首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Ponta de São Lourenço is the deeply eroded eastern end of Madeira’s east–west trending rift zone, located near the geometric intersection of the Madeira rift axis with that of the Desertas Islands to the southeast. It dominantly consists of basaltic pyroclastic deposits from Strombolian and phreatomagmatic eruptions, lava flows, and a dike swarm. Main differences compared to highly productive rift zones such as in Hawai’i are a lower dike intensity (50–60 dikes/km) and the lack of a shallow magma reservoir or summit caldera. 40Ar/39Ar age determinations show that volcanic activity at Ponta de São Lourenço lasted from >5.2 to 4 Ma (early Madeira rift phase) and from 2.4 to 0.9 Ma (late Madeira rift phase), with a hiatus dividing the stratigraphy into lower and upper units. Toward the east, the distribution of eruptive centers becomes diffuse, and the rift axis bends to parallel the Desertas ridge. The bending may have resulted from mutual gravitational influence of the Madeira and Desertas volcanic edifices. We propose that Ponta de São Lourenço represents a type example for the interior of a fading rift arm on oceanic volcanoes, with modern analogues being the terminations of the rift zones at La Palma and El Hierro (Canary Islands). There is no evidence for Ponta de São Lourenço representing a former central volcano that interconnected and fed the Madeira and Desertas rifts. Our results suggest a subdivision of volcanic rift zones into (1) a highly productive endmember characterized by a central volcano with a shallow magma chamber feeding one or more rift arms, and (2) a less productive endmember characterized by rifts fed from deep-seated magma reservoirs rather than from a central volcano, as is the case for Ponta de São Lourenço.  相似文献   

2.
Experiments on rift zone evolution in unstable volcanic edifices   总被引:1,自引:0,他引:1  
Large ocean island volcanoes frequently develop productive rift zones located close to unstable flanks and sites of older major sector collapses. Flank deformation is often caused by slip along a décollement within or underneath the volcanic edifice. We studied how such a stressed volcanic flank may bias the rift zone development. The influence of basal lubrication and lateral flank creep on rift development and rift migration is still poorly constrained by field evidence; here our analog experiments provide new insights. We injected colored water into gelatin cones and found systematic orientations of hydro-fractures (dikes) propagating through the cones. At the base of the cone, diverse friction conditions were simulated. By variation of the basal creep conditions we modeled radial dike swarms, collinear rift zones and three-armed rift systems. It is illustrated that a single outward-creeping flank is sufficient to modify the entire rift architecture of a volcano. The experiments highlight the general unsteadiness of dike swarms and that the distribution and alteration of weak substratum may become a major player in shaping a volcano’s architecture.  相似文献   

3.
Divergent plate boundaries, such as the one crossing Iceland, are characterized by a high density of subparallel volcanic fissures and tectonic fractures, collectively termed rift zones, or fissure swarms when extending from a specific volcano. Volcanic fissures and tectonic fractures in the fissure swarms are formed during rifting events, when magma intrudes fractures to form dikes and even feeds fissure eruptions. We mapped volcanic fissures and tectonic fractures in a part of the divergent plate boundary in northern Iceland. The study area is ~1,800 km2, located within and north of the Askja central volcano. The style of fractures changes with distance from Askja. Close to Askja the swarm is dominated by eruptive fissures. The proportion of tectonic fractures gets larger with distance from Askja. This may indicate that magma pressure is generally higher in dikes close to Askja than farther away from it. Volcanic fissures and tectonic fractures are either oriented away from or concentric with the 3–4 identified calderas in Askja. The average azimuth of fissures and fractures in the area deviates significantly from the azimuth perpendicular to the direction of plate velocity. As this deviation decreases gradually northward, we suggest that the effect of the triple junction of the North American, Eurasian and the Hreppar microplate is a likely cause for this deviation. Shallow, tectonic earthquakes in the vicinity of Askja are often located in a relatively unfractured area between the fissure swarms of Askja and Kverkfjöll. These earthquakes are associated with strike-slip faulting according to fault plane solutions. We suggest that the latest magma intrusions into either the Askja or the Kverkfjöll fissure swarms rotated the maximum stress axis from being vertical to horizontal, causing the formation of strike-slip faults instead of the dilatational fractures related to the fissure swarms. The activity in different parts of the Askja fissure swarm is uneven in time and switches between subswarms, as shown by a fissure swarm that is exposed in an early Holocene lava NW of Herðubreið but disappears under a younger (3500–4500 BP) lava flow. We suggest that the location of inflation centres in Askja central volcano controls into which part of the Askja fissure swarm a dike propagates. The size and amount of fractures in the Kollóttadyngja lava shield decrease with increasing elevation. We suggest that this occurred as the depth to the propagating dike(s) was greater under central Kollóttadyngja than under its flanks, due to topography.  相似文献   

4.
Dikes within stratovolcanoes are commonly expected to have radial patterns. However, other patterns may also be found, due to regional stresses, magmatic reservoirs and topographic variations. Here, we investigate dike patterns within volcanic edifices by studying dike and fissure complexes at Somma-Vesuvius and Etna (Italy) using analogue models. At the surface, the dikes and fissures show a radial configuration. At depths of tens to several hundreds of metres, in areas exposed by erosion, tangential and oblique dikes are also present. Analogue models indicate that dikes approaching the flanks of cones, regardless of their initial orientation, reorient to become radial (parallel to the maximum gravitational stress). This re-orientation is a significant process in shallow magma migration and may also control the emplacement of dike-fed fissures reaching the lower slopes of the volcano.  相似文献   

5.
The Mt Cameroon volcano is the highest and most active volcano of the Cameroon Volcanic Line. Little geological information is available for improving the understanding of the structure of this large volcanic system and its relationship to regional tectonics. After reviewing the tectonic evolution of the region, the analysis of a Digital Elevation Model and results from a field campaign dedicated to mapping geological structures in the summit area and at the SE base of Mt Cameroon are presented. Mt Cameroon is a lava-dominated volcano with long steep (over 30°) flanks. It is elongate parallel to its well defined rift zone. The summit plateau is bordered by 10 m high cliffs formed by summit subsidence along normal faults. Geological profiles were measured along rivers cutting through a topographic step at the SE base of Mt Cameroon. This step is associated with deformed Miocene sediments from the Douala basin that are overlain by volcanic products. Weak sediments of this area are deformed by 050°–060° and 020°–030° trending asymmetrical folds verging toward the SE, and thrusts faults related to the spreading of the volcano over its mechanically weak substratum. Combined remote sensing and field observations suggest that spreading is accommodated by summit subsidence and flanks sliding. Both slow spreading movements and catastrophic collapses of the steep flanks are interpreted to result from complex interactions between the growing edifice, repeated dyke intrusions, the weak sedimentary substratum and tectonic structures.  相似文献   

6.
A detailed investigation of earthquake locations and focal mechanisms for swarms associated with intrusive events at Kilauea volcano, Hawaii, further illuminates the relationships among stress state, faulting, and magma transport. We determine the earthquake locations and mechanisms using a three-dimensional crustal model to improve their accuracy and consistency. Swarms in Kilauea's upper east and southwest rift zones, from the years 1980 through 1982, provide clear evidence for the propagation and/or dilation of dikes. Focal mechanisms are predominantly strike-slip, and the faulting and inferred dike orientations can be interpreted quite consistently in terms of the model ofHill (1977). Stresses induced by the summit magma reservoir system strongly control faulting and magma transport in the rift zones close to the summit.  相似文献   

7.
We mapped the geometry of 13 silicic dikes at Summer Coon, an eroded Oligocene stratovolcano in southern Colorado, to investigate various characteristics of radial dike emplacement in composite volcanoes. Exposed dikes are up to about 7 km in length and have numerous offset segments along their upper peripheries. Surprisingly, most dikes at Summer Coon increase in thickness with distance from the center of the volcano. Magma pressure in a dike is expected to lessen away from the pressurized source region, which would encourage a blade-like dike to decrease in thickness with distance from the center of the volcano. We attribute the observed thickness pattern as evidence of a driving pressure gradient, which is caused by decreasing host rock shear modulus and horizontal stress, both due to decreasing emplacement depths beneath the sloping flanks of the volcano. Based on data from Summer Coon, we propose that radial dikes originate at depth below the summit of a host volcano and follow steeply inclined paths towards the surface. Near the interface between volcanic cone and basement, which may represent a neutral buoyancy surface or stress barrier, magma is transported subhorizontally and radially away from the center of the volcano in blade-like dikes. The dikes thicken with increasing radial distance, and offset segments and fingers form along the upper peripheries of the intrusions. Eruptions may occur anywhere along the length of the dikes, but the erupted volume will generally be greater for dike-fed eruptions far from the center of the host volcano owing to the increase in driving pressure with distance from the source. Observed eruptive volumes, vent locations, and vent-area intrusions from inferred post-glacial dike-fed eruptions at Mount Adams, Washington, USA, support the proposed model. Hazards associated with radial dike emplacement are therefore greater for longer dikes that propagate to the outer flanks of a volcano.  相似文献   

8.
Observations of eroded volcanic rift zones indicate that dikes in Iceland are typically several times thicker than those in Hawaii. Geodetic and seismic observations of active rifts, however, suggest that dike heights in the two regions are similar. Provided the elastic properties of the rift zones are the same, this implies that dikes are intruded with higher driving pressures (magma pressure minus compressive stress perpendicular to the dike plane) in Iceland than Hawaii. A second major difference between the two regions is the greater prevalence of large normal fault scarps in rift zones in Iceland. From this it can be infered that a lower percentage of dikes breach the surface in Iceland than in Hawaii. Thus, although dikes in Iceland are intruded with higher driving pressures, they possess lower absolute magma pressures than in Hawaii. These differences can be interpreted in terms of the tectonic settings in the two regions. In Iceland, a steady remote extension reduces the horizontal stress perpendicular to the rift zone, allowing dikes to be intruded with low absolute pressures but high driving pressures when magma becomes available. In Hawaii, a more continuous magma supply on the timescale over which the dike-induced stresses are relaxed, and perhaps a greater role for intrusions in driving long-term rift extension, ensure that the rift-compressive stress is not relaxed significantly before the next dike is intruded. Thus the magma pressure must be nearly sufficient for eruption in order for intrusion to occur. If the mechanism for relaxing the rift-compressive stress were less efficient still, then an even higher percentage of dikes would erupt, and at times the rift zone trend could become an unfavorable orientation for dike intrusion. Such might be the case at Mauna Loa, which lacks large rift-zone faults and fissures and possesses numerous radial vents outside its two main rift zones.  相似文献   

9.
Volcano spreading, with its characteristic sector grabens, is caused by outward flow of weak substrata due to gravitational loading. This process is now known to affect many present-day edifices. A volcano intrusive complex can form an important component of an edifice and may induce deformation while it develops. Such intrusions are clearly observed in ancient eroded volcanoes, like the Scottish Palaeocene centres, or in geophysical studies such as in La Réunion, or inferred from large calderas, such as in Hawaii, the Canaries or Galapagos volcanoes. Volcano gravitational spreading and intrusive complex emplacement may act simultaneously within an edifice. We explore the coupling and interactions between these two processes. We use scaled analogue models, where an intrusive complex made of Golden syrup is emplaced within a granular model volcano based on a substratum of a ductile silicone layer overlain by a brittle granular layer. We model specifically the large intrusive complex growth and do not model small-scale and short-lived events, such as dyke intrusion, that develop above the intrusive complex. The models show that the intrusive complex develops in continual competition between upward bulging and lateral gravity spreading. The brittle substratum strongly controls the deformation style, the intrusion shape and also controls the balance between intrusive complex spreading and ductile layer-related gravitational spreading. In the models, intrusive complex emplacement and spreading produce similar structures to those formed during volcano gravitational spreading alone (i.e. grabens, folds, en échelon fractures). Therefore, simple analysis of fault geometry and fault kinetic indicators is not sufficient to distinguish gravitational from intrusive complex spreading, except when the intrusive complex is eccentric from the volcano centre. However, the displacement fields obtained for (1) a solely gravitational spreading volcano and for (2) a gravitational spreading volcano with a growing and spreading intrusive complex are very different. Consequently, deformation fields (like those obtained from geodetic monitoring) can give a strong indication of the presence of a spreading intrusive complex. We compare the models with field observations and geophysical evidence on active volcanoes such as La Réunion Island (Indian Ocean), Ometepe Island (Nicaragua) and eroded volcanic remnants such as Ardnamurchan (Scotland) and suggest that a combination between gravitational and intrusive complex spreading has been active.  相似文献   

10.
Significant advances were made in the last century in the investigations of the Neogene stress history of the NE Japan arc. However, previous studies have failed to fully resolve middle Miocene post‐rift stress conditions owing to their assumption of Andersonian faulting and an inability to determine maximum and intermediate stress axes from dike orientations. We applied the latest methods of paleostress analysis in this study to igneous dikes and mesoscale faults in the Kakunodate area of the NE Japan arc to elucidate post‐rift stress conditions. Stratigraphic constraints and U–Pb dating indicate that the doleritic and dacitic dikes were formed at 16–12 Ma and 15–12 Ma, respectively. Dolerite and dacite dikes yielded NW–SE extensional stresses with intermediate and low stress ratios, respectively. Mesoscale faults in the middle Miocene formations of the studied area indicated similar stresses. We suggest the sluggish deformations resulting in the dike intrusion and faulting in the normal‐faulting stress regime after the termination of intra‐arc rifting at ca. 15 Ma.  相似文献   

11.
Subparallel dikes are exposed on a new road-cut along the foot of the southeastern caldera wall of Hakone Volcano. The dikes are concentrated within a zone 1,915 m wide. Altogether 96 dikes trending generally from NW to SE are seen within a total length of the actual outcrops of 855 m measured at right angles to the trend of the dikes. This implies that there are 215 dikes within the zone of the dike swarm. As the average thickness of the dikes is 2.85 m, the zone was stretched for about 650 m in NE-SW direction owing to the intrusion of the dikes. The dikes tend to converge to a small area near the center of the caldera, and also tend to dip steeply toward the central axis of the zone. It is concluded that the dikes intruded along originally vertical fissures radiating from the central vent of the pre-caldera cone, but the zone of the dike swarm was subjected to bulging with the maximum elevation along its central axis owing to successive intrusion of the dikes from below. Stretching and bulging of the flank of a volcanic cone owing to rise of magma along one of radial fissures were observed during the 1940 eruption of Miyake-zima, Izu Islands, Japan.  相似文献   

12.
Numerical models show that maximum dike width at oceanic spreading centers should scale with axial lithospheric thickness if the pre-diking horizontal stress is close to the Andersonian normal faulting stress and the stress is fully released in one dike intrusion. Dikes at slow-spreading ridges could be over 5 m wide and maximum dike width should decrease with increasing plate spreading rate. However, data from ophiolites and tectonic windows into recently active spreading ridges show that mean dike width ranges from 0.5 m to 1.5 m, and does not clearly correlate with plate spreading rate. Dike width is reduced if either the pre-diking horizontal stress difference is lower than the faulting stress or the stress is not fully released by a dike. Partial stress release during a dike intrusion is the more plausible explanation, and is also consistent with the fact that dikes intrude in episodes at Iceland and Afar. Partial stress release can result from limited magma supply when a crustal magma chamber acts as a closed source during dike intrusions. Limited magma supply sets the upper limit on the width of dikes, and multiple dike intrusions in an episode may be required to fully release the axial lithospheric tectonic stress. The observation of dikes that are wider than a few meters (such as the recent event in Afar) indicates that large tectonic stress and large magma supply sometimes exist.  相似文献   

13.
Rift zones at the divergent plate boundary in Iceland consist of central volcanoes with swarms of fractures and fissures extending away from them. Fissure swarms can display different characteristics, in accordance with their locations within the ∼50-km-wide rift zones. To better discern the characteristics of fissure swarms, we mapped tectonic fractures and volcanic fissures within the Kverkfj?ll volcanic system, which is located in the easternmost part of the Northern Volcanic Rift Zone (NVZ). To do this, we used aerial photographs and satellite images. We find that rifting structures such as tectonic fractures, Holocene volcanic fissures, and hyaloclastite ridges are unevenly distributed in the easternmost part of the NVZ. The Kverkfj?ll fissure swarm extends 60 km north of the Kverkfj?ll central volcano. Holocene volcanic fissures are only found within 20 km from the volcano. The Fjallgarear area, extending north of the Kverkfj?ll fissure swarm, is characterized by narrow hyaloclastite ridges indicating subglacial volcanism. We suggest that the lack of fractures and Holocene volcanic fissures there indicates decreasing activity towards the north in the easternmost part of the NVZ, due to increasing distance from the long-term spreading axis. We argue that arcuate hyaloclastite ridges at the eastern boundary of the Northern Volcanic Rift Zone are mainly formed during deglaciations, when three conditions may occur; firstly, eruption rate increases due to decompression of the mantle. Secondly, the high tensile stresses accumulated during glaciations due to lack of magma supply may be relieved as magma supply increases during deglaciations. Thirdly, faulting may occur during unloading due to differential movements between the thinner and younger Northern Volcanic Rift Zone crust and the thicker and older crust to the east of it.  相似文献   

14.
Dike geometries around the well-exposed periphery of the Birnudalstindur igneous centre (SE Iceland) are constrained by moving averages of strike, dip, thickness and dilation by 775 mafic dikes, mapped along three strategically placed transects. On the basis of spatial analysis of dike strikes, a rift-parallel swarm is distinguished from a cross-cutting tri-axial swarm pattern of ‘brown dolerites’ that clearly post-dates the volcano's cone sheet swarm. Dikes are on average orientated at right angles to the lava pile and consequently used to constrain the ‘flexured’ geometry of the host lava pile, subsequently back-rotated to horizontal. This produces two end-member scenarios, which can be tentatively used to evaluate the dynamic formation of Icelandic crust. Dike dilations above a prominent stratigraphical transition into hyaloclastite breccias are markedly lower than in the underlying plateau lava pile, suggesting that vertical dike propagations were inhibited along this density/stress boundary. Lined up with the Birnudalstindur igneous centre, average dike thicknesses decrease towards the axes of both the rift-parallel dike swarm and the rift-perpendicular branch of the tri-axial swarm. This arguably links all dike swarms to the Birnudalstindur igneous centre, even if it remains inconclusive whether rift-parallel dikes fed and/or were injected laterally away from its sub-volcanic magma chamber. It seems more likely that the slightly offset tri-axial swarm of brown dolerites was preferentially emplaced along a peripheral bulge that was created around the ‘down-sagging’ volcano.  相似文献   

15.
 Dike propagation and dilation increases the compression of adjacent rocks. On volcanoes, especially oceanic shields, dikes are accordingly thought to be structurally destabilizing. As compression is incremented, volcanic flanks are driven outward or downslope and thus increase their susceptibility to destructive earthquakes and giant landslides. We show, however, that the 2-m-thick dike emplaced along the east rift zone of Kilauea in 1983 actually stabilized that volcano's flank. Specifically, production of flank earthquakes dropped more than twofold after 1983 as maximum downslope motion slowed to 6 cm·year–1 from approximately 40 cm·year–1 during 1980–1982. As much as 65 cm of deflationary subsidence above Kilauea's summit and upper rift zones accompanied the dike intrusion. According to recent estimates, this deflation corresponds to a reduction in magma-reservoir pressure of approximately 4 MPa, probably about as much as the driving pressure of the 1983 dike. The volume of the dike, approximately 0.10–0.15 km3, is orders of magnitude less than the estimated 200- to 250-km3 volume of Kilauea's reservoir of magma and nearby hot, mushy rock. Thus, deflation of that reservoir reduces the compressional load on the flank over a much larger area than intrusion of the dike adds to it, particularly at the dominant depth of seismicity, 8–9 km. A Coulomb block model for flank motion during intervals between major earthquakes requires the low-angle fault beneath Kilauea's flank to exhibit slip weakening, conducive to earthquake instability. Accordingly, the triggering mechanism of destructive earthquakes, several of which have struck Hawaii during the past 150 years, need not require stresses accumulated by dike intrusions. Received: 27 October 1998 / Accepted: 24 May 1999  相似文献   

16.
The gravitational deformation of volcanoes is largely controlled by ductile layers of substrata. Using numerical finite-element modelling we investigate the role of ductile layer thickness and viscosity on such deformation. To characterise the deformation we introduce two dimensionless ratios; Πa (volcano radius/ductile layer thickness) and Πb (viscosity of ductile substratum/failure strength of volcano). We find that the volcanic edifice spreads laterally when underlain by thin ductile layers (Πa>1), while thicker ductile layers lead to inward flexure (Πa<1). The deformation style is related to the switch from predominantly horizontal to vertical flow in the ductile layer with increasing thickness (increasing Πa). Structures produced by lateral spreading include concentric thrust belts around the volcano base and radial normal faulting in the cone itself. In contrast, flexure on thick ductile substrata leads to concentric normal faults around the base and compression in the cone. In addition, we show that lower viscosities in the ductile layer (low Πb) lead to faster rates of movement, and also affect the deformation style. Considering a thin ductile layer, if viscosity is high compared to the failure strength of the volcano (high Πb) then deformation is coupled and spreading is produced. However, if the viscosity is low (low Πb) substratum is effectively decoupled from the volcano and extrudes from underneath it. In this latter case evidence is likely to be found for basement compression, but corresponding spreading features in the volcano will be absent, as the cone is subject to a compressive stress regime similar to that produced by flexure. At volcanoes where basement extrusion is operating, high volcano stresses and outward substratum movement may combine to produce catastrophic sector collapse. An analysis of deformation features at a volcano can provide information about the type of basement below it, a useful tool for remote sensing and planetary geology. Also, knowledge of substratum geology can be used to predict styles of deformation operating at volcanoes, where features have not yet become well developed, or are obscured.  相似文献   

17.
The Subvolcanic structure of the central dike swarm associated with the Miocene Otoge ring complex and the Shitara igneous complex, central Japan, has been reconstructed. The central dike swarm was supplied from several aligned magma reservoirs. Flow lineations observed at the margin of the dikes converge towards a region that is regarded as a magma reservoir about 1–2 km below present sea level. The minimum diameter of the magma reservoir corresponds to the width of the central dike swarm, estimated to be about 3–4 km. The inferred magma reservoir of the Otoge ring complex, may have a zoned structure, as suggested by the flow lineations of dikes and the arrangement of cone sheets. Felsic magma occupied the upper part, about 1–2 km below present sea level, and basic magma the lower part, deeper than 2 km. The centre of the Shitara igneous complex is interpreted to be composed of several other shallow magma reservoirs. The distribution pattern in plan view of the central dike swarm is summarized from the frequency of dikes (defined by the number of dikes per kilometre in the direction normal to the trend of the dike swarm) and the variations of the different properties of individual dikes along the dike swarm. It has a plane of symmetry normal to the dike swarm above the magma reservoir. The patterns critical to a general understanding of the dike formation are:
1.  A region of low dike frequency is present above the magma reservoir and a radial dike pattern occurs around the magma reservoir.
2.  From both sides of the magma reservoir, the axes of high dike frequency extend symmetrically along the central zone of the dike swarm.
3.  The number as well as the individual and total thickness of felsic dikes increases towards the magma reservoir.
4.  The number of basic dikes increases towards both sides of the magma reservoir, while the individual thicknesses of basic dikes increase with distance from the magma reservoir.
  相似文献   

18.
Inward-dipping (cone) sheet swarms and an associated central volcano are well-exposed in the deeply-eroded Tertiary crust of Vatnsdalur, Skagi Peninsula region, northern Iceland. Spatially registered orientations of 389 mafic sheets, mapped in three distinct sheet swarms define both the overall shape and magmatic source of each swarm. The Vatnsdalur sheet swarms consist of planar inward-dipping sheets that collectively define a conical shape rather than a bowl- or trumpet-shape as have been found in swarms in other locations. In the best exposed swarm, three-dimensional projection of mafic sheets into the subsurface defines two distinct foci, which are interpreted as the magmatic sources of two temporally distinct sub-swarms. These results help to establish the influence of inclined sheet intrusion on crustal accretion at central volcanoes. The geometry of the swarm constrains the thickness of material that was added to the crust during sheet intrusion. When combined with estimates of surface relief, we calculate that 2.2 to 4.1 km of subsidence were required beneath the central volcano in order to accommodate the intrusion of the sheet swarm. Similar processes of crustal thickening and subsidence likely occur in a wide variety of both continental rift and mid-ocean ridge systems where magmatic activity is focused at central volcanoes.  相似文献   

19.
Bathymetry, gravity and deep-tow sonar image data are used to define the segmentation of a 400 km long portion of the ultraslow-spreading Knipovich Ridge in the Norwegian-Greenland Sea, Northeast Atlantic Ocean. Discrete volcanic centers marked by large volcanic constructions and accompanying short wavelength mantle Bouguer anomaly (MBA) lows generally resemble those of the Gakkel Ridge and the easternmost Southwest Indian Ridge. These magmatically robust segment centers are regularly spaced about 85-100 km apart along the ridge, and are characterized by accumulated hummocky terrain, high relief, off-axis seamount chains and significant MBA lows. We suggest that these eruptive centers correspond to areas of enhanced magma flux, and that their spacing reflects the geometry of underlying mantle upwelling cells. The large-scale thermal structure of the mantle primarily controls discrete and focused magmatism, and the relatively wide spacing of these segments may reflect cool mantle beneath the ridge. Segment centers along the southern Knipovich Ridge are characterized by lower relief and smaller MBA anomalies than along the northern section of the ridge. This suggests that ridge obliquity is a secondary control on ridge construction on the Knipovich Ridge, as the obliquity changes from 35° to 49° from north to south, respectively, while spreading rate and axial depth remain approximately constant. The increased obliquity may contribute to decreased effective spreading rates, lower upwelling magma velocity and melt formation, and limited horizontal dike propagation near the surface. We also identify small, magmatically weaker segments with low relief, little or no MBA anomaly, and no off-axis expression. We suggest that these segments are either fed by lateral melt migration from adjacent magmatically stronger segments or represent smaller, discrete mantle upwelling centers with short-lived melt supply.  相似文献   

20.
Deformation structures below the basal plane of gravitational slides can provide useful information about the state of stress undergone by rocks prior to the sliding process and about the triggering forces acting at each particular sliding event. In the present work we conducted a structural analysis of the rocks below the surface of the gravitational slide of Tazo (La Gomera, Canary Islands) and determined the epigenetic processes involved in the filling of the amphitheatre. We also inferred the possible triggering phenomena related to the Tazo landslide. The rocks located below the surface of the gravitational slide of Tazo -i.e., the basaltic lava flows, sills and dikes of the Lower Old Edifice and the submarine volcanic rocks, gabbros, pyroxenites and dikes of the Basal Complex of La Gomera- are strongly deformed close to this sliding surface. The lava flows and dikes of the Lower Old Edifice are folded, with fault breccias and gouges, and locally foliated, defining the sliding surface. The dikes of the Basal Complex are also folded, and the gabbros and pyroxenites are affected by a large number of small faults. In the Basal Complex, the sliding surface is defined by a foliated granular gouge. In the damage zone, the Basal Complex rocks show an incipient fracture cleavage. The sliding amphitheatre has been filled by the debris avalanche or cohesive debris flow generated within the slide, as well as by later debris flows, hyperconcentrated flows, sheet flows, and by interspersed lava flows from the Upper Old Edifice. We suggest here that the collapse of the north-western flank of the Lower Old Edifice at Tazo could in part have been triggered by continuous magma injection, associated with the emplacement of dikes in a rift zone with an ENE-WSW direction, enhanced by the mechanical weakness of the Basal Complex unit, which was affected by hydrothermal metamorphism under greenschist facies conditions and by the displacement along the Montaña de Alcalá and Guillama normal faults, which are deeply entrenched in the altered rocks of the Basal Complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号