首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Robert L. Wildey 《Icarus》1975,25(4):613-626
The present investigation develops a new theory for the photoclinometric determination of topography when the photometric function of the planetary surface (or that which corresponds to the mean optical depth of emergent scattered solar radiation from an optically thick planetary atmosphere) is not restricted beyond the expectation that it is a function of phase angle, angle of incidence, and angle of emergence. Several versions of such an operational theory, which differ according to the auxiliary conditions employed to achieve mathematical determinacy, together with several approaches to the numerical analysis, have been evolved. The differences in the numerical methods arise from a variable trade-off between computing speed and stability and computer storage requirements. Although the computer encoding process is not yet fully operational, a first result has been worked out for an early frame in the Mariner 9 mission in which the dust-laden atmosphere appears to exhibit standing-wave patterns. Provided the assumption of homologous departures from plane-parallel atmospheric configuration is valid, the photoclinometric implication is that laminar flow lines in the optically viewable dust layer undergo a near-sinusoidal rise and fall of about 40 to 50m. Regardless of assumption, the resulting surface is a rigorous mean-emission surface.  相似文献   

2.
The competition between impact erosion and impact supply of volatiles to planetary atmospheres can determine whether a planet or satellite accumulates an atmosphere. In the absence of other processes (e.g., outgassing), we find either that a planetary atmosphere should be thick, or that there should be no atmosphere at all. The boundary between the two extreme cases is set by the mass and velocity distributions and intrinsic volatile content of the impactors. We apply our model specifically to Titan, Callisto, and Ganymede. The impacting population is identified with comets, either in the form of stray Uranus-Neptune planetesimals or as dislodged Kuiper belt comets. Systematically lower impact velocities on Titan allow it to retain a thick atmosphere, while Callisto and Ganymede get nothing. Titan's atmosphere may therefore be an expression of a late-accreting, volatile-rich veneer. An impact origin for Titan's atmosphere naturally accounts for the high D/H ratio it shares with Earth, the carbonaceous meteorites, and Halley. It also accounts for the general similarity of Titan's atmosphere to those of Triton and Pluto, which is otherwise puzzling in view of the radically different histories and bulk compositions of these objects.  相似文献   

3.
Titan, Saturn's largest moon, has a thick nitrogen/methane atmosphere. The temperature and pressure conditions in Titan's atmosphere are such that the methane vapor should condense near the tropopause to form clouds. Several ground-based measurements have observed sparse cloud-like features in Titan's atmosphere, while the Cassini mission to Saturn has provided large scale images of the clouds. However, Titan's cloud formation conditions remain poorly constrained. Heterogeneous nucleation (from the vapor phase onto a solid or liquid aerosol surface) greatly enhances cloud formation relative to homogeneous nucleation. In order to elucidate the cloud formation mechanism near the tropopause, we have performed laboratory measurements of the adsorption of methane and ethane onto solid organic particles (tholins) representative of Titan's photochemical haze. We find that monolayers of methane adsorb onto tholin particles at saturation ratios less than unity. We also find that solid methane nucleates onto the adsorbed methane at a saturation ratio of S=1.07±0.008. This implies that Titan's methane clouds should form easily. This is consistent with recent measurements of the column of methane ruling out excessive methane supersaturation. In addition, we find ethane adsorbs onto tholin particles in a metastable phase prior to nucleation. However, ethane nucleation onto the adsorbed ethane occurs at a relatively high saturation ratio of S=1.36±0.08. These findings are consistent with the recent report of polar ethane clouds in Titan's lower stratosphere.  相似文献   

4.
Although methane is the dominant absorber in Titan's reflection spectrum, the amount of methane in the atmosphere has only been determined to an order of magnitude. We analyzed spectra from the Space Telescope Imaging Spectrograph, looking at both a bright surface region (700-km radius) and a dark surface region. The difference between the spectra of the two regions is attributed to light that has scattered off the surface, and therefore made a round-trip through all of Titan's methane. Considering only absorption, the shape of the difference spectrum provides an upper limit on methane abundance of 3.5 km-am. Modeling the multiple scattering in the atmosphere further constrains the methane abundance to 2.63±0.17 km-am. In the absence of supersaturation and with a simplified methane vertical profile, this corresponds to a surface methane-mole fraction near 3.8% and a relative humidity of 0.32. With supersaturation near the tropopause, the surface methane mole fraction could be as low as 3%.  相似文献   

5.
In Simpson’s (Simpson, G.C. [1927]. Mem. R. Meteorol. Soc. II (16), 69–95) classical derivation of the temperature of the Earth in the semi-gray model, the surface temperature diverges as the fourth root of the thermal radiation’s optical depth. No resolution to this apparent paradox was yet obtained under the strict semi-gray approximation. Using this approximation and a simplified approach, we study the saturation of the runaway greenhouse effect.First we generalize the problem of the semi-gray model to cases in which a non-negligible fraction of the stellar radiation falls on the long-wavelength range, and/or that the planetary long-wavelength emission penetrates into the transparent short wavelength domain of the absorption.Second, applying the most general assumptions and independently of any particular properties of an absorber, we show that the greenhouse effect saturates and that any Earth-like planet has a maximal temperature which depends on the type of and distance to its main-sequence star, its albedo and the primary atmospheric components which determine the cutoff frequency below which the atmosphere is optically thick. For example, a hypothetical convection-less planet similar to Venus, that is optically thin in the visible, could have at most a surface temperature of 1200–1300 K irrespective of the nature of the greenhouse gas.We show that two primary mechanisms are responsible for the saturation of the runaway greenhouse effect, depending on the value of λcut, the wavelength above which the atmosphere becomes optically thick. Unless λcut is small and resides in the optical region, saturation is achieved by radiating the thermal flux of the planet through the short wavelength tail of the thermal distribution. This has an interesting observational implication, the radiation from such a planet should be skewed towards the NIR. Otherwise, saturation takes place by radiating through windows in the FIR.  相似文献   

6.
We present in this work an application to Titan, Saturn's satellite of the transposable planetary general circulation model (PGCM), which was developed based on the second version of the Community Atmosphere Model (CAM2) of NCAR. The PGCM is a spectral model with the sigma coordinate (where σ is the pressure normalized to its surface value, commonly used as a vertical coordinate in general circulation models) and is integrated in time using the semi-implicit leapfrog scheme. The horizontal resolutions of the model are based on 128 points in longitude and 64 points in latitude, and the vertical discretization is of 26 σ-levels. In Titan's conditions we apply the PGCM to simulate Titan's general circulation in this study. Some interesting phenomena such as equatorial superrotation, vertical meridional circulations, vertical structure, etc. are well replicated. This demonstrates the good performance and applicability to Titan of our model and provides a foundation for further studies on simulating and understanding Titan's general circulation and its variability by coupling the physical processes. The features of Titan's circulation under the condition of the Earth's rotation rate are also investigated. The results suggest that different rotation rates can significantly affect the dynamical structure of Titan's circulation.  相似文献   

7.
The Cassini Titan Radar Mapper obtained Synthetic Aperture Radar images of Titan's surface during four fly-bys during the mission's first year. These images show that Titan's surface is very complex geologically, showing evidence of major planetary geologic processes, including cryovolcanism. This paper discusses the variety of cryovolcanic features identified from SAR images, their possible origin, and their geologic context. The features which we identify as cryovolcanic in origin include a large (180 km diameter) volcanic construct (dome or shield), several extensive flows, and three calderas which appear to be the source of flows. The composition of the cryomagma on Titan is still unknown, but constraints on rheological properties can be estimated using flow thickness. Rheological properties of one flow were estimated and appear inconsistent with ammonia-water slurries, and possibly more consistent with ammonia-water-methanol slurries. The extent of cryovolcanism on Titan is still not known, as only a small fraction of the surface has been imaged at sufficient resolution. Energetic considerations suggest that cryovolcanism may have been a dominant process in the resurfacing of Titan.  相似文献   

8.
Titan's bulk density along with Solar System formation models indicates considerable water as well as silicates as its major constituents. This satellite's dense atmosphere of nitrogen with methane is unique. Deposits or even oceans of organic compounds have been suggested to exist on Titan's solid surface due to UV-induced photochemistry in the atmosphere. Thus, the composition of the surface is a major piece of evidence needed to determine Titan's history. However, studies of the surface are hindered by the thick, absorbing, hazy and in some places cloudy atmosphere. Ground-based telescope investigations of the integral disk of Titan attempted to observe the surface albedo in spectral windows between methane absorptions by calculating and removing the haze effects. Their results were reported to be consistent with water ice on the surface that is contaminated with a small amount of dark material, perhaps organic material like tholin. We analyze here the recent Cassini Mission's visual and infrared mapping spectrometer (VIMS) observations that resolve regions on Titan. VIMS is able to see surface features and shows that there are spectral and therefore likely compositional units. By several methods, spectral albedo estimates within methane absorption windows between 0.75 and 5 μm were obtained for different surface units using VIMS image cubes from the Cassini-Huygens Titan Ta encounter. Of the spots studied, there appears to be two compositional classes present that are associated with the lower albedo and the higher albedo materials, with some variety among the brighter regions. These were compared with spectra of several different candidate materials. Our results show that the spectrum of water ice contaminated with a darker material matches the reflectance of the lower albedo Titan regions if the spectral slope from 2.71 to 2.79 μm in the poorly understood 2.8-μm methane window is ignored. The spectra for brighter regions are not matched by the spectrum of water ice or unoxidized tholin, in pure form or in mixtures with sufficient ice or tholin present to allow the water ice or tholin spectral features to be discerned. We find that the 2.8-μm methane absorption window is complex and seems to consist of two weak subwindows at 2.7 and 2.8 μm that have unknown opacities. A ratio image at these two wavelengths reveals an anomalous region on Titan that has a reflectance unlike any material so far identified, but it is unclear how much the reflectances in these two subwindows pertain to the surface.  相似文献   

9.
Xun Zhu  Darrell F. Strobel 《Icarus》2005,176(2):331-350
Titan's atmospheric winds, like those on Venus, exhibit superrotation at high altitudes. Titan general circulation models have yielded conflicting results on whether prograde winds in excess of 100 m s−1 at the 1 mbar level are possible based on known physical processes that drive wind systems. A comprehensive two-dimensional (2D) model for Titan's stratosphere was constructed to systematically explore the physical mechanisms that produce and maintain stratospheric wind systems. To ensure conservation of angular momentum in the limit of no net exchange of atmospheric angular momentum with the solid satellite and no external sources and sinks, the zonal momentum equation was solved in flux form for total angular momentum. The relationships among thermal wind balance, meridional circulation, and zonal wind were examined with numerical experiments over a range of values for fundamental input parameters, including planetary rotation rate, radius, internal friction due to wave stresses, and net radiative drive. The magnitude of mid-latitude jets is most sensitive to a single parameter, the planetary rotation rate and results from the conversion of planetary angular momentum to relative angular momentum by the meridional circulation, whereas the strength of meridional circulation is mainly determined by the magnitude of the radiative drive. For Titan's slowly rotating atmosphere, the meridional temperature gradient is vanishingly small, even when the radiative drive is enhanced beyond reasonable magnitudes, and can be inferred from zonal winds in gradient/thermal wind balance. In our 2D model large equatorial superrotation in Titan's stratosphere can be only produced through internal drag forcing by eddy momentum fluxes, which redistribute angular momentum within the atmosphere, while still conserving the total angular momentum of the atmosphere with time. We cannot identify any waves, such as gravitational or thermal tides, that are sufficiently capable of generating the required eddy forcing of >50 m s−1 Titan-day−1 to maintain peak prograde winds in excess of 100 m s−1 at the 1 mbar level.  相似文献   

10.
Titan is one of the primary scientific objectives of the NASA–ESA–ASI Cassini–Huygens mission. Scattering by haze particles in Titan's atmosphere and numerous methane absorptions dramatically veil Titan's surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4–5.2 μm. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini–Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 μm images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titan's surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak.  相似文献   

11.
The direct images of giant extrasolar planets recently obtained around several main sequence stars represent a major step in the study of planetary systems. These high-dynamic range images are among the most striking results obtained by the current generation of high-angular resolution instruments which will be superseded by a new generation of instruments in the coming years. It is, therefore, an appropriate time to review the contributions of high-angular resolution visible/infrared techniques to the rapidly growing field of extrasolar planetary science. During the last 20 years, the advent of the Hubble Space Telescope, of adaptive optics on 4- to 10-m class ground-based telescopes, and of long-baseline infrared stellar interferometry, has opened a new viewpoint on the formation and evolution of planetary systems. By spatially resolving the optically thick circumstellar discs of gas and dust where planets are forming, these instruments have considerably improved our models of early circumstellar environments and have thereby provided new constraints on planet formation theories. High-angular resolution techniques are also directly tracing the mechanisms governing the early evolution of planetary embryos and the dispersal of optically thick material around young stars. Finally, mature planetary systems are being studied with an unprecedented accuracy thanks to single-pupil imaging and interferometry, precisely locating dust populations and putting into light a whole new family of long-period giant extrasolar planets.  相似文献   

12.
New three-dimensional hydrodynamic simulations of hypervelocity impacts into the crust of Titan were undertaken to determine the fraction of liquid water generated on the surface of Saturn's largest moon over its history and, hence, the potential for surface—modification of hydrocarbons and nitriles by exposure to liquid water. We model in detail an individual impact event in terms of ejecta produced and melt generated, and use this to estimate melt production over Titan's history, taking into account the total flux of the impactors and its decay over time. Our estimates show that a global melt layer at any time after the very beginning of Titan's history is improbable; but transient melting local to newly formed craters has occurred over large parts of the surface. Local maxima of the melt are connected with the largest impact events. We also calculate the amount of volatiles delivered at the impact with various impact velocities (from 3 km/s for possible Hyperion fragments to 11 km/s for Jupiter family comets) and their retention as a possible source of Titan's atmosphere. We find the probability of impact ejecta escaping Titan with its modern dense and thick atmosphere is rather low, and dispersal of Titan organics throughout the rest of the Solar System requires impactors tens of kilometers in diameter. Water ice melting and exposure of organics to liquid water has been widespread because of impacts, but burial or obscuration of craters by organic deposits or cryovolcanism is aided by viscous relaxation. The largest impactors may breach an ammonia-water mantle layer, creating a circular albedo contrast rather than a crater.  相似文献   

13.
The processes of dissociation and dissociative ionization of molecular nitrogen by solar UV radiation and by the accompanying flux of photoelectrons, as well as sputtering of the atmosphere by fluxes of magnetospheric ions and pick-up ions, are the main sources of translationally excited (hot, or suprathermal) nitrogen atoms and molecules in Titan's upper atmosphere. Since Titan does not possess an intrinsic magnetic field, ions from Saturn's magnetosphere can penetrate into the outer layers of Titan's atmosphere and sputter atoms and molecules from the atmosphere in momentum-transfer and charge exchange collisions. Atmospheric sputtering by corotating nitrogen ions and carbon-containing pick-up ions, as well as photodissociation-related losses, was considered previously by Lammer and Bauer (1993) and Shematovich et al. (2001, 2003). In this paper we investigate the processes of the formation and evolution of the fraction of suprathermal nitrogen atoms and molecules in the transition region of Titan's upper atmosphere using the previously developed Monte Carlo model for hot satellite and planetary coronas (Shematovich, 1999, 2004). It is established that the suprathermal nitrogen fraction in the transition region of Titan's upper atmosphere includes nitrogen atoms and molecules but the suprathermal nitrogen concentration is relatively small owing to high rates of escape from the atmosphere and to the efficient thermalization of suprathermal nitrogen at the altitudes of the relatively dense lower thermosphere. However, the scale height for suprathermal nitrogen in the transition region is much higher than that for the ambient atmospheric gas. Therefore, suprathermal nitrogen becomes one of the dominant components in the outer exosphere.  相似文献   

14.
We estimate Asteroid 1992 SK's physical properties from delay-Doppler images and Doppler-only echo spectra obtained during March 22-27, 1999, at Goldstone and from optical lightcurves obtained during February-March 1999 at Ond?ejov Observatory. The images span only about 15° of sky motion and are not strong, but they place up to twenty 40 m by 160 m pixels on the asteroid and have complete rotational phase coverage. Our analysis establishes that the radar observations are confined to subradar latitudes between −20° and −40°. The echo spectra and optical lightcurves span ∼80° of sky motion, which provides important geometric leverage on the pole direction. The lightcurves are essential for accurate estimation of the asteroid's shape and spin state. We estimate the asteroid's period to be 7.3182±0.0003 h and its pole direction to be at ecliptic longitude, latitude=(99°±5°,−3°±5°). The asteroid is about 1.4 km in maximum extent and mildly asymmetric, with an elongation of about 1.5 and relatively subdued topography. The OC radar albedo is 0.11±0.02 and the SC/OC ratio is 0.34±0.05. The current orbital solution permits accurate identification of planetary close approaches during 826-2690. We use our model to predict salient characteristics of radar images and optical lightcurves obtainable during the asteroid's March 2006 approach.  相似文献   

15.
The technique of photoclinometry has frequently been used to determine planetary topography without proper consideration of possible sources of error. Previous studies of error sources have been limited in extent and have overlooked the importance of factors such as atmospheric scattering and the choice of a surface photometric function. This paper adopts a thorough and more direct approach to error analysis, whereby known topography is compared with photoclinometric profiles derived from synthetic quantised reflectance scans.Instrumental and geometric sources of error are found to exert a minimal influence on profiles in practice, provided that sufficient care is taken in the selection of images and the extraction of scans from those images. Environmental factors — relating to the scattering properties of the surface and, if present, atmosphere — are far more important. It is found that a simple Lommel-Seeliger law is unlikely to be appropriate to the majority of planetary terrains, given its inability to model the effects of multiple scattering or unresolved macroscopic roughness. It is further demonstrated that a Minnaert function or combination of Lommel-Seeliger and Lambert laws may empirically compensate for the first of these phenomena but not the second; in this respect, Hapke's equation is a far superior model of surface optical properties. In the case of an atmosphere, the need to correct for scattering by aerosols or suspended dust becomes more acute as atmospheric opacity increases and as particle scattering becomes more forward-biased. To perform this correction, a model for the combined reflectance of surface and atmosphere must be used when deriving profiles.Two case studies — of a small impact crater on Triton and a dust-mantled basaltic lava flow on Mars - are presented here. Regarding the latter, the implications that errors in photoclinometric flow thickness measurements have for inferred lava rheology are examined. Conservative estimates of errors in yield strength and apparent viscosity easily exceed 100% when one of the simplest photometric models possible — a Lommel-Seeliger law — is used to derive a profile.In the light of these findings, strategies are suggested for improving the results obtained from photoclinometry in the future.  相似文献   

16.
Radio occultation studies of the structure of planetary atmospheres have generally involved relatively shallow penetration of the spacecraft behind the limb of the planet in the plane of the sky. Current radio link sensitivities allow detection of the radio signals at all occultation depths, whenever the planet-spacecraft distance is sufficiently large for the refraction to occur at atmospheric heights where microwave absorption is not too large. Voyager 1 at Jupiter and Voyager 2 at Saturn will pass almost directly behind the planets as viewed from the Earth. Thus they will pass through the caustics that corresponds to the focal line of a spherical planet, expanded by oblateness into a surface approximating a four-cusp cylinder. In the plane of the sky, the projection of this surface approximates the evolute of the planet's limb. As the spacecraft passes behind the planet with its antenna tracking the occulting limb, the strength of the radio signals received on Earth will at first decrease due to defocusing in the atmosphere, but then increase as the evolute is approached, because of the focusing caused by limb curvature. Inside the evolute there are four simultaneous signal paths over four limb positions. If we neglect absorption, focused signals for an instant could become orders of magnitude stronger than for the unocculted spacecraft. Measurements of the frequency and intensity of deep occultation signals, and of the timing and character of these “evolute flashes”, could provide information on atmospheric absorption, turbulence, and structure, and on details of the shape of the atmosphere at the focusing limbs as affected, for example, by planetary gravitational moments, rotation, and zonal winds. Such observations will be attempted with Voyager and potentially could be very fruitful in the Pioneer Venus and Galileo (Jupiter) orbiting missions.  相似文献   

17.
Our understanding of Titan, Saturn's largest satellite, has recently been consid-erably enhanced, thanks to the Cassini-Huygens mission. Since the Saturn Orbit Injection in July 2004, the probe has been harvesting new insights of the Kronian system. In par-ticular, this mission orchestrated a climax on January 14, 2005 with the descent of the Huygens probe into Titan's thick atmosphere. The orbiter and the lander have provided us with picturesque views of extraterrestrial landscapes, new in composition but reassuringly Earth-like in shape. Thus, Saturn's largest satellite displays chains of mountains, fields of dark and damp dunes, lakes and possibly geologic activity. As on Earth, landscapes on Titan are eroded and modeled by some alien hydrology: dendritic systems, hydrocarbon lakes, and methane clouds imply periods of heavy rainfalls, even though rain was never observed directly. Titan's surface also proved to be geologically active - today or in the recent past - given the small number of impact craters listed to date, as well as a few possible cryovolcanic features. We attempt hereafter a synthesis of the most significant results of the Cassini-Huygens endeavor, with emphasis on the surface.  相似文献   

18.
Abstract— Goldstone and Arecibo delay‐Doppler radar imaging of asteroid 1998 ML 14 shortly after its discovery reveals a 1 km diameter spheroid with prominent topography on one side and subdued topography on the other. The object's radar and optical properties are typical for S‐class near‐Earth asteroids. The gravitational slopes of a shape model derived from the images and assumed to have a uniform density are shallow, exceeding 30° over only 4% of the surface. If 1998 ML14's density distribution is uniform, then its orbital environment is similar to a planetary body with a spheroidal gravitational field and is relatively stable. Integration of a radar‐refined orbit reveals that the 1998 apparition was the asteroid's closest approach to Earth since at least 1100 and until 2283, when it approaches to within 2.4 lunar distances. Outside of that time interval, orbit uncertainties based on the present set of observations preclude reliable prediction.  相似文献   

19.
Topographic features affect the scattering properties of planetary surfaces by casting shadows and altering the local incidence and emission angles. Measurements of this phenomenon were obtained on the Cornell goniometer for both high and low albedo surfaces. For the low albedo surface, the decrease in reflected radiation due to topography increases sharply with increasing phase angle, whereas for the high albedo sample the effects are approximately constant between phase angles of 30 and 70°. The observations are in good agreement with a theoretical model in the case of the dark surface. However, for the high albedo surface the model overestimates the effects by about a factor of 2, since it does not include the partial illumination of shadows by multiple scattering. For both high and low albedo surfaces, the effects of topography do not become significant until a phase angle of 30–40°.  相似文献   

20.
The Visual and Infrared Mapping Spectrometer (VIMS) instrument on the Cassini Saturn Orbiter returned spectral imaging data as the spacecraft undertook six close encounters with Titan beginning 7 July, 2004. Three of these flybys each produced overlapping coverage of two distinct regions of Titan's surface. Twenty-four points were selected on approximately opposite hemispheres to serve as photometric controls. Six points were selected in each of four reflectance classes. On one hemisphere each control point was observed at three distinct phase angles. From the derived phase coefficients, preliminary normal reflectances were derived for each reflectance class. The normal reflectance of Titan's surface units at 2.0178 μm ranged from 0.079 to 0.185 for the most absorbing to the most reflective units assuming no contribution from absorbing haze. When a modest haze contribution of τ=0.1 is considered these numbers increase to 0.089–0.215. We find that the lowest three reflectance classes have comparable normal reflectance on either hemisphere. However, for the highest brightness class the normal reflectance is higher on the hemisphere encompassing longitude 14–65° compared to the same high brightness class for the hemisphere encompassing 122–156° longitude. We conclude that an albedo dichotomy observed in continental sized units on Titan is due not only to one unit having more areal coverage of reflective material than the other but the material on the brighter unit is intrinsically more reflective than the most reflective material on the other unit. This suggests that surface renewal processes are more widespread on Titan's more reflective units than on its less reflective units.

We note that one of our photometric control points has increased in reflectance by 12% relative to the surrounding terrain from July of 2004 to April and May of 2005. Possible causes of this effect include atmospheric processes such as ground fog or orographic clouds; the suggestion of active volcanism cannot be ruled out.

Several interesting circular features which resembled impact craters were identified on Titan's surface at the time of the initial Titan flyby in July of 2004. We traced photometric profiles through two of these candidate craters and attempted to fit these profiles to the photometric properties expected from model depressions. We find that the best-fit attempt to model these features as craters requires that they be unrealistically deep, approximately 70 km deep. We conclude that despite their appearance, these circular features are not craters, however, the possibility that they are palimpsests cannot be ruled out.

We used two methods to test for the presence of vast expanses of liquids on Titan's surface that had been suggested to resemble oceans. Specular reflection of sunlight would be indicative of widespread liquids on the surface; we found no evidence of this. A large liquid body should also show uniformity in photometric profile; we found the profiles to be highly variable. The lack of specular reflection and the high photometric variability in the profiles across candidate oceans is inconsistent with the presence of vast expanses of flat-lying liquids on Titan's surface. While liquid accumulation may be present as small, sub-pixel-sized bodies, or in areas of the surface which still remain to be observed by VIMS, the presence of large ocean-sized accumulations of liquids can be ruled out.

The Cassini orbital tour offers the opportunity for VIMS to image the same parts of Titan's surface repeatedly at many different illumination and observation geometries. This creates the possibility of understanding the properties of Titan's atmosphere and haze by iteratively adapting models to create a best fit to the surface reflectance properties.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号