首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Groundwater temperature is an important water quality parameter that affects species distributions in subsurface and surface environments. To investigate the response of subsurface temperature to atmospheric climate change, an analytical solution is derived for a one‐dimensional, transient conduction–advection equation and verified with numerical methods using the finite element code SUTRA. The solution can be directly applied to forward model the impact of future climate change on subsurface temperature profiles or inversely applied to produce a surface temperature history from measured borehole profiles. The initial conditions are represented using superimposed linear and exponential functions, and the boundary condition is expressed as an exponential function. This solution expands on a classic solution in which the initial and boundary conditions were restricted to linear functions. The exponential functions allow more flexibility in matching climate model projections (boundary conditions) and measured temperature–depth profiles (initial conditions). For example, measured borehole temperature data from the Sendai Plain and Tokyo, Japan, were used to demonstrate the improved accuracy of the exponential function for replicating temperature–depth profiles. Also, the improved accuracy of the exponential boundary condition was demonstrated using air temperature anomaly data from the Intergovernmental Panel on Climate Change. These air temperature anomalies were then used to forward model the effect of surficial thermal perturbations in subsurface environments with significant groundwater flow. The simulation results indicate that recharge can accelerate shallow subsurface warming, whereas upward groundwater discharge can enhance deeper subsurface warming. Additionally, the simulation results demonstrate that future groundwater temperatures obtained from the proposed analytical solution can deviate significantly from those produced with the classic solution. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
We estimated the effects of hydrogeological and surface temperature warming on subsurface thermal regime from the temperature-depth profiles and hydrological data of groundwater quality both in the quaternary and tertiary systems in the Sendai Plain as a preliminary step toward reconstruction of climate changes.Annual mean air temperature in the plain has increased about 1.5 °C in the last 70 years and this surface warming resulted in low or negative thermal gradient. However, anomaly of thermal gradient was recognized in not all temperature-depth profiles. Groundwater chemical compositions and stable isotope data (δD and δ18O) show that the groundwater flow system has marked difference between those of tertiary and quaternary systems. Calculated results of three dimensional groundwater flow and heat transport model ensure the above hypothesis and shows that thermal gradient changes at close to basement of the quaternary system. The differences in groundwater flow systems are expressed as subsurface thermal gradient anomalies in the temperature-depth profiles in the Sendai Plain. Furthermore, one-dimensional numerical analyze including the effect of surface warming indicates that calculated profile has departure from steady state line at depths in 60-80 m agree well with observed one.  相似文献   

3.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

4.
Long‐term heating of shallow urban aquifers is observed worldwide. Our measurements in the city of Cologne, Germany revealed that the groundwater temperatures found in the city centre are more than 5 K higher than the undisturbed background. To explore the role of groundwater flow for the development of subsurface urban heat islands, a numerical flow and heat transport model is set up, which describes the hydraulic conditions of Cologne and simulates the transient evolution of thermal anomalies in the urban ground. A main focus is on the influence of horizontal groundwater flow, groundwater recharge and trends in local ground warming. To examine heat transport in groundwater, a scenario consisting of a local hot spot with a length of 1 km of long‐term ground heating was set up in the centre of the city. Groundwater temperature‐depth profiles at upstream, central and downstream locations of this hot spot are inspected. The simulation results indicate that the main thermal transport mechanisms are long‐term vertical conductive heat input, horizontal advection and transverse dispersion. Groundwater recharge rates in the city are low (<100 mm a?1) and thus do not significantly contribute to heat transport into the urban aquifer. With groundwater flow, local vertical temperature profiles become very complex and are hard to interpret, if local flow conditions and heat sources are not thoroughly known. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, we use borehole temperature data and stable isotopes to delineate the flow system and estimate the effect of urbanization in the Nagaoka area of Japan. Temperature profiles were measured four times in observation wells during the period 2000-2001 and compared with those measured in the same wells during the period 1977-1983 (Taniguchi 1986). Water was sampled in both observation and pumping wells during the same period. The temporal and spatial variability in temperature indicate clearly the effect of urban warming and heavy pumping on the ground water system. Urban warming caused higher temperatures recently as compared to the older values, and pumping caused induced recharge from the river to the ground water. The stable isotope data show the ground water flow system is divided into shallow, intermediate, and deep systems, and that land use and infiltration rate are affecting the shallow flow system.  相似文献   

6.
Groundwater, an essential resource, is likely to change with global warming because of changes in the CO2 levels, temperature and precipitation. Here, we combine water isotope geochemistry with climate modelling to examine future groundwater recharge in southwest Ohio, USA. We first establish the stable isotope profiles of oxygen and deuterium in precipitation and groundwater. We then use an isotope mass balance model to determine seasonal groundwater recharge from precipitation. Climate model output is used to project future changes in precipitation and its seasonal distribution under medium and high climate change scenarios. Finally, these results are combined to examine future changes in groundwater recharge. We find that 76% of the groundwater recharge occurs in the cool season. Climate models project precipitation increase in the cool season and decrease in the warm season. The total groundwater recharge is expected to increase by 3.2% (8.8%) under the medium (high) climate change scenarios.  相似文献   

7.
Large urban areas are typically characterized by a mosaic of different land uses, with contrasting mixes of impermeable and permeable surfaces that alter “green” and “blue” water flux partitioning. Understanding water partitioning in such heterogeneous environments is challenging but crucial for maintaining a sustainable water management during future challenges of increasing urbanization and climate warming. Stable isotopes in water have outstanding potential to trace the partitioning of rainfall along different flow paths and identify surface water sources. While isotope studies are an established method in many experimental catchments, surprisingly few studies have been conducted in urban environments. Here, we performed synoptic sampling of isotopes in precipitation, surface water and groundwater across the complex city landscape of Berlin, Germany, for a large -scale overview of the spatio-temporal dynamics of urban water cycling. By integrating stable isotopes of water with other hydrogeochemical tracers we were able to identify contributions of groundwater, surface runoff during storm events and effluent discharge on streams with variable degrees of urbanization. We could also assess the influence of summer evaporation on the larger Spree and Havel rivers and local wetlands during the exceptionally warm and dry summers of 2018 and 2019. Our results demonstrate that using stable isotopes and hydrogeochemical data in urban areas has great potential to improve our understanding of water partitioning in complex, anthropogenically-affected landscapes. This can help to address research priorities needed to tackle future challenges in cities, including the deterioration of water quality and increasing water scarcity driven by climate warming, by improving the understanding of time-variant rainfall-runoff behaviour of urban streams, incorporating field data into ecohydrological models, and better quantifying urban evapotranspiration and groundwater recharge.  相似文献   

8.
The effects of surface water flow system changes caused by constructing water‐conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre‐development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water‐conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water‐conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high‐recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system.  相似文献   

9.
To identify the groundwater flow system in the North China Plain, the chemical and stable isotopes of the groundwater and surface water were analysed along the Chaobai River and Yongding River basin. According to the field survey, the study area in the North China Plain was classified hydrogeologically into three parts: mountain, piedmont alluvial fan and lowland areas. The change of electrical conductance and pH values coincided with groundwater flow from mountain to lowland areas. The following groundwater types are recognized: Ca? HCO3 and Ca? Mg? HCO3 in mountain areas, Ca? Mg? HCO3 and Na? K? HCO3 in piedmont alluvial fan areas, and HCO3? Na in lowland areas. The stable isotope distribution of groundwater in the study area also has a good corresponding relation with other chemical characteristics. Stable isotope signatures reveal a major recharge from precipitation and surface water in the mountain areas. Chemical and stable isotope analysis data suggest that mountain and piedmont alluvial fan areas were the major recharge zones and the lowland areas belong to the main discharge zone. Precipitation and surface water were the major sources for groundwater in the North China Plain. Stable isotopic enrichment of groundwater near the dam area in front of the piedmont alluvial fan areas shows that the dam water infiltrated to the ground after evaporation. As a result, from the stable isotope analysis, isotope value of groundwater tends to deplete from sea level (horizontal ground surface) to both top of the mountain and the bottom of the lowland areas in symmetrically. This suggests that groundwater in the study area is controlled by the altitude effect. Shallow groundwater in the study area belongs to the local flow system and deep groundwater part of the regional flow system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Interactions between groundwater mounds caused by a geologic layer contrast affect the efficiency of managed aquifer recharge in arid areas. However, research has rarely examined the roles of groundwater mounding size variations on soil water dynamics in a stratified vadose zone in response to a sustained infiltration source. Numerical experiments were conducted on a two-dimensional vertical-section domain using HYDRUS software to simulate the behaviours of two adjacent (upper and lower) groundwater mounds underlying an infiltration basin subjected to clay loam and sandy alternately-layered soil profiles. The model successfully predicted the volume and extent of perched water and approximated vertical travel times during events generating downward fluxes from the surface injection. The response time of the mounding width (lateral extension) to the surface injection was delayed as compared to that of the mounding height (vertical extension), especially for the lower water mound. The mounding heights and widths show a strongly positive correlation with the infiltration rates of both high- and low-permeability layers where the injected water mounded, while the water storage amounts in the high- and low-permeability layers were governed by the mounding height and width, respectively. Exploratory simulations were then employed to assess the dependence of groundwater mounding behaviours and recharge performances on surface injection strategies. Results suggest that, by reducing injection rate or shortening injection duration, the near-term fraction of the surface injection converted to deep recharge is likely to be increased due to the narrowed groundwater mounding size, which would be limited by the water-retarding effect of layer contrasts. This study has important implications for predicting and understanding multilayered groundwater mounding behaviours and associated water mass balance under the geologic stratification, and is expected to aid in optimizing the infiltration basin operation for aquifer recharge.  相似文献   

11.
Groundwater systems in arid regions will be particularly sensitive to climate change owing to the strong dependence of rates of evapotranspiration on temperature, and shifts in the precipitation regimes. Irrigation use in these arid regions is typically a large component of the water budget, and may increase due to changes in soil moisture resulting from higher temperatures and changes in the timing of precipitation events. In this study, future predicted climate change scenarios from three global climate models (CGCM1 GHG+A1, CGCM3.1 A2, and HadCM3 A2) are used to determine the sensitivity of recharge to different climate models in an irrigated agricultural region. The arid Oliver region (annual precipitation 300 mm) in the Okanagan Basin, British Columbia, is used to demonstrate the approach. Irrigation return flow, as a contribution to total diffuse recharge, is simulated by calculating the daily applied irrigation based on estimates of seasonal crop water demand and the forecasted precipitation and evaporation data. The relative contribution of irrigation return flow to groundwater recharge under current and future climate conditions is modelled. Temperature data were downscaled using Statistical Downscaling Model (SDSM), while precipitation and solar radiation changes were estimated directly from the GCM data. Shifts in climate, from present to future predicted, were applied to a stochastic weather generator, and used to force a one-dimensional hydrologic model, HELP 3.80D. Results were applied spatially, according to different soil profiles, slope and vegetation, over a 22.5 km by 8.6 km region. Changes to recharge in future time periods for each GCM result in modest increases of recharge with the peak recharge shifting from March to February. Lower recharge rates and higher potential evapotranspiration rates are similarly predicted by all three models for the summer months. All scenarios show that the potential growing season will expand between 3 and 4 weeks due to increases in temperature. However, the magnitude of the change varies considerably between models. CGCM3.1 has the largest increases of recharge rates, CGCM1 has very minor increases, and HadCM3 is relatively stable (as indicated by the near-zero changes between climate states). The significant differences between these three models indicate that prediction of future recharge is highly dependent on the model selected. The minor increase of annual recharge in future predicted climate states is due the shift of peak recharge from increased temperature. Irrigation rates dominate total recharge during the summer months in this arid area. Recharge in irrigated areas is significantly higher than natural recharge, with irrigation return flow between 25% and 58%. A comparison of recharge results for the least efficient and the most efficient irrigation systems indicates that the latter are more sensitive to choice of GCM.  相似文献   

12.
A previously published regional groundwater‐flow model in north‐central Nebraska was sequentially linked with the recently developed soil‐water‐balance (SWB) model to analyze effects to groundwater‐flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater‐level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root‐mean‐squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB‐generated recharge, the RMS difference between simulated and estimated base‐flow target values for the groundwater‐flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater‐level and base‐flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.  相似文献   

13.
ABSTRACT

Groundwater temperature at an arbitrary depth and at an arbitrary point is determined not only by heat transported by conduction but also by advection caused either by infiltration of rain, snowmelt or irrigated water, or by seepage from surface water bodies. Therefore, characteristic changes of groundwater temperature are observed in recharging and discharging areas within a groundwater flow system. The changes may be one-, two-, or three-dimensional, depending on individual situations. Since heat is a conservative quantity in the subsurface environment, groundwater temperature can be used as a tracer to reveal the regional structure of a groundwater flow system. A case study showing the importance of groundwater temperature in a regional groundwater survey is presented taking Nagaoka plain, Japan, as an example. The groundwater temperatures were measured in observation wells with diameters of 65 to 250 mm and depths of 20 m or more. Marked seasonal changes in temperature depth profiles showing advective effects in the horizontal direction from the Shinano River, and in the vertical direction from upper and lower aquifers, were observed. The temperature depth profiles were classified into six types. The distribution of these types does not contradict the regional structure of the groundwater flow system revealed by the potential distribution. As groundwater temperature is an easily measureable element in a hydrological survey, the method described in the present paper is appropriate for a field study in an uninstrumented groundwater basin.  相似文献   

14.
The average flow of Silver Springs, one of the largest magnitude springs in Central Florida, declined 32% from 2000 to 2012. The average groundwater head in the springshed declined 0.14 m, and the spring pool altitude increased 0.24 m during the same period. This paper presents a novel explanation of the spring flow recession curve for Silver Springs using the Torricelli model, which uses the groundwater head at a sentinel well, the spring pool altitude and the net recharge to groundwater. The effective springshed area and net recharge (defined as recharge minus groundwater pumping and evapotranspiration) were estimated based on the observed recession slopes for spring flow, groundwater head and spring pool altitude. The results indicate that the effective springshed area continuously declined since 1989 and the net recharge declined since the 1970s with a significant drop in 2002. Subsequent to 2002, the net recharge increased modestly but not to the levels prior to the 1990s. The reduction in net recharge was caused by changes in hydroclimatic conditions including precipitation and air temperature, along with groundwater withdrawals, which contributed to the declined spring flow. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The purpose of this study was to develop an interpretive groundwater‐flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi‐arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge‐change factors to these zones. Over a 10‐year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub‐basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi‐arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance.  相似文献   

16.
Mountainous areas are characterized by steep slopes and rocky landforms, with hydrological conditions varying rapidly from upstream to downstream, creating variable interactions between groundwater and surface water. In this study, mechanisms of groundwater–surface water interactions within a headwater catchment of the North China Plain were assessed along the stream length and during different seasons, using hydrochemical and stable isotope data, and groundwater residence times estimated using chlorofluorocarbons. These tracers indicate that the river is gaining, due to groundwater discharge in the headwater catchment both in the dry and rainy seasons. Residence time estimation of groundwater using chlorofluorocarbons data reveals that groundwater flow in the shallow sedimentary aquifer is dominated by the binary mixing of water approximating a piston flow model along 2 flow paths: old water, carried by a regional flow system along the direction of river flow, along with young water, which enters the river through local flow systems from hilly areas adjacent to the river valley (particularly during the rainy season). The larger mixing ratio of young water from lateral groundwater recharge and return flow of irrigation during the rainy season result in higher ion concentrations in groundwater than in the dry season. The binary mixing model showed that the ratio of young water versus total groundwater ranged from 0.88 to 0.22 and 1.0 to 0.74 in the upper and lower reaches, respectively. In the middle reach, meandering stream morphology allows some loss of river water back into the aquifer, leading to increasing estimates of the ratio of young water (from 0.22 to 1). This is also explained by declining groundwater levels near the river, due to groundwater extraction for agricultural irrigation. The switch from a greater predominance of regional flow in the dry season, to more localized groundwater flow paths in the wet season is an important groundwater–surface water interactions mechanism, with important catchment management implications.  相似文献   

17.
本文通过初步分析杭嘉湖地区地下水化学和同位素特征,认为地下水的水化学分布存在着一定的分带性。浅层地下水化学类型为Cl,HCO3-Ca,Na型,代表了降水或地表水补给的形成过程,且补给前受到不同程度的蒸发。深层承压水化学类型为HCO3-Ca,Na和HCO3-Na型,代表了以铝硅酸盐矿物溶解为主的形成过程,其补给源为古气候条件下的降水补给。利用氘过量参数d值判断了第承压水(120~150 m)总体流向为南西至北东,即由杭州和湖州向嘉兴方向径流。  相似文献   

18.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
Farmed catchments in the Mediterranean area often exhibit dense networks of ditches which are also preferential zones of water table recharge, and thereby of groundwater contamination. This study presents an experimental analysis of seepage losses and related groundwater recharge patterns during a typical Mediterranean runoff event at the scale of a ditch located above a shallow water table. The objectives were (i) to evaluate the patterns of water table recharge by seepage in a ditch, (ii) to study the main flow processes occurring during recharge, and (iii) to estimate solute propagation in case of contaminated flow in the ditch. The field observation indicated three major points. Firstly, they showed that seepage losses during a runoff event in a ditch can rapidly lead to a significant recharge of a shallow water table. Secondly, the recharge induces a groundwater mound much larger than the event plume. The infiltrated water and the accompanying solutes remained in the vicinity of the ditch. The patterns of groundwater recharge and contamination appeared very different. Lastly, both unsaturated and saturated‐piston flow processes were observed which suggests that a variably‐saturated flow modelling approach ought to be used to simulate the ditch‐water shallow table interaction. Finally, the study indicates that the patterns of water table recharge and contamination in Mediterranean catchments with dense ditches network vary largely in space and time, and will require dense monitoring networks to estimate the evolution of the average contamination levels. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This study investigated how hydrogeological setting influences aquifer–peatland connections in slope and basin peatlands. Steady-state groundwater flow was simulated using Modflow on 2D transects for an esker slope peatland and for a basin peatland in southern Quebec (Canada). Simulations investigated how hydraulic heads and groundwater flow exported toward runoff from the peatland can be influenced by recharge, hydraulic properties, and heterogeneity. The slope peatland model was strongly dominated by horizontal flow from the esker. This suggests that slope peatlands are dependent on the hydrogeological conditions of the adjacent aquifer reservoir, but are resilient to hydrological changes. The basin peatland produced groundwater outflow to the surface aquifer. Lateral and vertical peat heterogeneity due to peat decomposition or compaction were identified as having a significant influence on fluxes. These results suggest that basin peatlands are more dependent on recharge conditions, and could be more susceptible to land use and climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号