首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   

2.
Uncertainties in the determinations of particulate organic carbon flux from measurements of the disequilibrium between 234Th and its mother isotope uranium depend largely on the determination of the organic carbon to 234thorium (OC : 234Th) ratio. The variability of the OC : 234Th ratio in different size fractions of suspended matter, ranging from the truly dissolved (< 3 or 10 kDa) fraction to several millimeter sized marine snow, as well as from sediment trap material was assessed during an eight-day cruise off the coast of California in Spring 1997. The affinity of polysaccharide particles called TEP (transparent exopolymer particles) and inorganic clays to 234Th was investigated through correlations. The observed decrease in the OC : 234Th ratio with size, within the truly dissolved to small particle size range, is consistent with concepts of irreversible colloidal aggregation of non-porous nano-aggregates. No consistent trend in the OC : 234Th ratio was observed for particles between 1 or 10 to 6000 μm. Origin and fate of marine particles belonging to this size range are diverse and interactions with 234Th too complex to expect a consistent relationship between OC : 234Th ratio and size, if all categories of particles are included. The relationship between OC and 234Th was significant when data from the truly dissolved fraction were excluded. However, variability was very large, implying that OC flux calculations using different collection methods (e.g. sediment trap, Niskin bottles or pumps) would differ significantly. Therefore a large uncertainty in OC flux calculations based on the 234Th method exist due to individual decisions as to which types or size classes of particles best represent sinking material in a specific area. Preferential binding of 234Th to specific substance classes could explain the high variability in the relationship between OC and 234Th. At 15 m, in the absence of lithogenic material, the OC : 234Th ratio was a function of the fraction of TEP or TEP-precursors in OC, confirming that acidic polysaccharides have a high affinity for 234Th and that TEP carry a ligand for 234Th. Preferential binding to TEP might change distribution patterns of 234Th considerably, as TEP may sink when included in large aggregates, or remain suspended or even ascend when existing as individual particles or microaggregates. In the presence of lithogenic matter, at depths below 30 m, the ratio between 234Th and OC was linearly related to the ratio between alumino silicates and C. The affinity of inorganic substances to 234Th is known to be relatively low, suggesting that a coating of acidic polysaccharides was responsible for the apparently high affinity between 234Th and lithogenic material. Overall, OC : 234Th ratios of all material collected during this investigation can best be explained by differential binding of 234Th to both TEP and TEP-precursors, as well as to lithogenic minerals, which were very abundant in an intermediate nepheloid layer between 50 and 90 m.  相似文献   

3.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   

4.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

5.
Thorium-234 is increasingly used as a tracer of ocean particle flux, primarily as a means to estimate particulate organic carbon export from the surface ocean. This requires determination of both the 234Th activity distribution (in order to calculate 234Th fluxes) and an estimate of the C / 234Th ratio on sinking particles, to empirically derive C fluxes. In reviewing C / 234Th variability, results obtained using a single sampling method show the most predictable behavior. For example, in most studies that employ in situ pumps to collect size fractionated particles, C / 234Th either increases or is relatively invariant with increasing particle size (size classes > 1 to 100s μm). Observations also suggest that C / 234Th decreases with depth and can vary significantly between regions (highest in blooms of large diatoms and highly productive coastal settings). Comparisons of C fluxes derived from 234Th show good agreement with independent estimates of C flux, including mass balances of C and nutrients over appropriate space and time scales (within factors of 2–3). We recommend sampling for C / 234Th from a standard depth of 100 m, or at least one depth below the mixed layer using either large volume size fractionated filtration to capture the rarer large particles, or a sediment trap or other device to collect sinking particles. We also recommend collection of multiple 234Th profiles and C / 234Th samples during the course of longer observation periods to better sample temporal variations in both 234Th flux and the characteristic of sinking particles. We are encouraged by new technologies which are optimized to more reliably sample truly settling particles, and expect the utility of this tracer to increase, not just for upper ocean C fluxes but for other elements and processes deeper in the water column.  相似文献   

6.
The deficit of 234Th relative to its radioactive parent 238U in the surface ocean can yield reliable estimates of vertical Particulate Organic Carbon (POC) fluxes to deeper waters, but only when coupled with an accurate ratio of POC concentration to activity of 234Th on sinking matter. Assuming a simple partitioning of suspended phytoplankton mass between single cells and flocs, we calculate the ratio of the POC flux estimated from 234Th deficit to the actual POC flux (p ratio, Smith, J.N., Moran, S.B., Speicher, E.A., in press. The p-ratio: a new diagnostic for evaluating the accuracy of upper ocean particulate organic carbon export fluxes estimated from 234Th/238U disequilibrium. Deep-Sea Research I.). The p ratios are calculated under the assumption that particle surface area is correlated with 234Th activity and particle volume is correlated with POC concentration. The value of the p ratio depends on the relative contributions of single cells and flocs to the vertical flux. When large single cells make up a significant fraction of the vertical flux, p ratios are less than one, meaning POC fluxes estimated from 234Th deficits underestimate actual POC fluxes. When large single cells are abundant but do not sink fast enough to contribute to vertical POC flux, p ratios are greater than one (up to 3 × overestimate). Factor analysis of the model indicates that altering the extent of flocculation in suspension and changing the density and maximum size of phytoplankton cells have the greatest effects on the p ratio. Failure to measure the properties of flocs when characterizing the ratio of POC to thorium on sinking matter potentially leads to large overestimation of the POC flux (over 20 ×). Failure to characterize the POC to thorium ratio of large particles, by, for example, destruction of phytoplankton cells in pumps, can lead to underestimation of POC flux. Estimates of POC flux should be most reliable in highly flocculated suspensions populated by small cells and rapidly sinking flocs. These conditions are often associated with intense phytoplankton blooms.  相似文献   

7.
An extensive 234Th data set was collected at two sites in the North Pacific: ALOHA, an oligotrophic site near Hawaii, and K2, a mesotrophic HNLC site in the NW Pacific as part of the VERTIGO (VERtical Transport In the Global Ocean) study. Total 234Th:238U activity ratios near 1.0 indicated low particle fluxes at ALOHA, while 234Th:238U ~0.6 in the euphotic zone at K2 indicated higher particle export. However, spatial variability was large at both sites—even greater than seasonal variability as reported in prior studies. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. At K2, there was a decrease in export flux and increase in 234Th activities over time associated with the declining phase of a summer diatom bloom, which required the use of non-steady state models for flux predictions. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. High vertical resolution profiles show narrow layers (20–30 m) of excess 234Th below the deep chlorophyll maximum at K2 associated with particle remineralization resulting in a decrease in flux at depth that may be missed with standard sampling for 234Th and/or with sediment traps. Also, the application of 234Th as POC flux tracer relies on accurate sampling of particulate POC/234Th ratios and here the ratio is similar on sinking particles and mid-sized particles collected by in-situ filtration (>10–50 μm at ALOHA and >5–350 μm at K2). To further address variability in particle fluxes at K2, a simple model of the drawdown of 234Th and nutrients is used to demonstrate that while coupled during export, their ratios in the water column will vary with time and depth after export. Overall these 234Th data provide a detailed view into particle flux and remineralization in the North Pacific over time and space scales that are varying over days to weeks, and 10's–100's km at a resolution that is difficult to obtain with other methods.  相似文献   

8.
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particulate organic carbon (POC) fluxes at 150 m ranged 1–4 mmol C m−2 d−1 and were comparable between methods, especially considering differences in integration times scales of each approach. Our main conclusion is that relative to summer mean conditions at the Bermuda Atlantic Time-series Study (BATS) site, eddy-driven changes in biogeochemistry did not enhance local POC fluxes during this later, more mature stage of the eddy life cycle (>6 months old). The absence of an enhancement in POC flux puts a constraint on the timing of higher POC flux events, which are thought to have caused the local O2 minima below each eddy, and must have taken place >2 months prior to our arrival. The mode-water eddy did enhance preferentially diatom biomass in its center, where we estimated a factor of three times higher biogenic Si flux than the BATS summer average. An unexpected finding in the highly depth-resolved 234Th data sets is narrow layers of particle export and remineralization within the eddy. In particular, a strong excess 234Th signal is seen below the deep chlorophyll maxima, which we attribute to remineralization of 234Th-bearing particles. At this depth below the euphotic zone, de novo particle production in the euphotic zone has stopped, yet particle remineralization continues via consumption of labile sinking material by bacteria and/or zooplankton. These data suggest that further study of processes in ocean layers is warranted not only within, but below the euphotic zone.  相似文献   

9.
234Th is a particle-reactive radionuclide widely used to trace biogeochemical oceanic processes occurring over short timescales. During the last few years, small-volume techniques based on the co-precipitation of 234Th with MnO2 coupled with beta-counting have been developed as an alternative to large volume gamma-spectrometric techniques. Here a procedure has been developed to enhance quantitative measurement of 234Th in MnO2 precipitates. The main objectives were to obtain a purified Th fraction for beta-counting and to determine the chemical recovery of 234Th using Th spikes and alpha-spectrometry as an alternative to ICP-MS based methods. Two variations of the procedure are presented. In the first “1 spike” method a 230Th tracer is added to the sample prior to precipitation of MnO2, and UTEVA® extraction chromatography is used to obtain a NdF3(Th) purified source that can be used for both beta-counting of 234Th and alpha-spectrometry of 230Th. In the “2 spike” method a 230Th spike is added and the MnO2(Th) precipitate is directly beta-counted for 234Th and subsequently spiked with 228Th or 229Th prior to UTEVA® purification and alpha-spectrometry. The results confirm the need to process small-volume seawater samples for 234Th measurement in presence of a yield tracer, and show that both the 1 spike and 2 spike methods allow an accurate and precise determination of 234Th (relative percent difference, RPD, between expected and mean measured value < 1%; CV between replicate samples < 3%). Our work also suggests that, although the combined analytical uncertainty on total 234Th measurements accomplished with both versions of the NdF3 procedure is promising (6% for 2-L samples), the precision of the 234Th flux estimation will ultimately depend on the degree of disequilibrium between 234Th and 238U.  相似文献   

10.
The common assumption that the ratio between particulate organic carbon (POC) and particulate 234Th obtained from shallow sediment traps and filterable particles are representative of the ratio in the total particle settling flux should be treated with caution in view of well-known biases associated with tethered shallow sediment traps and the decoupling between size and settling velocity of many natural particle regimes. To make progress toward reliably constraining the POC / 234Th ratio on truly settling particles, we have tested here a settling collection technique designed to remove any hydrodynamic bias; split flow-thin cell fractionation (SPLITT). These first results from a North Sea fjord and an open Baltic Sea time-series station indicates that the POC / 234Th ratio on the more complete particle-settling spectrum, isolated with SPLITT, was higher than the POC / 234Th ratio obtained simultaneously from tethered shallow sediment traps in seven out of seven parallel deployments with an average factor of 210%. The POC / 234Th ratio from the SPLITT was either in the same range or higher than that obtained on filtered “bulk” particles. To explain this novel data we hypothesize that the slowest settling fraction is organic-matter rich and does not strongly complex 234Th (i.e., high POC / 234Th). We suggest that this ultra-slow sinking fraction is better collected by SPLITT than with tethered sediment traps because of minimized hydrodynamic bias.This was tested using the ratio of POC / Al as a tracer of detrital mineral-ballast influenced settling velocity. The higher POC / Al ratios in SPLITT samples relative to in traps is consistent with the hypothesis that SPLITT is better suited for collecting also the slow-settling component of sinking particles. This important slow-settling component appears to here consist primarily of non-APS/TEP components of plankton exudates or other less-strongly 234Th-complexing organic matter. Further applications of the SPLITT technique are likely to return increasingly new insights on the composition (including “truly settling” POC / 234Th) of the total spectrum of particles settling out of the upper ocean.  相似文献   

11.
Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical-based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2–4-fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems were dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2–3.7 m d?1.Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, one-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91±0.20 to 4.92±1.22 mmol C m?2 d?1, 0.25±0.08 to 0.54±0.09 mmol N m?2 d?1, and 0.22±0.04 to 0.50±0.06 mmol Si m?2 d?1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1–11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical-based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3? uptake derived new production rates suggest that only a fraction, <35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p<0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65–95% (average 86±14%) of the total POC export measured in this study was due to diatoms.Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported, given the large association of this material with diatoms during these periods.  相似文献   

12.
Sabine Schmidt   《Marine Chemistry》2006,100(3-4):289
Over the last decade 234Th has become increasingly used to study particle transport in the ocean on a timescale of weeks. The application of 234Th is mainly focused on the determination of particle and associated carbon fluxes from oceanic surface water. However, 234Th is also suitable for investigating particle dynamic from the upper ocean down to interface sediments, as illustrated by the present work which reports unexpected behavior of 234Th in intermediate waters associated with the Mediterranean Outflow Water (MOW). Concentration profiles of dissolved 238U and 228Ra, and dissolved and particulate 234Th and 228Th were measured in the Mediterranean Outflow Water (MOW) near the Gibraltar Straits and at two sites (36°30′N–15°35′W, Nicole; 36°27′N–10°35′W, Yseult) which had hydrographic characteristics of Meddies, i.e. MOW that propagates as eddies in the Northeastern Atlantic at intermediate depths.There are marked differences in the distribution of thorium between MOW and the surrounding Atlantic waters. At the youngest Meddy Nicole salinity maximum at 1000 m depth, 234Th(total) : 238U and 228Th(total) : 228Ra activity ratios are significantly lower than radioactive equilibrium, indicating an unusual deficit of short half-life thorium nuclides. This implies an export of thorium, presumably on particles, from intermediate Meddy Nicole waters. This process is supported by an increase of particulate thorium fluxes measured in sediment traps deployed for two weeks above and within Meddy Nicole. In contrast, offshore Meddy Yseult has more typical profiles of both thorium nuclides that are nearly in equilibrium with their parents. These results indicate that at intermediate depths, the presence of MOW affects the exchange of reactive elements between particles and dissolved forms and enhances the downward flux of particles from intermediate waters in the Northeast Atlantic.  相似文献   

13.
Mesoscale eddies may enhance primary production (PP) in the open ocean by bringing nutrient-rich deep waters into the euphotic zone, potentially leading to increased transport of particles to depth. This hypothesis remains controversial, however, due to a paucity of direct particle export measurements. In this study, we investigated particle dynamics using 234Th–238U disequilibria within a mesoscale cold-core eddy, Cyclone Opal, which formed in the lee of the Hawaiian Islands. 234Th samples were collected along two transects across Cyclone Opal as well as during a time-series within the eddy core during a decaying diatom bloom. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) fluxes at 150 m varied spatially and temporally within the eddy and strongly depended on the 234Th model formulation used (e.g., steady state versus non-steady state, inclusion of upwelling, etc.). Particle fluxes estimated from a steady state model assuming an upwelling rate of 2 m day−1 yielded the best fit to sediment-trap data. These 234Th-derived particle fluxes ranged from 332±14 to 1719±53 μmol C m−2 day−1, 27±3 to 114±12 μmol N m−2 day−1, and 33±20 to 309±73 μmol Si m−2 day−1. Although PP rates within Cyclone Opal were elevated by a factor of 2–3, PC and PN fluxes were the same, within error, inside and outside of Cyclone Opal. The ratio of PC export to PP remained surprisingly low at <0.03 and similar to those measured in surrounding waters. In contrast, bSiO2 fluxes within the eddy core were three times higher. Detailed analyses of 234Th depth profiles consistently showed excess 234Th at 100–175 m, associated with the remineralization and possible accumulation of suspended and dissolved organic matter from the surface. We suggest that strong microzooplankton grazing facilitated particulate organic matter recycling and resulted in the export of empty diatom frustules. Thus, while eddies may increase PP, they do not necessarily increase PC and PN export to deep waters. This may be a general characteristic of wind-driven cyclonic eddies of the North Pacific Subtropical Gyre and suggests that eddies may preferentially act as a silica pump, thereby playing an important role in promoting silicic-acid limitation in the region.  相似文献   

14.
Disequilibrium between 234Th and 238U in water column profiles has been used to estimate the settling flux of Th (and, by proxy, of particulate organic carbon); yet potentially major non-steady-state influences on 234Th profiles are often not able to be considered in estimations of flux. We have compared temporal series of 234Th distributions in the upper water column at both coastal and deep-water sites in the northwestern Mediterranean Sea to coeval sediment trap records at the same sites. We have used sediment trap records of 234Th fluxes to predict temporal changes in water column 234Th deficits and have compared the predicted deficits to those measured to determine whether the time-evolution of the two coincide. At the coastal site (327 m water depth), trends in the two estimates of water column 234Th deficits are in fairly close agreement over the 1-month deployment during the spring bloom in 1999. In contrast, the pattern of water column 234Th deficits is poorly predicted by sediment trap records at the deep-water site (DYFAMED, 2300 m water depth) in both 2003 and 2005. In particular, the transition from a mesotrophic to an oligotrophic system, clearly seen in trap fluxes, is not evident in water column 234Th profiles, which show high-frequency variability. Allowing trapping efficiencies to vary from 100% does not reconcile the differences between trap and water column deficit observations; we conclude that substantial lateral and vertical advective influences must be invoked to account for the differences.Advective influences are potentially greater on 234Th fluxes derived from water column deficits relative to those obtained from traps because the calculation of deficits in open-ocean settings is dominated by the magnitude of the “dissolved” 234Th fraction. For observed current velocities of 5–20 cm s−1, in one radioactive mean-life of 234Th, the water column at the DYFAMED site can reflect 234Th scavenging produced tens to hundreds of kilometers away. In contrast, most of the 234Th flux collected in shallow sediment traps at the DFYFAMED site was in the fraction settling >200 m d−1; in effect the sediment trap can integrate the 234Th flux over distances 40-fold less than water column 234Th distributions. In some sense, sediment trap and water column sampling for 234Th provide complementary pictures of 234Th export. However, because the two methods can be dominated by different processes and are subject to different biases, their comparison must be treated with caution.  相似文献   

15.
234Th is an extremely useful radiotracer of particle dynamics in aquatic systems. Its utility, however, has yet to be realized by many within the aquatic science community. The reasons for this may in part be due to a lack of knowledge of how this nuclide has been used in the past as well as how and where 234Th might be profitably applied in future research. The purpose of this paper, then, is to examine the variety of 234Th applications that have been used to understand natural aquatic processes in four major areas: vertical transport, particle cycling, horizontal transport, and sediment dynamics. We provide a general overview of the possible applications of 234Th in the hopes of provoking an increased interest in the inherent potential and future application of 234Th in these systems. We end this paper with a discussion of future research avenues in the context of three specific regimes: (i) the upper 1000 m of the open ocean, (ii) coastal sediment/water processes and (iii) large freshwater lakes.  相似文献   

16.
234 Th was utilized as a tracer of particulate organic carbon (POC) export in the northwestern South China Sea (SCS) on the basis of the data collected at four stations during a spring cruise.Depth profiles of dissolved and particulate 234 Th activities were measured in the upper 60 m,showing a significant deficit relative to 238 U over the investigated stations.A stratified structure of 234 Th-238 U disequilibrium was in general observed in the upper 60 m water column,indicating that the euphotic zone of t...  相似文献   

17.
234Th (T1/2=24.1 d) and 210Po (T1/2=138.4 d) are particle reactive radioisotopes that are used as tracers for particle cycling in the upper ocean. Particulate organic carbon (POC) export has frequently been estimated using 234Th/238U disequilibrium. Recent evidence suggests that 210Po/210Pb disequilibrium may be used as an additional tool to examine particle export, given the direct biological uptake of 210Po into cellular material. Differences in these two radioisotope pairs with regard to their half-lives, particle reactivity and scavenging affinity in seawater should provide complementary information to be obtained on the processes occurring in the water column. Here, we review eight different studies that have simultaneously used both approaches to estimate POC export fluxes from the surface ocean. Our aim is to provide a complete “dataset” of all the existing POC flux data derived from the coupled use of both 234Th and 210Po and to evaluate the advantages and limitations of each tracer pair. Our analysis suggests that the simultaneous use of both radiotracers provides more useful comparative data than can be derived from the use of a single tracer alone. The difference in half-lives of 234Th and 210Po enables the study of export production rates over different time scales. In addition, their different biogeochemical behaviour and preferred affinity for specific types of particles leads to the conclusion that 234Th is a better tracer of total mass flux, whereas 210Po tracks POC export more specifically. The synthesis presented here is also intended to provide a basis for planning future sampling strategies and promoting further work in this field to help reveal the more specific application of each tracer under specific water column biogeochemistries.  相似文献   

18.
234Th/238U disequilibria have been used extensively in studies of particle dynamics and the fate and transport of particle-reactive matter in marine environments. Similar work in low salinity, estuarine, and freshwater systems has not occurred primarily because the lower concentrations of both parent and daughter nuclides that are typical of these systems often render established methods for the analysis of 234Th inadequate. The application of this radionuclide tracer technique to these systems, however, has great potential. To this end, we present a method for measuring low activities of 234Th in relatively small samples (<200 l) using low background gas-flow proportional counters, a 229Th yield monitor, and empirical corrections for the interferences from real and apparent betas that are emitted by other thorium isotopes and their progeny. For samples with low 234Th/228Th activity ratios, we improve upon current beta counting methodologies that rely on immediate sample counting, weak beta absorption, or multiple beta counts so that, using the analytical approach outlined here, it should be possible to measure 234Th activities (i) as low as 1.5 dpm/total sample, (ii) up to 2 weeks after radiochemical purification of thorium, and (iii) with only one sample count for alpha and beta activity.  相似文献   

19.
The short-lived thorium isotope 234Th (half-life 24.1 days) has been used as a tracer for a variety of transport processes in aquatic systems. Its use as a tracer of oceanic export via sinking particles has stimulated a rapidly increasing number of studies that require analyses of 234Th in both marine and freshwater systems. The original 234Th method is labor intensive. Thus, there has been a quest for simpler techniques that require smaller sample volumes. Here, we review current methodologies in the collection and analysis of 234Th from the water column, discuss their individual strengths and weaknesses, and provide an outlook on possible further improvements and future challenges. Also included in this review are recommendations on calibration procedures and the production of standard reference materials as well as a flow chart designed to help researchers find the most appropriate 234Th analytical technique for a specific aquatic regime and known sampling constraints.  相似文献   

20.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号