首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Design of an offshore wind turbine requires estimation of loads on its rotor, tower and supporting structure. These loads are obtained by time-domain simulations of the coupled aero-servo-hydro-elastic model of the wind turbine. Accuracy of predicted loads depends on assumptions made in the simulation models employed, both for the turbine and for the input wind and wave conditions. Currently, waves are simulated using a linear irregular wave theory that is not appropriate for nonlinear waves, which are even more pronounced in shallow water depths where wind farms are typically sited. The present study investigates the use of irregular nonlinear (second-order) waves for estimating loads on the support structure (monopile) of an offshore wind turbine. We present the theory for the irregular nonlinear model and incorporate it in the commonly used wind turbine simulation software, FAST, which had been developed by National Renewable Energy Laboratory (NREL), but which had the modeling capability only for irregular linear waves. We use an efficient algorithm for computation of nonlinear wave elevation and kinematics, so that a large number of time-domain simulations, which are required for prediction of long-term loads using statistical extrapolation, can easily be performed. To illustrate the influence of the alternative wave models, we compute loads at the base of the monopile of the NREL 5MW baseline wind turbine model using linear and nonlinear irregular wave models. We show that for a given environmental condition (i.e., the mean wind speed and the significant wave height), extreme loads are larger when computed using the nonlinear wave model. We finally compute long-term loads, which are required for a design load case according to the International Electrotechnical Commission guidelines, using the inverse first-order reliability method. We discuss a convergence criteria that may be used to predict accurate 20-year loads and discuss wind versus wave dominance in the load prediction. We show that 20-year long-term loads can be significantly higher when the nonlinear wave model is used.  相似文献   

2.
This paper provides an experimental validation of the second-order coupling theory outlined by Yang et al. (Z. Yang, S. Liu, H.B. Bingham and J. Li., 2013. Second-order coupling of numerical and physical wave tanks for 2D irregular waves. Part I: Formulation, implementation and numerical properties, submitted for publication) using 2D irregular waves. This work provides a second-order dispersive correction for the physical wavemaker signal which improves the nonlinear transfer of information between the numerical and physical models compared to the first-order method of Zhang et al. (2007). The important nonlinear parameters and numerical performance were theoretically investigated in Part I. In the present Part II, careful experimental validation is carried out using a sequence of progressively more complex analytical and numerical target waves. The results demonstrate clearly that improved performance is achieved by using the second-order correction. When controlling with a second-order coupling signal, two key points are notable: (i) The higher harmonics underlying the numerical waves are accurately captured and transferred into the physical model. (ii) The second-order behavior leads to an unwanted spurious freely propagating second harmonic that is substantially reduced when compared to an identical wave paddle operating with a first-order coupling signal. Using nonlinear regular (monochromatic), bi-chromatic and irregular wave cases as well as varying coupled wave tank bathymetries, both these aspects are verified over a broad range of wave frequencies and shown to be extensively applicable to physical wave tanks.  相似文献   

3.
The present study considers the prediction of extreme values of the second-order hydrodynamic parameters related to offshore structures in waves, where the application of Gaussian distribution is not valid. Particularly, this study focuses on a characteristic function approach in the frequency domain to estimate the probability distribution of the second-order quantities, and the results are compared with direct simulations in the time domain. The stochastic behaviors of the second-order hydrodynamic quantities are investigated with the characteristic function approach, which involves eigenvalue analyses of Hermitian kernels constructed with quadratic transfer functions. Three different second-order responses are considered: the springing responses of TLP tendons representative of the sum-frequency problem, the slow-drift motions of a semi-submersible platform moored in waves as a representative of the difference-frequency problem, and the wave run-up around a vertical column for regular and irregular waves. The applicability of the present approach in predicting extreme values is assessed by comparing the results with the values obtained from time-domain signals.  相似文献   

4.
In actual sea states, damage to offshore floating structures is usually caused by a few extreme waves or wave groups in an irregular wave train. Accurate simulation of the irregular wave trains can lay a solid foundation for understanding the local flow field and impact loads that would potentially cause such damage. This paper describes how the generation of a single extreme wave was investigated. Determination of the wave-maker motion for generating specified irregular wave trains is the key to this work. First, an experimental irregular wave train was decomposed into a certain number of small-amplitude waves. Fourier series expansion was performed to determine the amplitude and the initial phase angle of each wave component. Then a hydrodynamic transfer function was used to calculate the amplitude of the wave-maker motion associated with each wave component. Superposition was made on all the wave components to get the final wave-maker motion. During the numerical simulation, calculated horizontal velocity profiles of the extreme wave at different moments were analyzed and compared with experimental results, and a satisfactory agreement was obtained. In the simulation, VOF method was employed to capture the free surface, and a dissipation zone was used to deal with wave reflection.  相似文献   

5.
Previous studies of response conditioned wave methods have been focused on their applicability to the prediction of extreme nonlinear wave-induced load effects. The results showed that theses methods can be used to accurately and efficiently predict the nonlinear short-term probability distributions for rigid hull responses. This has led us to investigate how response conditioned wave methods can be used for long-term nonlinear fatigue analyses, and with which accuracy this can be done. In this paper we present the results from our investigation. The studies were performed using a container vessel with a length between perpendiculars of 281 m. Calculations were done with a nonlinear strip theory method in which the hull of the vessel was assumed to be rigid. The most likely response wave (MLRW) method was used to condition the waves. Only head seas were considered. We found that the MLRW method under-predicted the long-term fatigue damage by 3%. The method, however, required a simulation time that was approximately three orders of magnitude less than that required for a conventional long-term nonlinear analysis based on random irregular waves. A preliminary investigation showed that due to lacking springing and whipping contributions the MLRW method under-predicted the fatigue damage for a flexible hull by approximately 50%. Several comments about a more accurate extension of the proposed method to flexible hulls are included.  相似文献   

6.
Floating wind turbine has been the highlight in offshore wind industry lately. There has been great effort on developing highly sophisticated numerical model to better understand its hydrodynamic behaviour. A engineering-practical method to study the nonlinear wave effects on floating wind turbine has been recently developed. Based on the method established, the focus of this paper is to quantify the wave nonlinearity effect due to nonlinear wave kinematics by comparing the structural responses of floating wind turbine when exposed to irregular linear Airy wave and fully nonlinear wave. Critical responses and fatigue damage are studied in operational conditions and short-term extreme values are predicted in extreme conditions respectively. In the operational condition, wind effects are dominating the mean value and standard deviation of most responses except floater heave motion. The fatigue damage at the tower base is dominated by wind effects. The fatigue damage for the mooring line is more influenced by wind effects for conditions with small wave and wave effects for conditions with large wave. The wave nonlinearity effect becomes significant for surge and mooring line tension for large waves while floater heave, pitch motion, tower base bending moment and pontoon axial force are less sensitive to the nonlinear wave effect. In the extreme condition, linear wave theory underestimates wave elevation, floater surge motion and mooring line tension compared with fully nonlinear wave theory while quite close results are predicted for other responses.  相似文献   

7.
Compared with solar and wind energy, wave energy is a kind of renewable resource which is enormous and still under development. In order to utilize the wave energy, various types of wave energy converters (WECs) have been proposed and studied. And oscillating-body WEC is widely used for offshore deployment. For this type of WEC, the oscillating motion of the floater is converted into electricity by the power take off (PTO) system, which is usually mathematically simplified as a linear spring and a damper. The linear PTO system is characteristic of frequency-dependent response and the energy absorption is less powerful for off resonance conditions. Thus a nonlinear snap through PTO system consisting of two symmetrically oblique springs and a linear damper is applied. A nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two oblique springs to the original length of both springs. JONSWAP spectrum is utilized to generate the time series of irregular waves. Time domain method is used to establish the motion equation of the oscillating-body WEC in irregular waves. And state space model is applied to replace the convolution term in the time domain motion equation. Based on the established motion equation, the motion response of both the linear and nonlinear WEC is numerically calculated using 4th Runge–Kutta method, after which the captured power can be obtained. Then the influences of wave parameters such as peak frequency, significant wave height, damping coefficient of the PTO system and the nonlinear parameter γ on the power capture performance of the nonlinear WEC is discussed in detail. Results show that compared with linear PTO system, the nonlinear snap through PTO system can increase the power captured by the oscillating body WEC in irregular waves.  相似文献   

8.
Zhen Gao  Torgeir Moan 《Ocean Engineering》2009,36(15-16):1244-1250
This paper deals with drag forces due to irregular waves on a vertical slender structure in the splash zone, i.e. in the vicinity of still-water free surface, by considering the inundation effect due to instantaneous wave elevation. The force turns out to be a third-order quantity with respect to wave elevation. The focus of this paper is however limited to extreme value prediction of this force in stochastic waves. Based upon a transformation of random variables and use of the Rice formula, the mean up-crossing rate of inundation drag force is obtained in the frequency domain both by direct numerical integration and asymptotic evaluation for high levels using the Laplace method. The extreme value distribution of this force is then established by the Poisson probability law assuming independent up-crossing events. The proposed method agrees very well with time-domain simulations both for the mean up-crossing rate and the extreme value prediction. The effect of correlation between wave elevation and horizontal water particle velocity and the presence of current have been studied.  相似文献   

9.
X.T. Zhang  B.C. Khoo  J. Lou 《Ocean Engineering》2007,34(10):1449-1458
A numerical approach based on desingularized boundary element method and mixed Eulerian–Lagrangian formulation [Zhang et al., 2006. Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Engineering 33, 2310–2331] is extended to solve the water wave propagation over arbitrary topography in a three-dimensional wave tank. A robust damping layer applicable for regular and irregular incident waves is employed to minimize the outgoing wave reflection back into the wave tank. Numerical results on the propagation of regular and irregular incident waves over the flat bottom and linear incident waves over an elliptical shoal show good concurrence with the corresponding analytical solutions and experimental data.  相似文献   

10.
The hydrodynamic functioning of an oscillating water column (OWC) in the presence of an underwater tri-dimensional mound (UTDM) through large-scale ocean engineering basin experiments is described. Experiments are carried out with both regular and irregular waves and are compared to numerical models. The analysis is based on the measurements of the wave amplification in the water column for the OWC performance and on surface deformation upwave and over the UTDM for the wave transformation due to both UTDM and OWC. A significant increase of the capture-width ratio due to wave focusing above the mound is observed experimentally. This wave focusing is also well described numerically with a refraction–diffraction model. The wave amplification in the water column for both regular and irregular waves is compared to results from a linear potential model based on an integral matching method. Linear behaviour of the hydrodynamic response of the device is verified for both open and partially closed conditions, in particular for irregular waves.  相似文献   

11.
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Eulerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The boundary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.  相似文献   

12.
The design of mooring systems for floating production units usually considers extreme environmental conditions as a primary design parameter. However, in the case of FPSO (Floating, Production, Storage and Offloading) units, the worst response for the mooring system may be associated with other sea state conditions due to the fact that its extreme response may be associated with a resonant period instead of an extreme wave height. The best way to deal with this problem is by performing long-term analysis in order to obtain extreme response estimates. This procedure is computationally very demanding, since many short-term environmental conditions, and their associated stochastic nonlinear time domain numerical simulations of the mooring lines, are required to obtain such estimates. A simplified approach for the long-term analysis is the environmental contour-line design approach. In this paper a Monte Carlo-based integration procedure combined with an interpolation scheme to obtain the parameters of the short-term response distribution is employed to hasten the long-term analysis. Numerical simulations are carried out for an FPSO at three different locations considering a North Sea joint probability distribution for the environmental parameters. The long-term analysis results are compared against those obtained using extreme environmental conditions and environmental contour-line methodology. These results represent the characteristic load effect for the design of mooring systems of floating units using the reliability analysis for mooring line. The results show that the long-term results are usually more critical than those obtained with the other approaches and even different mooring lines can be identified as the critical ones.  相似文献   

13.
Surface water wave elevations and kinematics from four unidirectional irregular wave trains, with a Pierson and Moskowitz or JONSWAP random wave spectrum, were measured in the laboratory using resistance wave probes and a laser Doppler anemometer. The wave elevation data, velocity time series, extreme (largest) wave horizontal velocity profiles and extreme wave acceleration fields are compared with the predictions of a new wave kinematics model, named the hybrid wave model. Irregular waves are commonly viewed as the summation of many linear wave components of different frequencies, but more accurate predictions of downstream surface elevations (wave evolution) and wave kinematics are attained by considering the non-linear interactions among wave components. The hybrid wave model incorporates these non-linear wave component interactions, and its wave evolution predictions and kinematics estimates are compared with laboratory measurements in this study. Linear random wave theory, Wheeler stretching and linear extrapolation wave kinematic prediction techniques are also compared. Comparisons between measurements and hybrid wave model estimates demonstrate its improved capability to predict velocity and acceleration fields and wave evolution in two-dimensional irregular waves.  相似文献   

14.
The design and performance of an offshore structure depends largely upon the response of the structure to the environmental loading such as waves. The extreme response chosen for the design of a structure should meet its lifetime response, operational response as well as the fatigue damage. The failure of the structural member may be caused by the maximum instantaneous stress experienced by the member due to a given environment. This is considered short-term as opposed to long-term or fatigue damage. The short-term response statistics are obtained on the basis of one particular seastate. Since this seastate is invariably high, nonlinearity in the excitation and response of the structure is almost invariably present. The general nonlinear problem in the extreme response prediction is largely unsolved. Response characteristics are often obtained from the perturbation methods and equivalent linearization techniques. Unlike nonlinear problems, these methods greatly simplify the analysis for extreme values. This paper reviews the available approximation techniques in the response computation and the limits of their applicability in a design situation. Results are illustrated so that a designer may evaluate the suitability of a method in a particular design condition.  相似文献   

15.
Linear and nonlinear irregular waves and forces in a numerical wave tank   总被引:4,自引:0,他引:4  
A time-domain higher-order boundary element scheme was utilized to simulate the linear and nonlinear irregular waves and diffractions due to a structure. Upon the second-order irregular waves with four Airy wave components being fed through the inflow boundary, the fully nonlinear boundary problem was solved in a time-marching scheme. The open boundary was modeled by combining an absorbing beach and the stretching technique. The proposed numerical scheme was verified by simulating the linear regular and irregular waves. The scheme was further applied to compute the linear and nonlinear irregular wave diffraction forces acting on a vertical truncated circular cylinder. The nonlinear results were also verified by checking the accuracy of the nonlinear simulation.  相似文献   

16.
为了探究激波捕捉类Boussinesq模型在模拟岛礁地形上规则波和不规则波传播的可行性,采用基于完全非线性Boussinesq方程并具有激波捕捉能力的数值模型Funwave-TVD对规则波和不规则波在岛礁地形上的传播进行了数值模拟,通过与试验数据对比,分析模型中空间步长的影响,验证模型在模拟波高、平均水位分布以及波谱空间演变的能力,结果表明:采用合适的空间步长,模型能较好地模拟规则波和不规则波在岛礁地形上的传播和演化过程。对于规则波,较小的空间步长可改善破碎点处波高峰值的预测,并能更好地预测波浪破碎后波高的空间分布,相比结合经验破碎的Boussinesq模型,Funwave-TVD能更好地模拟规则波在岛礁地形上的破碎,以及破碎以后行进涌波的再生成过程;对于不规则波,Funwave-TVD总体而言能较好地模拟涌浪有效波高、次重力波的生成及空间演化和平均水位,但会低估礁坪上次重力波波高,较粗的空间步长也会低估礁坪上涌浪有效波高。  相似文献   

17.
The FUNWAVE model is used for simulating simulation of monochromatic and irregular wave propagation in a channel with a bar-trough profile. FUNWAVE is based upon the extended Boussinesq equations. The study aims to analyze the model's performance when simulating shoaling, wave breaking and nonlinear interactions that are present in nearshore wave propagation. For that, high-order time domain statistics (root mean-square wave height, skewness, asymmetry and the kurtosis) of the model simulations and of the observations were compared along the whole channel. Also, a frequency domain analysis including standard spectral analysis and the bispectrum was carried out in selected points of the flume. The evaluation included the role of the wave breaking internal model parameters. The main conclusion is that, in general, the one-dimensional version of FUNWAVE simulates quite well the nonlinear transformation of a wave over a bottom with a bar-tough profile, for both regular and irregular wave conditions. The model reproduces the transformation of the wave shape, specially the increasing sharper wave crests and flatter troughs and also the lack of vertical symmetry with crests pitching forward, as it propagates along the domain. However, some differences persist after wave breaking, mainly due to the nature of the wave-breaking module. In this module, the energy dissipation is induced by the increase of viscosity, a rather simple mechanism, without the modification of the wave shape. Also, the energy dissipation develops in a smooth way which is appropriated for spilling breaking waves, but not for plunging breaking waves where the dissipation starts more abruptly.  相似文献   

18.
Short-term wave design approach of marine structures, using nonlinear time domain simulations, is a design procedure that is recognized by various modern standard codes. One of the most challenging points of this approach is the evaluation of the characteristic extreme values for response parameters used in the design check equations. The most straightforward and recommended way to evaluate a response characteristic value is by fitting an extreme value probability distribution to the N-sample of extreme values extracted from N independent time domain simulations with duration equal to the short-term period indicated by the code, which is usually taken as 3 h. However, this procedure would not be practical for some types of marine structures, such as risers and mooring lines, under numerous design load cases and demanding huge finite element models. A more feasible approach would be to assess the response extreme value distribution using only a single short-term time domain simulation with duration shorter than 3 h. But reduced time simulations always introduce some additional statistical uncertainty into the extreme values estimates. This paper discusses a workable way of properly taking into account the statistical uncertainty associated with the simulation length in the assessment of a characteristic short-term extreme response value based on a single time series.  相似文献   

19.
FAN Ju 《中国海洋工程》2000,14(1):103-112
—In this paper,the second-order perturbation method in frequency domain is used to calculateRAO and spectra of motion and mooring line tension of a turret-moored tanker in ballast condition.Thecalculated results are compared with corresponding experiment results.In the experiment the wave head-ing is 180°,and the wave spectra is the P-M spectrum and white noise spectrum.In the theoretical calcu-lations,the damping coefficient of slow oscillation of the tanker is determined on the basis of the dampingobtained from a test of irregular waves where the mooring system is replaced by a nonlinear spring withnonlinear stiffness similar to that of the mooring system.From the comparison between theoretical calcula-tions and experimental results,it can be found that the theoretical results obtained by the second-orderperturbation method in frequency domain are in good agreement with the experimental results,indicatingthat the damping coefficient of slow oscillation of the tanker required in frequency domain calcu  相似文献   

20.
Based on the lumped-mass method and rigid-body kinematics theory, a mathematical model of a gravity cage system attacked by irregular waves is developed to simulate the hydrodynamic response of cage system, including the maximum tension of mooring lines and the motion of float collar. The normalized response amplitudes (response amplitude operators) are calculated for the cage motion response in heave and surge, and the mooring line tension response, in regular waves. In addition, a statistical approach is taken to determine the motion and tension transfer functions in irregular waves. In order to validate the numerical model of a gravity cage attacked by irregular waves, numerical predictions have been compared with the experimental observations in the time and frequency domain. The effect of wave incident angle on the float collar motion, mooring line tension and net volume reduction of the gravity cage system in irregular waves is also investigated. The results show that at high frequencies, the cage system has no significant heave motion. It tends to contour itself to longer waves. The variation amplitude of mooring line forces decreases as the wave frequency increases. With the increasing of wave incident angle, the horizontal displacement of the float collar increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号