae and Nitraria, and their pollen percentages are less than 1% where original plant are absent. Caragana and Spiraea pollen percentages have some relations with vegetation cover. The relations between pollen percentages and vegetation cover are not clear for Rosaceae and Saxifragaceae. For herb pollen types, Cyperaceae pollen has the closest correlation with vegetation cover, where pollen percentages are more than 20% when Cyperaceae are constructive or dominant species in vegetation, and pollen per- centages are less than 5% where Cyperaceae are not constructive or dominant species (cover less than 30%). Artemisia and Chenopodiaceae pollen percentages mainly have close relations with ecological regions. The relations between pollen percentages and cover are not clear for Gramineae, Legumi- nosae and Compositae.  相似文献   

15.
Land cover is one of the most basic input elements of land surface and climate models. Currently, the direct and indirect effects of land cover data on climate and climate change are receiving increasing attentions. In this study, a high resolution (30 m) global land cover dataset (GlobeLand30) produced by Chinese scientists was, for the first time, used in the Beijing Climate Center Climate System Model (BCC_CSM) to assess the influences of land cover dataset on land surface and climate simulations. A two-step strategy was designed to use the GlobeLand30 data in the model. First, the GlobeLand30 data were merged with other satellite remote sensing and climate datasets to regenerate plant functional type (PFT) data fitted for the BCC_CSM. Second, the up-scaling based on an area-weighted approach was used to aggregate the fine-resolution GlobeLand30 land cover type and area percentage with the coarser model grid resolutions globally. The GlobeLand30-based and the BCC_CSM-based land cover data had generally consistent spatial distribution features, but there were some differences between them. The simulation results of the different land cover type dataset change experiments showed that effects of the new PFT data were larger than those of the new glaciers and water bodies (lakes and wetlands). The maximum value was attained when dataset of all land cover types were changed. The positive bias of precipitation in the mid-high latitude of the northern hemisphere and the negative bias in the Amazon, as well as the negative bias of air temperature in part of the southern hemisphere, were reduced when the GlobeLand30-based data were used in the BCC_CSM atmosphere model. The results suggest that the GlobeLand30 data are suitable for use in the BCC_CSM component models and can improve the performance of the land and atmosphere simulations.  相似文献   

16.
A variety of spatially continuous rainfall products are available but little evaluation of their accuracy has been published for areas with high spatial variability in rainfall. Five gridded rainfall products (PRISM, RTMA, and the interpolated Florida Automated Weather Network, FAWN, rainfall layers based on three interpolated methods) were assessed for Florida State. Point-to-pixel and pixel-to-pixel comparisons were performed to compare the five products. On average, the PRISM and RTMA products resulted in a better fit with the daily FAWN rainfall datasets, while FAWN-based interpolated products resulted in a better fit with the monthly FAWN rainfall datasets based on point-to-pixel analysis. Inverse distance weighting and ordinary kriging methods performed slightly better than the thin plate spline method in predicting daily rainfall. In general, monthly and seasonal rainfall amounts from PRISM and RTMA products were higher and lower, respectively, than reference rainfall amounts from FAWN gauge stations and FAWN-based interpolated products.  相似文献   

17.
It is a challenge to properly generalize hydrological characteristics under the great heterogeneity of climate and landscape conditions across space because the linkage and interaction among hydro-climate–landscape factors are complicate and ambiguous at regional scale. In this study, multivariate statistical analyses including clustering, correlation and regression analysis were combined with Budyko and L’vovich frameworks to regionalize runoff characteristics over Jinghe River Basin of northwest China. For all 23 sub-basins, the hydrologic factors were quantified using the metrics of mean annual values and intra-annual variability of runoff. The climatic factors are determined from precipitation, potential evapotranspiration and aridity index, and the landscape factors were extracted from topography, soils and vegetation of the sub-basins. Results illustrated that the 23 sub-basins can be classified into two groups, the dry Loess Plateau (LP) and the wet Mountain Region (MR) in the study basin. The runoff metrics of sub-basins in each group present similarity in spatial distribution, intra-annual variations and the dominant influence factors of climate and landscape. But such runoff metrics characteristics and their co-dependence are significantly different between the two clustered sub-basins. Higher runoff and gentler hydrographs were observed in the MR in response to wetter and greater intra-annual variability in climate and greater spatial variability in landscape, whereas lower runoff and sharper hydrograph were seen in response to drier and greater intra-annual variability in climate, and less spatial variability in landscape in the LP. The runoff spatial distribution is more sensitive to climate spatial variation than to landscape in LP as opposed to the MR. Among the landscape factors, forest distribution is the dominant control on the spatial runoff characteristics in LP whereas topography is principal factor in MR. Our results highlight that current measures of reforestation plus marked change in climate in the Loess Plateau could lead to significant change in streamflow.  相似文献   

18.
Total 26 modern soil samples were collected from various regions under different climate conditions from tropical to arid temperate in China and systematically analyzed for their organic matters by GC/MS in order to evaluate climatic impacts on soil organic components. Abundant lipids molecules were recognized, including n-alkanes, n-alkenones, and long-chain branched alkanes. We find the pre- dominance of main peaks of long-chain n-alkanes (nC29, nC31, nC33) and short-chain ones (nC16, nC17, nC18) records information of soil generation in warm-humid and cold-dry regions. The proportion of n-alkanes (nC16 nC17 nC18) to (nC29 nC31 nC33) varies in good agreement with moisture-heat conditions and thus probably can serve as a new index for climate change. The ratios of C21-/nC22 , nC17/nC31 and (nC15 nC17 nC19) / ( nC27 nC29 nC31) of n-alkanes, indicating respectively input ratios of lower bacterial alga, aquatic organisms, and higher plants and terraneous organisms, co-vary well in different climate regions from forest to grassland and desert, suggesting that they have also reflected the difference of climates between monsoon region and inland one. The C21-/C22 ratio of n-alkan-2-one records largely the discrepancy of temperature from north to south of China bordered by the Qinling Mountains, but less humidity. The C21-/C22 ratio of n-alkan-3-ones changes well with climatic factors, such as tem- perature and humidity. The biogenic source of series A-D long-chain branched alkanes may be derived from some kinds of special epiphyte that most likely live in weak oxic-anoxic and moisture-heat envi- ronments, suggesting their distribution record as well some information on climatic change. All these researches demonstrate that the distributions of lipids molecules in modern soils in China record well signals of climates from quite different climatic regions, and can serve as important climatic proxies to reveal climatic change over China.  相似文献   

19.
Total 26 modern soil samples were collected from various regions under different climate conditions from tropical to arid temperate in China and systematically analyzed for their organic matters by GC/MS in order to evaluate climatic impacts on soil organic components. Abundant lipids molecules were recognized, including n-alkanes, n-alkenones, and long-chain branched alkanes. We find the predominance of main peaks of long-chain n-alkanes (nC29,nC31,nC33) and short-chain ones(nC16,nC17,nC18) records information of soil generation in warm-humid and cold-dry regions. The proportion of n-alkanes(nC16 nC17 nC18)to(nC29 nC31 nC33)varies in good agreement with moisture-heat conditions and thus probably can serve as a new index for climate change. The ratios of C21-/nC22 ,nC17/nC31 and (nC15 nC17 nC19)/(nC27 nC29 nC31)of n-alkanes, indicating respectively input ratios of lower bacterial alga, aquatic organisms, and higher plants and terraneous organisms, co-vary well in different climate regions from forest to grassland and desert, suggesting that they have also reflected the difference of climates between monsoon region and inland one. The C21-/C22 ratio of n-alkan-2-one records largely the discrepancy of temperature from north to south of China bordered by the Qinling Mountains, but less humidity. The C21-/C22 ratio of n-alkan-3-ones changes well with climatic factors, such as temperature and humidity. The biogenic source of series A-D long-chain branched alkanes may be derived from some kinds of special epiphyte that most likely live in weak oxic-anoxic and moisture-heat environments, suggesting their distribution record as well some information on climatic change. All these researches demonstrate that the distributions of lipids molecules in modern soils in China record well signals of climates from quite different climatic regions, and can serve as important climatic proxies to reveal climatic change over China.  相似文献   

20.
In this study, the vegetation dynamics and their correlations with climate variability in northern China were evaluated based on the normalized difference vegetation index (NDVI) and meteorological datasets from 1982 to 2006. The NDVI showed that vegetation cover had a tiny increasing trend for whole study area in the past 25 years. However, the interannual changes of NDVI were different in each season. The part of spring and autumn NDVI values increased significantly, while the summer NDVI increased no significantly. And the interannual variations of the NDVI showed obvious spatial differentiations. The annual max NDVI increased were mainly distributed in most areas of grassland and farmland, whereas the annual max NDVI decreased were mainly distributed in forest areas. The annual NDVI and temperature had more important relationships. Thus, as compared to precipitation, the correlation between NDVI with temperature was stronger than the precipitation in northern China. NDVI and climatic variables were different in each season. The NDVI trends exhibited a close correspondence to climatological variations in region and season. In Addition, human activities also had profound effect to the NDVI trends in some regions. All these findings will make humans know more about the knowledge of the natural forces that influence vegetation change and supply a scientific basic resource to for the environmental management in northern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号