首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We present our synchronous spectroscopy and photometry of DI Cep, a classical T Tauri star. The equivalent widths and radial velocities of the individual components and Hα, Hβ, D1 and D2 Na I, and HeI λ5876 Å emission line profiles exhibit variability. We have found a clear positive correlation between the brightness and equivalent width for the Hα and Hβ emission lines. The photometric and spectroscopic data are satisfactorily described in phases of a 9-day period. The expected magnetic field of the star has been estimated using existing magnetospheric models to be 655–1000 G. The star is suspected to be a binary.  相似文献   

2.
We present photoelectric and spectral observations of a hot candidate proto-planetary nebula—early B-type supergiant with emission lines in spectrum—IRAS 19336-0400. The light and color curves display fast irregular brightness variations with maximum amplitudes \(\Delta V = 0_ \cdot ^m 30\), \(\Delta B = 0_ \cdot ^m 35\), \(\Delta U = 0_ \cdot ^m 40\) and color-brightness correlations. By the variability characteristics IRAS 19336-0400 appears similar to other hot proto-planetary nebulae. Based on low-resolution spectra in the range λ4000–7500 Å we have derived absolute intensities of the emission lines Hα, Hβ, Hγ, [S II], [N II], physical conditions in gaseous nebula: n e = 104 cm?3, T e = 7000 ± 1000 K. The emission line Hα, Hβ equivalent widths are found to be considerably variable and related to light changes. By UBV-photometry and spectroscopy the color excess has been estimated: E B-V = 0.50–0.54. Joint photometric and spectral data analysis allows us to assume that the star variability is caused by stellar wind variations.  相似文献   

3.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

4.
Using the high-resolution spectra obtained at the 6-meter telescope of the SAO RAS over 2002–2013, we studied the spectral features of the lines of interstellar medium. The radial velocities of the Na I 5890 Å, Na I 5896 Å, Ca II 3934 Å and Ca II 3968 Å absorption lines were analyzed. Seven diffuse interstellar bands 4964, 5780, 5797, 6196, 6203, 6379 Å were identified in the optical spectrum of IRAS01005+7910. Radial velocities Vr and equivalent widths Wλ of these DIBs were measured, for which the values of the interstellar reddening EB?V and column density of neutral hydrogen log [N(H)] were calculated.  相似文献   

5.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

6.
We study the variability of the Hγ, Hβ, and Hα line profiles in the spectrum of the supergiant κ Cas. The variability pattern proved to be the same for all the lines considered: their profiles are superimposed by blueshifted, central, and redshifted emission. For Hγ the positions of the emissions coincide with the positions of the corresponding emissions for He I λλ 5876, 6678 Å lines, and are equal to about ?135 ± 30.0 km s?1, ?20 ± 20 kms?1, and 135 ± 30.0 kms?1, respectively, whereas the three emissions in the Hβ profiles are fixed at about ?170.0 ± 70.0 kms?1, 20 ± 30 kms?1, and 170.0 ± 70.0 km s?1, respectively. The positions of the blueshifted and central emissions for Hα are the same as for Hβ, with additional blueshifted emission at ?135.0 ± 30.0 kms?1, whereas no traces of emission can be seen in the red wing of the line. These emissions show up more conspicuously in wind lines, however, their traces can be seen in all photospheric lines. When passing from wind lines to photospheric lines the intensity of superimposed emission components decreases and the same is true for the absolute values of their positions in line wings expressed in terms of radial velocities. The V/R variations of the lines studied found in the spectrum of κ Cas and the variability of the Hα emission indicate that the star is a supergiant showing Be phenomenon.  相似文献   

7.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   

8.
The axial rotation of a star plays an important role in its evolution, the physical conditions in its atmosphere and the appearance of its spectrum.We analyzed the CCD spectra of two stars for which their projected rotational velocity differs remarkably when derived from Ca II λ3933 Å and Mg II λ4481 Å lines. We estimated the projected rotational velocity of HD182255 to be 15.5 kms?1, although in various spectra of this star the line widths correspond to values as high as 28.5 km s?1. We found the HeI λ4471.498 Å line to be shifted to longer wavelengths by 0.046 Å, thus indicating a presence of the 3He I isotope in the atmosphere of this star with the 3He : 4He ratio from 0.2 to 0.6.We also found an absorption feature at the position of the forbidden line He I λ4470.02Å. We found the lines ofMg II and CII originating from higher excited levels to be missing in the spectra of HD 182255. For HD 214923 we determined the projected rotational velocity v sin i = 165km s?1 from the profiles of the metallic lines and Ca II λ3933Å, whereas for helium lines v sin i ≈ 130km s?1 is more appropriate. Radial velocity analysis results in three long periods of ≈ 105, 34, and 15 days, and a short period of ≈ 22 hours, close to the pulsational one mentioned earlier in the literature.  相似文献   

9.
CCD spectra taken with the PFES echelle spectrograph of the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences are used to perform a detailed study of the variability of the profiles of Hell, Hβ, and Hα lines in the spectrum of HD 93521. The pattern and nature of the variability of the Hell lines are similar to those of weak HeI lines and are due to nonradial pulsations. The period and amplitude of the radial-velocity variations are the same for the blue and red halves of the absorption profile but their phases are opposite. The behavior of the variations of Hβ and Hα hydrogen lines relative to their mean profiles is the same as that of strong HeI line and is due to nonradial pulsations. The period and phase of the radial-velocity oscillations are the same for the blue and red halves of the absorption profile but their amplitude are different. The behavior of the radial-velocity variations of the absorption and emission components of the Hα line indicates that the latter also are caused by nonradial pulsations. All this is indicative of the complex structure of the stellar wind in the region of its origin. The behavior of variability and wind kinematics differ in different directions and for different regions of the atmosphere and/or envelope.  相似文献   

10.
Based on 24 high-resolution echelle spectrograms of the Wolf-Rayet star HD 192163 taken in 2005–2007 at the Cassegrain focus of the 2-m Zeiss-2000 telescope at the Shemakha Astrophysical Observatory (National Academy of Sciences of Azerbaijan), we have investigated the profiles of five emission lines: He II 4859, He II 5411, CIV 5808, He I 5875, (He II + Hα) 6560. We have analyzed the echelle spectrograms using the DECH20 code. Various emission line parameters have been determined: the equivalent widths, radial velocities, central intensities, and FWHMs. The violet wing of the He II + Hα emission band has been found to be variable (from 6496 Å to 6532 Å). Significant differences in the equivalent widths and radial velocities of the He II + Hα emission band in 2005 and 2007 were revealed. This can be a manifestation of long-term variations in the star HD 192163. We have confirmed that HD 192163 belongs to the WN6 spectral subtype.  相似文献   

11.
Long-term photometric and spectroscopic observations of the yellow symbiotic star LT Del are analyzed. UBV light curves are presented. Based on the observations of 20 cycles, we have refined the orbital period of the star, P = 476 · d 0 ± 1 · d 0. The brightness has been found to be unstable at some orbital phases with an amplitude up to 0 · m 3. We have measured the fluxes in hydrogen and helium emission lines and in continuum and investigated their relationship to the orbital period. The fluxes in hydrogen and HeI lines follow the UBV light curves in phase; the He II 4686 Å flux does not depend on the phase and is constant within the accuracy of our measurements. The intensity ratio of the 4686 Å andHβ lines changes from 0.2 to 0.9 over the period. We interpret the spectroscopic observations based on the hypothesis of heating and ionization of the stellar wind from a cool component by high-frequency radiation from a hot star with a temperature of 105 K. We have estimated the spectral type of the cool star from our photometry and its continuum energy distribution as a bright K2–4 red giant branch halo star. The bolometric luminosity and mass loss rate have been estimated for the K component to be L bol ~ 700L and \(\dot{M}\) ~ 10?8 M yr?1, respectively.  相似文献   

12.
Based on high-resolution spectra taken near the He I 6678 Å line for the massive binary system 103 Tau, we have detected a weak absorption component belonging to the binary’s secondary component. We have measured the radial velocities of both components, improved the previously known orbital parameters, and determined the new ones. The binary has an orbital period P orb = 58.305d, an orbital eccentricity e = 0.277, a radial velocity semi-amplitude of the bright component K A = 44.8 km s?1, and a component mass ratio M A /M B = 1.77. The absence of photometric variability and the estimates of physical parameters for the primary component suggest that the binary most likely has a considerable inclination of the orbital plane to the observer, i ≈ 50°?60°. In this case, the secondary component is probably a normal dwarf of spectral type B5–B8. Based on the spectra taken near the H α line, we have studied the variability of the emission profile. It is shown to be formed in the Roche lobe of the secondary component, but no traces of active mass exchange in the binary have been detected.  相似文献   

13.
We summarize results from deep spectroscopic observations of the HD 209458 planetary system, carried out with the Hubble Space Telescope—Cosmic Origins Spectrograph. Orbitally resolved observations are used to show that hot gas emission lines, arising only in the stellar atmosphere, are not variable, while lower ionizations species found in the upper atmosphere of the hot Jupiter HD 209458b absorb stellar photons during transit. For both C II and Si III, we find mean transit attenuation of ~8%. The firm detection of silicon is in direct conflict with previous low-resolution studies, which we attribute to long-term variability in the system. We also use these observations to search for auroral emission from the planet, detecting a statistically significant emission feature at 1582 Å that is consistent with H2 photoexcited by stellar O I photons.  相似文献   

14.
We have analyzed the optical (U BV) and ultraviolet (λ1000–2700 Å) observations of the nuclear variability of the Seyfert galaxy NGC 4151 in the period 1987–2001 (the second cycle of activity). The fast (tens of days) and slow (~10 years) components of the nuclear variability, F and S, respectively, are shown to be completely different, but thermal in nature. We associate the S component with the formation and evolution of an accretion disk and the F component (flares) with instabilities in the accretion disk and their propagation over the disk in the form of a shock wave. The S component is present not only in the optical, but also in the ultraviolet range, with its amplitude being comparable over the entire range λ1000–5500 Å under study. The amplitude of the average flare (the F component) doubles as the wavelength decreases from 5500 to 1000 Å, while the rise time of the brightness to its maximum Δt (the variability time scale) decreases from
to 6d ± 2d. The brightness decline (flare decay) time decreases by a factor of 16. The extinction in the ultraviolet is shown to have been grossly underestimated: beginning from the first IUE data, only the extinction in our Galaxy,
, has been taken into account. A proper allowance for the total extinction, i.e., for the extinction in the nucleus of NGC 4151 as well
leads to a large increase in the luminosity of the variable source in the nucleus of NGC 4151: L = (6–8) × 1046 erg s?1. The spectral energy distribution for the variable source (λ950–5500 Å) agrees well with two Planck distributions: Te = 65 000 (λmax = 450 Å) and 8000 K. The radiation with Te = 8000 K is the reprocessing of the bulk of the ultraviolet radiation by the accretion disk with a lag of 0.5–0.6 days in the V band. The lag in the U-B variability of the slow component revealed the existence of an extended broad line region (EBLR) at an effective distance of 1.5 lt-years, as confirmed by spectroscopic data obtained at the Crimean Astrophysical Observatory. This yields the following mass of the central object in NGC 4151: Mc = (1–3) × 109M. The luminosity of the variable source then accounts for 50–60% of LEdd rather than 1–2%, as has been thought previously. In general, the pattern of ultraviolet and optical variability in NGC 4151 agrees excellently with the theory of disk accretion instability for a supermassive black hole suggested by N. Shakura and R. Sunyaev 30 years ago: the energy release is at a maximumin the ultraviolet (in the case under consideration, at λ450 Å), the luminosity is ~1047 erg s?1 for Mc ~ 109M (several tens of percent of LEdd), and the variability time scale ranges from several days to many years.
  相似文献   

15.
Axial rotation of a star plays an important role in its evolution, physical condition in its atmosphere and appearance of its spectrum. Methods of determinations of υ sin i are based on comparison of the observed profiles of spectral lines with theoretical ones. Their accuracy depends on the kind and quality of spectrograms as well as on the algorithms used. A frequently used method is the simple comparing of one line, e.g. the Ca II at 3933 Å or Mg ii at 4481 Å. This however, may result in a false value of υ sin i if low dispersion spectra are used. In this work we studied contemporary CCD as well as older photographic spectra of the multiple star HD90569. We determined the projected rotational velocity value to be υ sin i = 11 km/s. Besides formerly reported enhancing of lines of Cr, Fe, Mn and Sr, we found also large overabundances of rare earths, gallium and platinum. Helium, carbon, nitrogen, oxygen, aluminium, calcium, scandium and nickel are in deficit. The spectrum of the occultation double was not identified to be of the SB2-type, however, there are some observable evidences that the pair creates a binary with a long orbital period. Despite this there are also observations that leave such interpretation uncertain.  相似文献   

16.
Repeated spectroscopic observations made with the 6-m telescope of SAO RAS yielded new data on the radial-velocity variability of the anomalous yellow supergiant QY Sge. The strongest and most peculiar feature in its spectrum is the complex profile of NaI D lines, which contains a narrow and a very wide emission components. The wide emission component can be seen to extend from ?170 to +120 km/s, and at its central part it is cut by an absorption feature, which, in turn, is split into two subcomponents by a narrow (16 km/s at r=2.5) emission peak. An analysis of all the Vr values leads us to adopt for the star a systemic velocity of Vr=?21.1 km/s, which corresponds to the position of the narrow emission component of NaI. The locations of emission-line features of NaI D lines are invariable, which point to their formation in regions that are external to the supergiant’s photosphere. Differential line shifts of about 10 km/s are revealed. Emission in the Hα line is weaker than in NaI D lines, it fills the photospheric absorption almost completely. The absorption lines in the spectrum of QY Sge have a substantial width of FWHM ≈ 45 km/s. The method of model atmospheres is used to determine the following parameters: the effective temperature T eff =6250±150 K, surface gravity l g g=2.0±0.2, and microturbulence velocity ξ t =4.5±0.5 km/s. The chemical composition of the atmosphere differs only slightly from the solar composition: the metallicity of the star is found to be somewhat higher than the solar metallicity with an average overabundance of iron-peak elements of [Met/H]=+0.20. The star is found to be slightly overabundant in carbon and nitrogen, [C/Fe]=+0.25, [N/Fe]=+0.27. The α-process elements Mg, Si, and Ca are slightly overabundant, on the average by [α/H]=+0.12, and sulfur overabundance is higher, [S/α]=+0.29. The strong overabundance of sodium, [Na/Fe]=+0.75, is likely to be due to the dredge-up of the matter processed in the NeNa cycle. Heavy elements of the s-process are underabundant relative to the Sun. On the whole, the observed properties of QY Sge do not give grounds for including this star into the group of RCrB or RVTau-type objects.  相似文献   

17.
We analyzed the spectra of a well known SB1 binary HD199892 for which the projected rotational velocity v sin i, introduced in the literature, significantly differs when determined from the lines of Ca II at 3933 Å and ofMg II at 4481 Å. Contrary to the former findings, we discovered the signs of spectral lines of a companion star in the profile of Hβ as well as weak metallic lines in the high resolution high S/N spectra covering the most of the visual region. We estimated the secondary star to be a main sequence A4V star with a mass of 2.2M and derived its radial velocity which resulted in the mass of the primary M = 4.6M . Short sections of the spectra in the Mg II 4481 Å and Ca II 3933 Å regions are analyzed as well.  相似文献   

18.
Based on observations with the 6-m SAO RAS telescope, we have found that chemically peculiar star with a large depression of the continuum at λ5200 Å and strengthened silicon lines in the spectrum has a strong magnetic field. The longitudinal field component Be has a negative polarity and varies from ?300 G to ?2000 G with a period of 1.756 days. Photometric variations of brightness take place with the same period. We determined the variability of the radial velocity at times of about tens of years pointing to a possible binarity of the object. We have built a magnetic model of this star, determined the inclination angles of the rotation axis to the line of sight i = 20° and of the dipole axis to the rotation axis β = 116°, and the field strength at the pole is Bp = 10 kG. We carried out a chemical composition analysis and found a lack of helium for almost an order of magnitude, some overabundance of silicon and metal elements for more than an order of magnitude, particularly, cobalt for three orders of magnitude.  相似文献   

19.
Based on a self-consistent solution of the equations of gas dynamics, kinetics of hydrogen atomic level populations, and radiative transfer, we analyze the structure of a shock wave that propagates in a partially ionized hydrogen gas. We consider the radiative transfer at the frequencies of spectral lines by taking into account the effects of a moving medium in the observer's frame of reference. The flux in Balmer lines is shown to be formed behind the shock discontinuity at the initial hydrogen recombination stage. The Doppler shift of the emission-line profile is approximately one and a half times smaller than the gas flow velocity in the Balmer emission region, because the radiation field of the shock wave is anisotropic. At Mach numbers M1?10 and unperturbed gas densities σ1=10?10 g cm?3, the Doppler shift is approximately one third of the shock velocity U1. The FWHM of the emission-line profile δ ? is related to the shock velocity by δ ? k ? U1, where k ? = 1, 0.6, and 0.65 for the Hα, Hβ, and Hγ lines, respectively.  相似文献   

20.
In the UV spectra of BP Tau, GW Ori, T Tau, and RY Tau obtained with the Hubble Space Telescope, we detected an inflection near 2000 Å in the F λ c (λ) curve that describes the continuum energy distribution. The inflection probably stems from the fact that the UV continuum in these stars consists of two components: the emission from an optically thick gas with T<8000 K and the emission from a gas with a much higher temperature. The total luminosity of the hot component is much lower than that of the cool component, but the hot-gas radiation dominates at λ<1800 Å. Previously, other authors have drawn a similar conclusion for several young stars from low-resolution IUE spectra. However, we show that the short-wavelength continuum is determined from these spectra with large errors. We also show that, for three of the stars studied (BP Tau, GW Ori, and T Tau), the accretion-shock radiation cannot account for the observed dependence F λ c (λ) in the ultraviolet. We argue that more than 90% of the emission continuum in BP Tau at λ>2000 Å originates not in the accretion shock but in the inner accretion disk. Previously, a similar conclusion was reached for six more classical T Tau stars. Therefore, we believe that the high-temperature continuum can be associated with the radiation from the disk chromosphere. However, it may well be that the stellar chromosphere is its source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号