首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Radio galaxies are uniquely useful as probes of large-scale structure since their uniform identification with giant elliptical galaxies out to high redshift means that the evolution of their bias factor can be predicted. As the initial stage in a project to study large-scale structure with radio galaxies, we have performed a small redshift survey, selecting 29 radio galaxies in the range of 0.19相似文献   

2.
The redshift dependence of spectral index in powerful radio galaxies   总被引:1,自引:0,他引:1  
We present and discuss in this paper the rest frame radio spectra (1–25 GHz) of a sample of fourteen radio galaxies atz >2 from the newly defined MRC/1Jy complete sample of 558 radio sources. These galaxies are among the most powerful radio sources known and range in luminosity from 1028-1028·8 watt Hz-1 at 1 GHz. We find that the median rest frame spectral index of this sample of galaxies atz >2 is significantly steeper than that of a matched luminosity sample of 3CRR galaxies which are at a much lower redshift (0.85 <z < 1.7). This indicates that spectral index correlates primarily with redshift, at least in the luminosity range considered here. The difference between the distributions of rest frame spectral curvatures for the two samples does not appear to be statistically significant. We suggest a new explanation for the steeper spectra of radio galaxies at high redshift involving steeper electron energy spectra at injection. Electron energy spectra are expected to steepen in a first-order Fermi acceleration process, at both non-relativistic and relativistic shock fronts, as the upstream fluid velocity decreases. This may well be the case at high redshifts: the hotter and denser circum-galactic medium at high redshifts could result in slower speeds for the hotspot and the jet material behind it. The smaller sizes of radio sources at higher redshifts provide support to this scenario. Since deceased.  相似文献   

3.
《New Astronomy Reviews》2002,46(2-7):349-351
Our HST WFPC2 survey of 110 BL Lac objects, from six complete X-ray-, radio-, and optically-selected catalogs, probes the host galaxies of low-luminosity radio sources in the redshift range 0<z<1.35. The host galaxies are luminous ellipticals, well matched in radio power and galaxy magnitude to FR I radio galaxies. Similarly, the host galaxies of high luminosity quasars occupy the same region of this plane as FR II radio galaxies (matched in redshift). This strongly supports the unification of radio-loud AGN, and suggests that studying blazars at high redshift is a proxy for investigating less luminous (to us) but intrinsically identical radio galaxies, which are harder to find at high z. Accordingly, the difference between low-power jets in BL Lac objects and high-power jets in quasars can then be related to the FR I/FR II dichotomy; and the evolution of blazar host galaxies or their nuclei (jets) should correspond to the evolution of radio galaxies.  相似文献   

4.
We use the results of the SCUBA Local Universe Galaxy Survey, a submillimetre (submm) survey of galaxies in the nearby Universe, to investigate the relationship between the far-infrared (FIR)–submm and radio emission of galaxies at both low and high redshift. At low redshift we show that the correlation between radio and FIR emission is much stronger than the correlation between radio and submm emission, which is evidence that massive stars are the source of both the FIR and radio emission. At high redshift we show that the submm sources detected by SCUBA are brighter sources of radio emission than are predicted from the properties of galaxies in the local Universe. We discuss possible reasons for the cosmic evolution of the relationship between radio and FIR emission.  相似文献   

5.
We report the serendipitous detection of a Wide-Angle Tail (WAT) radio galaxy at 240 and 610 MHz, using the Giant Metrewave Radio Telescope (GMRT). This WAT is hosted by a cD galaxy PGC 1519010 whose photometric redshift given in the SDSS DR6 catalogue is close to the spectroscopic redshifts (0.105, 0.106 and 0.107) of three galaxies found within 4′ of the cD. Using the SDSS DR6, we have identified a total of 37 galaxies within 15′ of the cD, whose photometric redshifts are between 0.08 and 0.14. This strongly suggests that the cD is associated with a group of galaxies whose conspicuous feature is a north-south chain of galaxies (filament) extending to at least 2.6 Mpc. The ROSAT all-sky survey shows a faint, diffuse X-ray source in this direction, which probably marks the hot intracluster gas in the potential well of this group. We combine the radio structural information for this WAT with the galaxy clustering in that region to check its overall consistency with the models of WAT formation. The bending of the jet before and after its disruption forming the radio plume, are found to be correlated in this WAT, as seen from the contrasting morphological patterns on the two sides of the core. Probable constraints imposed by this on the models of WAT formation are pointed out. We also briefly report on the other interesting radio sources found in the proximity of the WAT. These include a highly asymmetric double radio source and an ultra-steep spectrum radio source for which no optical counterpart is detected in the SDSS.  相似文献   

6.
We present an investigation of the relationships between the radio properties of a giant radio galaxy MRC B0319−454 and the surrounding galaxy distribution with the aim of examining the influence of intergalactic gas and gravity associated with the large-scale structure on the evolution in the radio morphology. Our new radio continuum observations of the radio source, with high surface brightness sensitivity, images the asymmetries in the megaparsec-scale radio structure in total intensity and polarization. We compare these with the three-dimensional galaxy distribution derived from galaxy redshift surveys. Galaxy density gradients are observed along and perpendicular to the radio axis: the large-scale structure is consistent with a model wherein the galaxies trace the ambient intergalactic gas and the evolution of the radio structures are ram-pressure limited by this associated gas. Additionally, we have modelled the off-axis evolution of the south-west radio lobe as deflection of a buoyant jet backflow by a transverse gravitational field: the model is plausible if entrainment is small. The case study presented here is a demonstration that giant radio galaxies may be useful probes of the warm-hot intergalactic medium believed to be associated with moderately over dense galaxy distributions.  相似文献   

7.
Infrared-Faint Radio Sources represent a new and unexpected class of object which is bright at radio wavelengths but unusually faint at infrared wavelengths. If, like most mJy radio sources, they were either conventional active or star-forming galaxies in the local Universe, we would expect them to be detectable at infrared wavelengths, and so their non-detection by the Spitzer Space Telescope is surprising. Here, we report the detection of one of these sources using very long baseline interferometry, from which we conclude that the sources are driven by active galactic nuclei. We suggest that these sources are either normal radio-loud quasars at high redshift or abnormally obscured radio galaxies.  相似文献   

8.
We present the results of a comprehensive re-analysis of the images of a virtually complete sample of 28 powerful 3CR radio galaxies with redshifts 0.6< z <1.8 from the Hubble Space Telescope ( HST ) archive. Using a two-dimensional modelling technique we have derived scalelengths and absolute magnitudes for a total of 16 3CR galaxies with a median redshift of z =0.8. Our results confirm the basic conclusions of Best, Longair & Röttgering in that we also find z =1 3CR galaxies to be massive, well-evolved ellipticals, the infrared emission of which is dominated by starlight. However, we in fact find that the scalelength distribution of 3CR galaxies at z ≃1 is completely indistinguishable from that derived for their low-redshift counterparts from our own recently completed HST study of active galactic nuclei hosts at z ≃0.2. There is thus no evidence that 3CR radio galaxies at z ≃1 are dynamically different from 3CR galaxies at low redshift. Moreover, for a 10-object subsample we have determined the galaxy parameters with sufficient accuracy to demonstrate, for the first time, that the z ≃1 3CR galaxies follow a Kormendy relation that is indistinguishable from that displayed by low-redshift ellipticals if one allows for purely passive evolution. The implied rather modest level of passive evolution since z ≃1 is consistent with that predicted from spectrophotometric models provided one assumes a high formation redshift ( z ≥4) within a low-density universe. We conclude that there is no convincing evidence for significant dynamical evolution among 3CR galaxies in the redshift interval 0< z <1, and that simple passive evolution remains an acceptable interpretation of the K – z relation for powerful radio galaxies.  相似文献   

9.
We probe the relationship between star formation rate (SFR) and radio synchrotron luminosity in galaxies at  0 < z < 2  within the northern Spitzer Wide-area Infrared Extragalactic survey (SWIRE) fields, in order to investigate some of the assumptions that go into calculating the star formation history of the Universe from deep radio observations. We present new 610-MHz Giant Metrewave Radio Telescope (GMRT) observations of the European Large-Area ISO Survey-North 2 (ELAIS-N2) field, and using this data, along with previous GMRT surveys carried out in the ELAIS-N1 (North 1) and Lockman Hole regions, we construct a sample of galaxies which have redshift and SFR information available from the SWIRE survey. We test whether the local relationship between SFR and radio luminosity is applicable to   z = 2  galaxies, and look for evolution in this relationship with both redshift and SFR in order to examine whether the physical processes which lead to synchrotron radiation have remained the same since the peak of star formation in the Universe. We find that the local calibration between radio luminosity and star formation can be successfully applied to radio-selected high-redshift, high-SFR galaxies, although we identify a small number of sources where this may not be the case; these sources show evidence for inaccurate estimations of their SFR, but there may also be some contribution from physical effects such as the recent onset of starburst activity, or suppression of the radio luminosity within these galaxies.  相似文献   

10.
We present the results of multiwavelength observations of cores and hotspots, at L , C , X and U bands with the Very Large Array, of a matched sample of radio galaxies and quasars selected from the Molonglo Reference Catalogue . We use these observations to determine the spectra of cores and hotspots, and test the unified scheme for radio galaxies and quasars. Radio cores have been detected at all wavelengths in all of the quasars in our sample, whereas only ∼50 per cent of the galaxies have cores detected in at least one of the wavelengths . The degree of core prominence in this sample is consistent with the unified scheme for radio galaxies and quasars. A comparison of the distributions of the two-point spectral index of the cores in our sample of lobe-dominated quasars, with the distributions in a matched sample of core-dominated quasars, shows that the distributions for these two classes are significantly different, and this is consistent with the expectations of the unified scheme. The difference in the spectral indices of the two hotspots on opposite sides is also significantly larger for quasars than for radio galaxies, as is expected in the unified scheme. We also investigate the relationship between the spectral index of the hotspots and the redshift or luminosity for our sample of sources.  相似文献   

11.
The submillimeter (submm) extragalactic background light (EBL) traces the integrated star formation history throughout the cosmic time. Deep blank-field 850 μm and 1.4 GHz surveys and optical follow-up have been only able to determine the redshift of ∼20% of the submm EBL. The majority (80%) of the submm EBL is still below the confusion and sensitivity limits of current submm and radio instruments. We break through these limits with stacking analyses on our deep 850 μm image in the GOODS-N and find that the submm EBL mostly comes from galaxies at redshifts around 1.0. This redshift is much lower than the redshift of z=2–3 previously implied from radio identified submm sources. This result significantly decreases the number of high redshift galaxies that may be seen by ALMA.  相似文献   

12.
High red-shift radio galaxies are best searched at low radio frequencies, due to its steep radio spectra. Here we present preliminary results from our programme to search for high red-shift radio galaxies to ∼10 to 100 times fainter than the known population till date. We have extracted ultra-steep spectrum (USS) samples from deep 150 MHz Giant Meter-wave Radio Telescope (GMRT) observations from one of the three well-studied DEEP2 fields to this effect. From correlating these radio sources with respect to the high-frequency catalogues such as VLA, FIRST and NVSS at 1.4 GHz, we find ∼100 steep spectrum (spectral index, α > 1) radio sources, which are good candidates for high red-shift radio galaxies.  相似文献   

13.
A submillimetre survey of the star formation history of radio galaxies   总被引:1,自引:0,他引:1  
We present the results of the first major systematic submillimetre survey of radio galaxies spanning the redshift range 1< z <5. The primary aim of this work is to elucidate the star formation history of this sub class of elliptical galaxies by tracing the cosmological evolution of dust mass. Using SCUBA on the JCMT, we have obtained 850-μm photometry of 47 radio galaxies to a consistent rms depth of 1 mJy, and have detected dust emission in 14 cases. The radio galaxy targets have been selected from a series of low-frequency radio surveys of increasing depth (3CRR, 6CE, etc.), in order to allow us to separate the effects of increasing redshift and increasing radio power on submillimetre luminosity. Although the dynamic range of our study is inevitably small, we find clear evidence that the typical submillimetre luminosity (and hence dust mass) of a powerful radio galaxy is a strongly increasing function of redshift; the detection rate rises from ≃15 per cent at z <2.5 to ≳75 per cent at z >2.5, and the average submillimetre luminosity rises at a rate ∝(1+ z )3 out to z ≃4. Moreover, our extensive sample allows us to argue that this behaviour is not driven by underlying correlations with other radio galaxy properties such as radio power, radio spectral index, or radio source size/age. Although radio selection may introduce other more subtle biases, the redshift distribution of our detected objects is in fact consistent with the most recent estimates of the redshift distribution of comparably bright submillimetre sources discovered in blank field surveys. The evolution of submillimetre luminosity found here for radio galaxies may thus be representative of massive ellipticals in general.  相似文献   

14.
Most of the radio galaxies with z > 3 have been found using the red-shift spectral index correlation. We have started a programme with the Giant Metrewave Radio Telescope (GMRT) to exploit this correlation at flux density levels about 100 times deeper than the known high-redshift radio galaxies, with an aim to detect candidate high-redshift radio galaxies. Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, 610 and 1412 MHz with the Westerbork Synthesis Radio Telescope (WSRT) and at 1400 and 4860 MHz with the Very Large Array (VLA). We find about 150 radio sources with spectra steeper than 1. About two-thirds of these are not detected in Sloan Digital Sky Survey (SDSS), hence are strong candidate high-redshift radio galaxies, which need to be further explored with deep infra-red imaging and spectroscopy to estimate the red-shift.  相似文献   

15.
We present an optically based study of the alignment between the radio axes and the optical major axes of eight z ∼0.7 radio galaxies in a 7C sample. The radio galaxies in this sample are ≈20 times less radio‐luminous than 3C galaxies at the same redshift, and are significantly less radio-luminous than any other well-defined samples studied to date. Using Nordic Optical Telescope images taken in good seeing conditions at rest frame wavelengths just longward of the 4000-Å break, we find a statistically significant alignment effect in the 7C sample. Furthermore, in two cases where the aligned components are well separated from the host we have been able to confirm spectroscopically that they are indeed at the same redshift as the radio galaxy. However, a quantitative analysis of the alignment in this sample and in a corresponding 3C sample from HST archival data indicates that the percentage of aligned flux may be lower and of smaller spatial scale in the 7C sample. Our study suggests that alignments on the 50-kpc scale are probably closely related to the radio luminosity, whereas those on the 15‐kpc scale are not. We discuss these results in the context of popular models for the alignment effect.  相似文献   

16.
The high-redshift Universe contains luminous Lyα emitting sources such as galaxies and quasars. The emitted Lyα radiation is often scattered by surrounding neutral hydrogen atoms. We show that the scattered Lyα radiation obtains a high level of polarization for a wide range of likely environments of high-redshift galaxies. For example, the backscattered Lyα flux observed from galaxies surrounded by a superwind-driven outflow may reach a fractional polarization as high as ∼40 per cent. Equal levels of polarization may be observed from neutral collapsing protogalaxies. Resonant scattering in the diffuse intergalactic medium typically results in a lower polarization amplitude (≲7 per cent), which depends on the flux of the ionizing background. Spectral polarimetry can differentiate between Lyα scattering off infalling gas and outflowing gas; for an outflow, the polarization should increase towards longer wavelengths while for infall the opposite is true. Our numerical results suggest that Lyα polarimetry is feasible with existing instruments, and may provide a new diagnostic of the distribution and kinematics of neutral hydrogen around high-redshift galaxies. Moreover, polarimetry may help suppress infrared lines originating in the Earth's atmosphere, and thus improve the sensitivity of ground-based observations to high-redshift Lyα emitting galaxies outside the currently available redshift windows.  相似文献   

17.
We present measurements of the clustering properties of galaxies in the field of redshift range 0.5 ≲ z ≲ 1.5 Ultra Steep Spectrum radio sources selected from the Sydney University Molonglo Sky Survey and the National Radio Astronomy Observatories Very Large Array Sky Survey. Galaxies in these USS fields were identified in deep near-infrared observations, complete down to   K s= 20  , using the IRIS2 instrument at the Anglo-Australian Telescope. We used the redshift distribution of   K s < 20  galaxies taken from Cimatti et al. (2002) to constrain the correlation length r 0. We find a strong correlation signal of galaxies with   K s < 20  around our USS sample. A comoving correlation length   r 0= 14.0 ± 2.8  h −1 Mpc  and γ= 1.98 ± 0.15 are derived in a flat cosmological model universe.
We compare our findings with those obtained in a cosmological N -body simulation populated with galform semi-analytic galaxies. We find that clusters of galaxies with masses in the range   M = 1013.4–14.2  h −1 M  have a cluster–galaxy cross-correlation amplitude comparable to those found between the USS hosts and galaxies. These results suggest that distant radio galaxies are excellent tracers of galaxy overdensities and pinpoint the progenitors of present day rich clusters of galaxies.  相似文献   

18.
Future radio observations with the Square Kilometre Array (SKA) and its precursors will be sensitive to trace spiral galaxies and their magnetic field configurations up to redshift z ≈ 3. We suggest an evolutionary model for the magnetic configuration in star‐forming disk galaxies and simulate the magnetic field distribution, the total and polarized synchrotron emission, and the Faraday rotation measures for disk galaxies at z ≲ 3. Since details of dynamo action in young galaxies are quite uncertain, we model the dynamo action heuristically relying only on well‐established ideas of the form and evolution of magnetic fields produced by the mean‐field dynamo in a thin disk. We assume a small‐scale seed field which is then amplified by the small‐scale turbulent dynamo up to energy equipartition with kinetic energy of turbulence. The large‐scale galactic dynamo starts from seed fields of 100 pc and an averaged regular field strength of 0.02 μG, which then evolves to a “spotty” magnetic field configuration in about 0.8 Gyr with scales of about one kpc and an averaged regular field strength of 0.6 μG. The evolution of these magnetic spots is simulated under the influence of star formation, dynamo action, stretching by differential rotation of the disk, and turbulent diffusion. The evolution of the regular magnetic field in a disk of a spiral galaxy, as well as the expected total intensity, linear polarization and Faraday rotation are simulated in the rest frame of a galaxy at 5GHz and 150 MHz and in the rest frame of the observer at 150 MHz. We present the corresponding maps for several epochs after disk formation. Dynamo theory predicts the generation of large‐scale coherent field patterns (“modes”). The timescale of this process is comparable to that of the galaxy age. Many galaxies are expected not to host fully coherent fields at the present epoch, especially those which suffered from major mergers or interactions with other galaxies. A comparison of our predictions with existing observations of spiral galaxies is given and discussed (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and H2O maser lines, as well as from synchrotron and free–free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei, even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z 2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.  相似文献   

20.
《New Astronomy Reviews》2002,46(2-7):353-356
The optical morphological and photometric properties of 79 low redshift radio galaxies are discussed. It is found that most radio galaxies are luminous bulge dominated systems similar to normal non-radio giant ellipticals. The average absolute magnitude of the sample is 〈MHOST(tot)〉=−23.98, with a clear trend for FR I sources to be ∼0.5 mag brighter than FR II galaxies. In about 40% of the objects we find an excess of light in the nucleus attributable to the presence of a nuclear point source. This contributes on average for ∼1–2% of the total flux from the host galaxy. Radio galaxies follow the same μeRe relationship of normal (non-active) elliptical galaxies. The distribution of ellipticity, the amount of twisting and shape of isophotes do not differ significantly from other ellipticals. These results support a scenario where radio emission is little related with the overall properties of the host galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号