首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on RATAN-600 21-cm H I line observations with an angular resolution of 2.4', we studied the neutral-hydrogen distribution in the region of the supernova remnant (SNR) S 147 (G180.0-1.7). We detected a rotating shell of neutral gas immediately adjacent to the SNR that is expanding at a velocity of 20 km s?1. The H I shell is less distinct in the southeastern part and at negative radial velocities. The outer shell diameter is 90 pc; the H I mass in the shell is 2.2 × 104M. These data allowed us to estimate the SNR age, 6.5×105 yr, and the initial explosion energy, 2.2×1051 erg.  相似文献   

2.
Based on observations of SN 1999em, we determined the physical parameters of this supernova using hydrodynamic calculations including nonequilibrium radiative transfer. Taking the distance to SN 1999em estimated by the expanding photosphere method (EPM) to be D = 7.5 Mpc, we found the parameters of the presupernova: radius R = 450R, mass M = 15M, and explosion energy E = 7 × 1050 erg. For the distance D = 12 Mpc determined from Cepheids, R, M, and E must be increased to the following values: R = 1000R, M = 18M, and E = 1051 erg. We show that one cannot restrict oneself to using the simple analytical formulas relating the supernova and presupernova parameters to obtain reliable parameters for type-IIP presupernovae.  相似文献   

3.
We studied the intermediate polar TVCol during and after its flare in November 1982 observed in the ultraviolet range with the International Ultraviolet Explorer. Two spectra revealing the variations of emission lines at different times are presented. We have estimated a new value of the reddening from the 2200 Å absorption feature, E (B ? V ) = 0.12 ± 0.02, and calculated the line fluxes of C IV and He II emission lines produced in the outer accretion disk. The average ultraviolet luminosity of emitting region during and after the flare is approximately 4 × 1032 erg s?1 and 9 × 1030 erg s?1, the corresponding average mass accretion rate is nearly 3 × 1015 erg s?1 (4.76 × 10?11M yr?1) and 5 × 1013 erg s?1 (7.93 × 10?13M yr?1), and the average temperature of the emitting region during and after flare is estimated to be of about 3.5 × 103 K and 2 × 103 K. We attribute this flare to a sudden increase in the mass accretion rate leading to the outburst activity.  相似文献   

4.
We obtained constraints on the luminosity of the central source in SNR 1987 A using XMM-Newton and INTEGRAL data. XMM-Newton yields an upper limit on the SNR luminosity in the 2–10 keV energy band, LX ? 5 × 1034 erg s?1. Since the optical depth of the envelope is still large in the XMM-Newton energy band, this constraint carries no useful information about the luminosity of the central source. The optical depth is expected to be small in the hard (20–200 keV) X-ray band of the IBIS telescope aboard the INTEGRAL observatory. We detected no statistically significant emission from SNR 1987 A in the INTEGRAL data and obtained an upper limit of LX ? 1.1 × 1036 erg s?1 on the luminosity of the central source in the 20–60 keV band. We also obtained an upper limit on the mass of radioactive 44Ti, M(44Ti) ? 10?3M.  相似文献   

5.
Infrared observations of the unique symbiotic system CH Cyg in 2003–2006 are presented. Analysis of the observations has shown that a fairly dense dust structure (a cloud or a shell) appeared on the line of sight in August–November 2006. The dust grains in the new shell are similar in optical properties to graphite ones and their sizes are mostly within the range 0.14–0.16 μm. The dust shell is optically thick and its optical depth at 2.2 μm is τ(2.2) ≈ 0.97. The dust shell mass is M d(06) ≈ 8 × 10−6 M and the rate of matter flow into the shell has reached ∼2 × 10−5 M yr−1. Original Russian Text ? O.G. Taranova, V.I. Shenavrin, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 8, pp. 598–603.  相似文献   

6.
We present the results of our hydrodynamic calculations of radial pulsations in helium stars with masses 1 MM ≤ 10 M, luminosity-to-mass ratios 1 × 103L/ML/M ≤ 2 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for mass fractions of helium Y=0.98 and heavy elements Z=0.02. We show that the lower boundary of the pulsation-instability region corresponds to L/M ~ 103L/M and that the instability region for L/M ? 5 × 103L/M is bounded by effective temperatures Teff ? 3 × 104 K. As the luminosity rises, the instability boundary moves into the left part of the Hertzsprung-Russell diagram and radial pulsations can arise in stars with effective temperatures Teff ? 105 K at L/M ? 7 × 103L/M. The velocity amplitude for the outer boundary of the hydrodynamic model increases with L/M and lies within the range 200 ? ΔU ? 700 km s?1 for the models under consideration. The periodic shock waves that accompany radial pulsations cause a significant change of the gas-density distribution in the stellar atmosphere, which is described by a dynamic scale height comparable to the stellar radius. The dynamic instability boundary that corresponds to the separation of the outer stellar atmospheric layers at a superparabolic velocity is roughly determined by a luminosity-to-mass ratio L/M ~ 3 × 104L/M.  相似文献   

7.
We have performed hydrodynamic calculations of the radial pulsations of helium stars with masses 10MM ≤ 50M, luminosity-to-mass ratios 5 × 103L/ML/M ≤ 2.5 × 104L/M, and effective temperatures 2 × 104 K ≤ Teff ≤ 105 K for helium and heavy-element mass fractions of Y=0.98 and Z=0.02, respectively. We show that the high-temperature boundary of the instability region for radial pulsations at L/M ? 104L/M extends to Teff≈105 K. The amplitude of the velocity variations for outer layers is several hundred km s?1, while the brightness variations in the B band of the UBV photometric system are within the range from several hundredths to half a magnitude. At constant luminosity-to-mass ratio, the radial pulsation period is determined only by the effective temperature of the star. In the ranges of luminosity-to-mass ratios 104L/ML/M ≤ 2 × 104L/M and effective temperatures 5 × 104 K ≤ Teff ≤ 9 × 104 K, the periods of the radial modes are within 6 min ?Π?103 min.  相似文献   

8.
The fine structure of the nucleus of the Seyfert galaxy NGC 1275 was investigated in 2005–2010 at a wavelength of 2 cm with a resolution as high as 50 μas. The structure consists of two parallel identical systems, eastern and western, spaced 0.5 pc apart in the plane of the sky. Each of them contains an ejector and a bipolar outflow. There are extended regions, lobes, at the extension of the bipolar outflows in the ?10° and 170° directions at distances of 5 pc northward and 6.5 pc southward of the active zone. The observed difference between the jet and counterjet sizes by a factor of ~3 and between the distances to the lobes by a factor of 0.8 is determined by the difference between their velocities and by the change of sign of the outflow acceleration in the period of silence. The high-velocity bipolar outflows are surrounded by three pairs of low-velocity components. The diameters of the low-velocity coaxial outflows and the third component are Ø1 ≈ 0.3 pc, Ø2 ≈ 0.8 pc, and Ø3 ≈ 1.4 pc at the detection limit. The outer low-velocity components of the outflows encompass both high-velocity outflows. The velocities of the outflows and their brightness temperatures increase exponentially as the center of the high-velocity outflows is approached. The brightness temperatures of the high-velocity outflows at the ejector exit are T b > 1012 K. The spectral line velocities in the nuclear region differ by ~600 km s?1 due to the velocity difference between the two systems. In the case of Keplerian motion, the revolution period is ~5 × 103 yr, and the mass of the central massive bodies, black holes, is M ≈ 107M. The fine structure suggests a vortical nature of the formation. In the case under consideration, two parallel vortices spaced ~0.5 pc apart and shifted by ~0.5 pc relative to each other were formed. The surrounding material inflows onto the disk of each system, is transferred in a spiral to the center, and is ejected in the ?10° and 170° directions as an excess angular momentum is accumulated. The interaction with the surrounding medium accelerates and collimates the rotating outflows. The residual material falls to the forming central massive body, a black hole, whose gravitational field stabilizes and accelerates the system formation process.  相似文献   

9.
The catalogue of protoplanetary nebulae by Vickers et al. has been supplemented with the line-of-sight velocities and proper motions of their central stars from the literature. Based on an exponential density distribution, we have estimated the vertical scale height from objects with an age less than 3 Gyr belonging to the Galactic thin disk (luminosities higher than 5000 L ) to be h = 146 ± 15 pc, while from a sample of older objects (luminosities lower than 5000 L ) it is h = 568 ± 42 pc. We have produced a list of 147 nebulae in which there are only the line-of-sight velocities for 55 nebulae, only the proper motions for 25 nebulae, and both line-of-sight velocities and proper motions for 67 nebulae. Based on this kinematic sample, we have estimated the Galactic rotation parameters and the residual velocity dispersions of protoplanetary nebulae as a function of their age. We have established that there is a good correlation between the kinematic properties of nebulae and their separation in luminosity proposed by Vickers. Most of the nebulae are shown to be involved in the Galactic rotation, with the circular rotation velocity at the solar distance being V 0 = 227 ± 23 km s?1. The following principal semiaxes of the residual velocity dispersion ellipsoid have been found: (σ1, σ2, σ3) = (47, 41, 29) km s?1 from a sample of young protoplanetary nebulae (with luminosities higher than 5000 L ), (σ1, σ2, σ3) = (50, 38, 28) km s?1 from a sample of older protoplanetary nebulae (with luminosities of 4000 L or 3500 L ), and (σ1, σ2, σ3) = (91, 49, 36) km s?1 from a sample of halo nebulae (with luminosities of 1700 L ).  相似文献   

10.
The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36–5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source’s bolometric fluxes ~9 × 10?7 and ~7.2 × 10?7 erg s?1 cm?2, luminosities L ≈ 2.5 × 105 L and ≈2 × 105 L , and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova’s expansion velocity near its optical brightness maximum was ~700 km s?1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ~4 × 103 L and ~1.1 × 104 L , and the dust mass ~1.6 × 1024 and ~1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ~1.1 × 10?6 M . The rate of dust supply to the nova shell was ~8 × 10?8 M yr?1. The expansion velocity of the dust shell was about 600 km s?1.  相似文献   

11.
The neutral hydrogen emission at 21 cm has been investigated with the RATAN-600 radio telescope in the vicinity of the supernova remnant HB9. A clumpyHI shell with radial motions surrounding the remnant has been detected. Its measured parameters contradict the connection with a shock wave from a supernova explosion. The shell formation under the action of a wind from a star that exploded as a supernova at the end of its evolution seems more realistic. The characteristics of the star obtained from the observed shell parameters are the following: a wind power of 0.5 × 1038 erg s?1, a mass-loss rate of 3.7 × 10?5 M yr?1, and an age of 3 × 106 yr. Given the measurement errors, the mass of the star is estimated to be >8M .  相似文献   

12.
13.
14.
Photometric and spectroscopic observations of the nearby type-IIP supernova 2004dj are presented. The 56Ni mass in the envelope of SN 2004dj was estimated from the light curve to be ≈0.02M. This estimate is confirmed by modeling the Hα luminosity. The Hα emission line exhibits a strong asymmetry characterized by the presence of a blue component in the line with a shift of ?1600 km s?1 at the early nebular phase. A similar asymmetry was found in the Hβ, [O I], and [Ca II] lines. The line asymmetry is interpreted as being the result of asymmetric 56Ni ejecta. The Hα profile and its evolution are reproduced in the model of an asymmetric bipolar 56Ni structure for a spherical hydrogen distribution. The mass of the front 56Ni jet is comparable to that of the central component and twice that of the rear 56Ni jet. We point out that the asymmetric bipolar structure of 56Ni ejecta is also present in SN 1999em, a normal type-IIP supernova.  相似文献   

15.
The evolution of a Population-I star with an initial mass M ZAMS = 60 M has been calculated. At the stage when a red giant turns into an early-type helium star, the vast bulk of the stellar mass is concentrated in a compact core surrounded by an extended envelope that is unstable with respect to radial oscillations. The range of effective temperatures within which the instability arises extends to T eff ? 105 K. For the models corresponding to the Wolf-Rayet evolutionary stage (5 × 104 K ≤ T eff ≤ 1.05 × 105 K), hydrodynamic calculations of self-exciting radial stellar pulsations have been performed. The pulsational instability develops in a time interval comparable to the dynamic timescale. Once the amplitude has ceased to grow, the pulsational motions are nonlinear traveling waves propagating from the core boundary to the stellar surface. The velocity amplitude of the outer layers is 500 km s?1 < ΔU < 103 km s?1, depending on the effective temperature. During the evolution of a helium star, the mean ratio of the maximum expansion velocity of the outer layers to the local escape velocity decreases and lies within the range 0.25 < U max/v esc < 0.6 for the models considered. The nonlinearity of the stellar pulsations is responsible for the increase in the mean radius \(\bar r\) of the Lagrangian layers compared to the equilibrium radius r eq. The effect of the increase in mean radius decreases with rising effective temperature from\(\bar r\)/r ~ 10 at T eff = 7 × 104 K to \(\bar r\)/r ≈ 2 at T eff = 105 K. The radial pulsation periods for the models considered lie within the range 0.1 day ≤ Π ≤ 1.6 day and the amplitude of the bolometric magnitude variations does not exceed 0 . m 2.  相似文献   

16.
A numerical method presented by Imshennik et al. (2002) is used to solve the two-dimensional axisymmetric hydrodynamic problem on the formation of a toroidal atmosphere during the collapse of an iron stellar core and outer stellar layers. An evolutionary model from Boyes et al. (1999) with a total mass of 25M is used as the initial data for the distribution of thermodynamic quantities in the outer shells of a high-mass star. Our computational region includes the outer part of the iron core (without its central part with a mass of 1M that forms the embryo of a protoneutron star at the preceding stage of the collapse) and the silicon and carbon-oxygen shells with a total mass of (1.8–2.5)M. We analyze in detail the results of three calculations in which the difference mesh and the location of the inner boundary of the computational region are varied. In the initial data, we roughly specify an angular velocity distribution that is actually justified by the final result—the formation of a hydrostatic equilibrium toroidal atmosphere with reasonable total mass, Mtot=(0.117–0.122)M, and total angular momentum, Jtot=(0.445–0.472)×1050 erg s, for the two main calculations. We compare the numerical solution with our previous analytical solution in the form of toroidal atmospheres (Imshennik and Manukovskii 2000). This comparison indicates that they are identical if we take into account the more general and complex equation of state with a nonzero temperature and self-gravitation effects in the atmosphere. Our numerical calculations, first, prove the stability of toroidal atmospheres on characteristic hydrodynamic time scales and, second, show the possibility of sporadic fragmentation of these atmospheres even after a hydrodynamic equilibrium is established. The calculations were carried out under the assumption of equatorial symmetry of the problem and up to relatively long time scales (~10 s).  相似文献   

17.
We have studied the simultaneous and separate solutions of the basic kinematic equations obtained using the stellar velocities calculated on the basis of data from the Gaia TGAS and RAVE5 catalogues. By comparing the values of Ω'0 found by separately analyzing only the line-of-sight velocities of stars and only their proper motions, we have determined the distance scale correction factor p to be close to unity, 0.97 ± 0.04. Based on the proper motions of stars from the Gaia TGAS catalogue with relative trigonometric parallax errors less than 10% (they are at a mean distance of 226 pc), we have found the components of the group velocity vector for the sample stars relative to the Sun (U, V,W) = (9.28, 20.35, 7.36) ± (0.05, 0.07, 0.05) km s?1, the angular velocity of Galactic rotation Ω0 = 27.24 ± 0.30 km s?1 kpc?1, and its first derivative Ω'0 = ?3.77 ± 0.06 km s?1 kpc?2; here, the circular rotation velocity of the Sun around the Galactic center is V0 = 218 ± 6 km s?1 kpc (for the adopted distance R0 = 8.0 ± 0.2 kpc), while the Oort constants are A = 15.07 ± 0.25 km s?1 kpc?1 and B = ?12.17 ± 0.39 km s?1 kpc?1, p = 0.98 ± 0.08. The kinematics of Gaia TGAS stars with parallax errors more than 10% has been studied by invoking the distances from a paper by Astraatmadja and Bailer-Jones that were corrected for the Lutz–Kelker bias. We show that the second derivative of the angular velocity of Galactic rotation Ω'0 = 0.864 ± 0.021 km s?1 kpc?3 is well determined from stars at a mean distance of 537 pc. On the whole, we have found that the distances of stars from the Gaia TGAS catalogue calculated using their trigonometric parallaxes do not require any additional correction factor.  相似文献   

18.
19.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

20.
We present the results of JHKLM-photometry for the symbiotic Mira star candidate V 335 Vul. Based on the average flux data, supplemented by IRAS, MSX, AKARI, and WISE mid-IR observations, we calculated a model of a spherically symmetric dust envelope of the star, made up of amorphous carbon and silicon carbide particles. The optical depth of the envelope in the visible range with a dust temperature at the inner boundary of T1 = 1300 K is τ V = 0.58. For an envelope expansion velocity of 26.5 km s?1, the estimated mass loss rate is equal to 5.7 × 10?7M yr?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号