首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Neutral gas composition and ionospheric measurements taken by the Dynamic Explorer 2 satellite at F2-region heights (280–300 km) during an intense geomagnetic storm (peak Dst=−187 nT) were used to analyze the role of some possible physical mechanisms responsible for the changes of electron density at high and middle latitudes. The storm considered in this study occurred on 26 September 1982. The main features observed were increases of electron density during the initial stages of the storm at middle latitudes; followed by decreases of electron density at high and mid-high latitudes during the main phase of the storm and the first phase of the recovery. Delayed increases of electron density during the recovery phase have also been observed at mid-high latitudes (50–60°). Several mechanisms were discussed in explaining the features observed for the electron density variations.  相似文献   

2.
Neutral gas composition and ionospheric measurements taken by the Dynamic Explorer 2 satellite at F2-region heights during two geomagnetic storms are used to analyze the role of some possible physical mechanisms responsible for the changes of electron density at equatorial and low geomagnetic latitudes. The storms considered occurred on October 2, 1981 (storm 1) and July 13, 1982 (storm 2). During storm 1 (weak), vertical plasma drifts and equatorward storm-time winds operated increasing of the electron density at the trough of equatorial anomaly and the decreases at the crest region. During storm 2 (intense) changes of composition (increase of molecular nitrogen and atomic oxygen) played a fundamental role for the changes of electron density observed at low latitudes in summer hemisphere. It is concluded that different physical processes seem to have varying degrees of importance depending on the intensity of the storm.  相似文献   

3.
热层大气密度是空间大气环境的重要参数,经过多年的研究已开发了多种大气模式,但其误差普遍较大,尤其在磁暴期间偏差值甚至超过100%.本文利用中国星载大气密度探测器和CHAMP卫星加速度计在轨获得的连续探测数据,针对近10年(2003—2014)中多次强磁暴事件和多次中等强度扰动事件,即2003年11月、2004年7月和2005年8~9月多次强磁暴事件(Kp值均达到9),2006年4月、2012年4月的两次中等强度磁暴事件(Kp值分别达到7和6),分析和比对不同强度磁扰事件期间不同高度全球大气密度就位探测值与模式值(NRLMSISE00)之间的差别.在2005年8月24日强磁扰事件中,560 km高度中国卫星就位探测值上涨幅度约2~3倍,扰动区中的增变比高达5.7倍,375 km高度CHAMP卫星就位探测值上涨幅度约0.8倍,扰动区中增变比达4.0倍,期间大气密度模式值不仅没有出现明显的涨落,更没有出现强烈的区域扰动;在2003年11月和2004年7月的强磁扰事件中,CHAMP卫星就位探测值均有显著涨变和强烈扰动变化,而模式值无明显扰动变化;在中等强度磁扰事件中,高度560 km附近就位探测值在北、南半球高纬地区显著上涨,远高于模式值,高度350 km附近就位探测值在地球阴影区域显著上涨,上涨幅度也大于模式值.分析结果表明现有大气模式对地磁扰动(尤其是强磁暴事件)期间全球热层大气密度的响应并不明显,需要进一步改善.  相似文献   

4.
Summary The total ozone response to strong major geomagnetic storms (Ap≥60) in winter along the 50° N latitudinal circle is studied. The results add to the recent results of Laštovička et al. (1992) obtained for European middle latitudes (∼50°N) and to the results of Mlch (1994). A significant response of total ozone is only observed in winter under high solar activity/E-phase of QBO conditions (E-max) and seems to be caused by geomagnetic storm-induced changes of atmospheric dynamics. There are two sectors along latitude 50°N, which are sensitive to forcing by geomagnetic storms both in total ozone and the troposphere — north-eastern Atlantic-European and eastern Siberia-Aleutian sectors. The total ozone response under E-max conditions manifests itself mainly as a large decrease in the longitudinal variation of ozone after the storm, which means an increase of ozone in Europe. The observed effects in total ozone consist in redistribution, not production or loss of ozone.  相似文献   

5.
磁暴期间热层大气密度变化   总被引:2,自引:0,他引:2       下载免费PDF全文
基于CHAMP卫星资料,分析了2002—2008年267个磁暴期间400km高度大气密度变化对季节、地方时与区域的依赖以及时延的统计学特征,得到暴时大气密度变化的一些新特点,主要结论如下:1)两半球大气密度绝对变化(δρa)结果在不同强度磁暴、不同地方时不同.受较强的焦耳加热和背景中性风共同作用,在北半球夏季,中等磁暴过程中夜侧和大磁暴中,夏半球的δρa强于冬半球;由于夏季半球盛行风环流造成的扰动传播速度快,北半球夏季日侧30°附近大气,北(夏)半球到达峰值的时间早于南(冬)半球.而可能受半球不对称背景磁场强度所导致的热层能量输送率影响,北半球夏季强磁暴和中磁暴个例的日侧,南半球δρa强于北半球;春秋季个例中日侧30°附近大气,北半球先于南半球1~2h达到峰值.2)受叠加在背景环流上的暴时经向环流影响,春秋季暴时赤道大气密度达到峰值的时间最短,日/夜侧大气分别在Dstmin后1h和2h达到峰值.至点附近夜侧赤道大气达到峰值时间一致,为Dstmin后3h;不同季节日侧结果不同,在北半球冬季时赤道地区经过更长的时间达到峰值.3)日侧赤道峰值时间距离高纬度峰值时间不受季节影响,为3h左右.在春秋季和北半球冬季夜侧,赤道大气密度先于高纬度达到峰值,且不同纬度大气密度的峰值几乎无差别,表明此时低纬度存在其他加热源起着重要作用.  相似文献   

6.
The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003–2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° Е) is examined. Variations of Ne at heights of 150–190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal–autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003–2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150?190 km.  相似文献   

7.
基于CHAMP卫星加速度计数据,对2002年4月和2004年11月两个连续磁暴事件期间400 km高度热层大气密度时空变化特征进行了分析,结果表明,地磁扰动相近的连续磁暴发生时,热层密度对第一个磁暴的响应幅度明显大于后续磁暴;磁暴间歇期有时会出现密度低值;磁暴恢复相,热层密度先于ap指数快速恢复至暴前水平,甚至更低;热层大气经验模式NRLMSISE00的预测结果中没有包含这些现象.利用TIMED卫星SABER辐射计数据进一步分析同时段100~155 km高度NO冷却率的变化特点,NO冷却率在暴时的增大滞后热层密度2~6 h;磁暴恢复相,NO冷却率保持在较高水平,弛豫时间远大于热层密度.暴时增强的NO冷却率及其缓慢的恢复是导致热层密度响应幅度变小的原因,间歇期是否出现热层密度异常低值也与NO冷却率的增幅有关.  相似文献   

8.
A very strong magnetic storm of May 15, 2005, was caused by an interplanetary magnetic cloud that approached the Earths’ orbit. The sheath region of this cloud was characterized by a high solar wind density (~25–30 cm?3) and velocity (~850 km/s) and strong variations (to ~20 nT) in the interplanetary magnetic field (IMF). It has been indicated that an atypical bay-like geomagnetic disturbance was observed during the initial phase of this storm in a large longitudinal region at high latitudes: from the morning to evening sectors of the geomagnetic local time. Increasing in amplitude, the magnetic bay rapidly propagated to the polar cap latitudes up to the geomagnetic pole. An analysis of the global space-temporal dynamics of geomagnetic pulsations in the frequency band 1–6 mHz indicated that most intense oscillations were observed in the morning sector in the region of the equivalent ionospheric current at latitudes of about 72°–76°. The wavelet structure of magnetic pulsations in the polar cap and fluctuations in IMF was generally similar to the maximum at frequencies lower than 4 mHz. This can indicate that waves directly penetrated into the polar cap from the solar wind.  相似文献   

9.
An investigation of the response of the mid-high, mid and low latitude critical frequency foF2 to the geomagnetic storm of 15 July 2000 is made. Ground-based hourly foF2 values (proportional to square root of peak electron density of F2-layer) from four chains of ionospheric stations located in the geographic longitude ranges 10°W–35°E, 60°E–120°E, 130°E–170°E, 250°E–295°E are used. Relative deviations of foF2 are considered. The main ionospheric effects for the considered storm are: long-duration negative disturbances at mid-high latitudes in summer hemisphere in sectors where the storm onset occurred in the afternoon/night-time hours; short-duration positive disturbances in the summer hemisphere at mid-high latitudes in the pre-sunset hours during the end of main phase-first stage of the recovery; small and irregular negative disturbances in the low latitude winter hemisphere which predominate during the main phase and first part of the recovery, and positive disturbances in both hemispheres at mid-high and mid latitudes prior to the storm onset irrespective of the local time. In addition, the validity of some physical mechanisms proposed to explain the F2 region behaviour during disturbed conditions is considered. gus-mansilla@hotmail.com  相似文献   

10.
The level of wave geomagnetic activity in the morning, afternoon, and nighttime sectors during strong magnetic storms with Dst varying from ?100 to ?150 nT has been statistically studied based on a new ULF wave index. It has been found out that the intensity of geomagnetic pulsations at frequencies of 2–7 mHz during the magnetic storm initial phase is maximal in the morning and nighttime sectors at polar and auroral latitudes, respectively. During the magnetic storm main phase, wave activity is maximal in the morning sector of the auroral zone, and the pulsation intensity in the nighttime sector is twice as low as in the morning sector. It has been indicated that geomagnetic pulsations excited after substorms mainly contribute to a morning wave disturbance during the magnetic storm main phase. During the storm recovery phase, wave activity develops in the morning and nighttime sectors of the auroral zone; in this case nighttime activity is also observed in the subauroral zone.  相似文献   

11.
本文利用Madrigal数据库的TEC数据对2001—2010年间的156次单主相型磁暴事件,统计分析了欧洲扇区从赤道到极光带共5个纬度区域的电离层暴特征,结果表明:(1)电离层暴有明显的纬度分布特征,正负暴出现次数的比例随纬度的降低呈现明显的增加趋势,但夏季赤道地区趋势相反,正负暴比例比更高纬度的反而降低;(2)与主相相比,恢复相期间大部分纬度地区正暴数量减少,负暴数量增加,但赤道地区恢复相期间正暴数量反而增加;(3)中低纬地区电离层暴随磁暴MPO地方时分布特征明显,正暴所对应的MPO主要分布在白天,而MPO发生在夜间容易引起负暴;(4)电离层负暴主要发生在夜间,中、高纬地区负暴的开始时间存在‘时间禁区’,但不同纬度‘时间禁区’的地方时分布有一定差异,正暴分布则相对分散.  相似文献   

12.
In this paper, we present analyses of the great geomagnetic storms observed during last two cycles of solar activity. This study is based on data from a network of ionosondes located within the longitudinal sector of 80–150°Е. it was found that the superstorms were observed predominantly in equinox. Long-lasting severe decreases of ionization at high and middle latitudes were the most impressive storm effect. A short-time positive phase occurred in response to the onset of both ssc and recovery phases of the magnetic storm in the daytime at high and middle latitudes. Large time-varying rates of foF2 were observed at low latitudes. Modeling results of the ionospheric response to two superstorms are also presented. It is established that the storm effect at middle latitudes was controlled predominantly by disturbed thermospheric composition. At high latitudes, the impact of magnetospheric processes and thermospheric composition on the ionosphere was the same.  相似文献   

13.
Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day-light conditions.  相似文献   

14.
Compiling various experimental as well as theoretical results, we find that the effects of geomagnetic storms in the upper middle atmosphere (heights about 60 – 100 km) and the troposphere are of different morphology, origin and nature.  相似文献   

15.
磁暴期间热层中性大气受热抬升的观测例证   总被引:2,自引:3,他引:2       下载免费PDF全文
采用AE-D卫星上中性大气数密度的观测资料,分析了1975年11月内多次磁暴期间热层大气中氦和原子氧与氮分子之数密度比值的变化.结果表明,磁暴对中性大气加热的理论是符合实际情况的.低热层大气受热抬升使较高高度上的大气中质量较轻成分的数密度相对比例有明显下降,而较重成分的百分比则有增加.与地磁宁静期间相比,在140-10km高度上n(He)/n(N2)之比值降低了一个数量级,而n(Ar)/n(N2)的增幅则略大于一个数量级.此比值的变化幅度大小随高度而变,但各高度上暴时变化的发展趋势是基本一致的.  相似文献   

16.
The latitudinal distributions of horizontal geomagnetic variations, ΔH, and their time derivatives, ∂H/∂t, were analysed statistically over the three-year period 2003–2005. It appears that the amplitude distributions of horizontal geomagnetic variations and their time derivatives differ systematically between different geomagnetic latitudes and storm intensity levels. We show that the magnetic field variations observed at auroral and polar cap latitudes are under all geomagnetic storm levels comparable in amplitude (in a statistical sense) while they are smaller at subauroral latitudes. In contrast, their time derivatives are clearly the largest at auroral latitudes at all storm levels. These distributions determine in a general sense where and with which probability technological systems and operational procedures may be affected by geomagnetic storms. However, one observes in individual cases that the peak ∂H/∂t (the largest in all horizontal directions) is not necessarily the one which triggers a power system blackout.  相似文献   

17.
The geomagnetic observations, performed at the global network of ground-based observatories during the recovery phase of the superstrong magnetic storm of July 15–17, 2000 (Bastille Day Event, Dst = ?301 nT), have been analyzed. It has been indicated that magnetic activity did not cease at the beginning of the storm recovery phase but abruptly shifted to polar latitudes. Polar cap substorms were accompanied by the development of intense geomagnetic pulsations in the morning sector of auroral latitudes. In this case oscillations at frequencies of 1–2 and 3–4 mHz were observed at geomagnetic latitudes higher and lower than ~62°, respectively. It has been detected that the spectra of variations in the solar wind dynamic pressure and the amplitude spectra of geomagnetic pulsations on the Earth’s surface were similar. Wave activity unexpectedly appeared in the evening sector of auroral latitudes after the development of near-midnight polar substorms. It has been established that the generation of Pc5 pulsations (in this case at frequencies of 3–4 mHz) was spatially asymmetric about noon during the late stage of the recovery phase of the discussed storm as took place during the recovery phase of the superstrong storms of October and November 2003. Intense oscillations were generated in the morning sector at the auroral latitudes and in the postnoon sector at the subauroral and middle latitudes. The cause of such an asymmetry, typical of the recovery phase of superstrong magnetic storms, remains unknown.  相似文献   

18.
The short-term regional responses of the mesosphere–lower thermosphere (MLT) dynamics over Scandinavia to the exceptionally strong solar storms with their accompanying solar proton fluxes on the Earth in late October 2003 have been investigated using radar measurements at Andenes (69°N, 16°E) and Esrange (68°N, 21°E). Several solar activity storms resulted in solar proton events (SPEs) at this time, but a particularly active period of high proton fluxes occurred between 28 and 31 October 2003. The significant temperature drop (∼25 K), detected by the meteor radar at Andenes at altitude ∼90 km, was in line with the enhancement of the proton fluxes and was caused by the dramatic reduction of the ozone in the high-latitude middle atmosphere monitored by satellite measurements. This exceptionally strong phenomenon in late October 2003 was composed of three geomagnetic storms, with the first one occurring in the daytime of 29 October and the other two storms in the nighttime of 29 and 30 October, respectively. The responses of the prevailing wind and the main tides (24- and 12-h tides) were studied in detail. It was found that the response of the MLT dynamics to the first geomagnetic storm occurring in the daytime and accompanied by solar proton fluxes is very different from those to the second and third geomagnetic storms with onsets during the nighttime. Some physical mechanisms have been suggested in order to explain the observed short-term variability of the MLT dynamics. This case study revealed the impact of the SPEs observed in late October 2003 and the timing of the geomagnetic storms on the MLT neutral wind responses observed over Scandinavia.  相似文献   

19.
The effects of the geomagnetic storms of November 8 and 10, 2004, in variations in the strength and power spectra of the electric field in the near-Earth’s atmosphere in Kamchatka were studied, together with the meteorological and geophysical phenomena observed simultaneously. A sequence of strong solar flares was shown to cause an anomalous increase in air temperature and humidity. This resulted in the excitation of anomalously strong thunderstorm processes in the atmosphere during the storm of November 8 and made it impossible to distinguish the effects associated with cosmic rays on this background. During the storm of November 10, on the background of weak variations in meteorological parameters, an increase in the strength and intensity of power spectra of the electric field on the day before the storm of November 10 was detected; it was followed by an attenuation of these parameters on the date of the storm. These effects were supposed to be associated with the action of cosmic rays on currents of the global electric circuit. It was shown that the influence of the Forbush effect of galactic cosmic rays in the power spectrum of the electric field first of all shows as the amplification of the component with the period T ~ 48 h; in variations in humidity, the effect shows as the amplification of the component with T ~ 24 h. Cause-and-effect relationships between variations in the electric field strength and the horizontal component of the geomagnetic field were shown to be absent both under the conditions of “fair weather” and during the storm of November 10. A diurnal negative-difference atmospheric pressure was detected on the second day after the geomagnetic storms of November 8 and 10.  相似文献   

20.
Substantial increases of the F2 region peak electron density several hours to a day before the geomagnetic storm onset, the so-called pre-storm enhancements, belong to still not clear and hardly predictable features of the ionospheric disturbances. This paper presents analysis of the pre-storm enhancements observed at middle latitudes for 15 storms out of 65 strong-to-severe geomagnetic storms of the period 1995–2005. All 15 events were accompanied by significant (>20%) increases of foF2 before the storm onset over European area. We focus on the longitudinal extent and height profile of the pre-storm enhancements, particularly on their effects on the F1 and E regions of the ionosphere. Possible origin of such enhancements is also partly discussed. We observe no systematic effect of pre-storm enhancements of foF2 in electron density profiles in the F1 region. The E region (foE) appears to be insensitive to pre-storm enhancements. We find the pre-storm enhancements to be confined to the F2 region. The longitudinal extent of the pre-storm enhancements seems to be 120–240° based on comparison of simultaneous foF2 measurements in Europe, northern USA, and Eastern Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号