首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Shock-related calcite twins are characterized in calcite-bearing metagranite cataclasites within crystalline megablocks of the Ries impact structure, Germany, as well as in cores from the FBN1973 research drilling. The calcite likely originates from pre-impact veins within the Variscan metagranites and gneisses, while the cataclasis is due to the Miocene impact. Quartz in the metagranite components does not contain planar deformation features, indicating low shock pressures (<7 GPa). Calcite, however, shows a high density (>1/μm) of twins with widths <100 nm. Different types of twins (e-, f-, and r-twins) crosscutting each other can occur in one grain. Interaction of r- and f-twins results in a-type domains characterized by a misorientation relative to the host with a misorientation angle of 35°–40° and a misorientation axis parallel to an a-axis. Such a-type domains have not been recorded from deformed rocks in nature before. The high twin density and activation of different twin systems in one grain require high differential stresses (on the order of 1 GPa). Twinning of calcite at high differential stresses is consistent with deformation during impact cratering at relatively low shock pressure conditions. The twinned calcite microstructure can serve as a valuable low shock barometer.  相似文献   

2.
Abstract— Previous X‐ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X‐ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.  相似文献   

3.
Abstract— Calcite crystals within the Kaibab limestone in Meteor Crater, Arizona, are examined to understand how calcite is deformed during a meteorite impact. The Kaibab limestone is a silty finegrained and fossiliferous dolomudstone and the calcite crystals occur as replaced evaporite nodules with impact‐induced twinning. Twinning in the calcite is variable with deformational regimes based on abundances of crystals with twins and twin densities within crystals. The twins are similar to those that are seen in low tectonically deformed regimes. Low levels of shock are inferred from minor peak broadening of the X‐ray diffraction patterns (XRD) of the calcite crystals. In addition, electron spin resonance (ESR) spectroscopy data also indicates low shock levels (<3.0 GPa). Quantitative shock pressures and correlation between the XRD and ESR results are poor due to the inferred low shock levels in conjunction with the analytical error associated in calculation of the shock pressures.  相似文献   

4.
Abstract— Contrary to the previous interpretation of a single allochthonous impactite lithology, combined field, optical, and analytical scanning electron microscopy (SEM) studies have revealed the presence of a series of impactites at the Haughton impact structure. In the crater interior, there is a consistent upward sequence from parautochthonous target rocks overlain by parautochthonous lithic (monomict) breccias, through allochthonous lithic (polymict) breccia, into pale grey allochthonous impact melt breccias. The groundmass of the pale grey impact melt breccias consists of microcrystalline calcite, silicate impact melt glass, and anhydrite. Analytical data and microtextures indicate that these phases represent a series of impact‐generated melts that were molten at the time of, and following, deposition. Impact melt glass clasts are present in approximately half of the samples studied. Consideration of the groundmass phases and impact glass clasts reveal that impactites of the crater interior contain shock‐melted sedimentary material from depths of >920 to <1880 m in the pre‐impact target sequence. Two principal impactites have been recognized in the near‐surface crater rim region of Haughton. Pale yellow‐brown allochthonous impact melt breccias and megablocks are overlain by pale grey allochthonous impact melt breccias. The former are derived from depths of >200 to <760 m and are interpreted as remnants of the continuous ejecta blanket. The pale grey impact melt breccias, although similar to the impact melt breccias of the crater interior, are more carbonate‐rich and do not appear to have incorporated clasts from the crystalline basement. Thus, the spatial distribution of the crater‐fill impactites at Haughton, the stratigraphic succession from target rocks to allochthonous impactites, the recognition of large volumes of impact melt breccias, and their probable original volume are all analogous to characteristics of coherent impact melt layers in comparatively sized structures formed in crystalline targets.  相似文献   

5.
The Terny impact structure, located in central Ukraine, displays a variety of diagnostic indicators of shock metamorphism, including shatter cones, planar deformation features in quartz, diaplectic glass, selective melting of minerals, and whole rock melting. The structure has been modified by erosion and subsequently buried by recent sediments. Although there are no natural outcrops of the deformed basement rocks within the area, mining exploration has provided surface and subsurface access to the structure, exposing impact melt rocks, shocked parautochthonous target rocks, and allochthonous impact breccias, including impact melt‐bearing breccias similar to suevites observed at the Ries structure. We have collected and studied samples from surface and subsurface exposures to a depth of approximately 750 m below the surface. This analysis indicates the Terny crater is centered on geographic coordinates 48.13° N, 33.52° E. The center location and the distribution of shock pressures constrain the transient crater diameter to be no less than approximately 8.4 km. Using widely accepted morphometric scaling relations, we estimate the pre‐erosional rim diameter of Terny crater to be approximately 16–19 km, making it close in original size to the well‐preserved El'gygytgyn crater in Siberia. Comparison with El'gygytgyn yields useful insights into the original morphology of the Terny crater and indicates that the amount of erosion Terny experienced prior to burial probably does not exceed 320 m.  相似文献   

6.
The Whitecourt meteorite impact crater, Alberta, Canada is a rare example of a well‐preserved small impact structure, with which thousands of meteorite fragments are associated. As such, this crater represents a unique opportunity to investigate the effect of a low‐energy impact event on an impacting iron bolide. Excellent documentation of meteorite fragment locations and characteristics has generated a detailed distribution map of both shrapnel and regmaglypted meteorite types. The meteorites' distribution, and internal and external characteristics support a low‐altitude breakup of the impactor which caused atmospherically ablated (regmaglypted) meteorites to fall close to the crater and avoid impact‐related deformation. In contrast, shrapnel fragments sustained deformation at macro‐ and microscales resulting from the catastrophic disruption of the impactor. The impactor was significantly fragmented along pre‐existing planes of weakness, including kamacite lamellae and inclusions, resulting in a bias toward low‐mass (<100 g) fragments. Meteorite mineralogy was investigated and the accessory minerals were found to be dominated by sulfides and phosphides with rare carlsbergite, consistent with other low‐Ni IIIAB iron meteorites. Considerations of the total mass of meteoritic material recovered at the site relative to the probable fraction of the impactor that was preserved based on modeling suggests that the crater was formed by a higher velocity, lower mass impactor than previously inferred.  相似文献   

7.
Regional geological mapping of the glaciated surface of northwestern Victoria Island in the western Canadian Arctic revealed an anomalous structure in otherwise flat‐lying Neoproterozoic and lower Paleozoic carbonate rocks, located south of Richard Collinson Inlet. The feature is roughly circular in plan view, approximately 25 km in diameter, and characterized by quaquaversal dips of approximately 45°, decreasing laterally. The core of the feature also exhibits local vertical dips, low‐angle reverse faults, and drag folds. Although brecciation was not observed, shatter cones are pervasive in all lithologies in the central area, including 723 Ma old dikes that penetrate Neoproterozoic limestones. Their abundance decreases distally, and none was observed in surrounding, horizontally bedded strata. This circular structure is interpreted as a deeply eroded meteorite impact crater of the complex type, and the dipping strata as the remnants of the central uplift. The variation in orientation and shape of shatter cones point to variably oriented stresses with the passage of the shock wave, possibly related to the presence of pore water in the target strata as well as rock type and lithological heterogeneities, especially bed thickness. Timing of impact is poorly constrained. The youngest rocks affected are Late Ordovician (approximately 450 Ma) and the impact structure is mantled by undisturbed postglacial sediments. Regional, hydrothermal dolomitization of the Ordovician limestones, possibly in the Late Devonian (approximately 360 Ma), took place before the impact, and widespread WSW–ENE‐trending normal faults of probable Early Cretaceous age (approximately 130 Ma) apparently cross‐cut the impact structure.  相似文献   

8.
Abstract— The well‐preserved state and excellent exposure at the 39 Ma Haughton impact structure, 23 km in diameter, allows a clearer picture to be made of the nature and distribution of hydrothermal deposits within mid‐size complex impact craters. A moderate‐ to low‐temperature hydrothermal system was generated at Haughton by the interaction of groundwaters with the hot impact melt breccias that filled the interior of the crater. Four distinct settings and styles of hydrothermal mineralization are recognized at Haughton: a) vugs and veins within the impact melt breccias, with an increase in intensity of alteration towards the base; b) cementation of brecciated lithologies in the interior of the central uplift; c) intense veining around the heavily faulted and fractured outer margin of the central uplift; and d) hydrothermal pipe structures or gossans and mineralization along fault surfaces around the faulted crater rim. Each setting is associated with a different suite of hydrothermal minerals that were deposited at different stages in the development of the hydrothermal system. Minor, early quartz precipitation in the impact melt breccias was followed by the deposition of calcite and marcasite within cavities and fractures, plus minor celestite, barite, and fluorite. This occurred at temperatures of at least 200 °C and down to ?100–120 °C. Hydrothermal circulation through the faulted crater rim with the deposition of calcite, quartz, marcasite, and pyrite, occurred at similar temperatures. Quartz mineralization within breccias of the interior of the central uplift occurred in two distinct episodes (?250 down to ?90 °C, and <60 °C). With continued cooling (<90 °C), calcite and quartz were precipitated in vugs and veins within the impact melt breccias. Calcite veining around the outer margin of the central uplift occurred at temperatures of ?150 °C down to <60 °C. Mobilization of hydrocarbons from the country rocks occurred during formation of the higher temperature calcite veins (>80 °C). Appreciation of the structural features of impact craters has proven to be key to understanding the distribution of hydrothermal deposits at Haughton.  相似文献   

9.
Abstract– We detail the Kamil crater (Egypt) structure and refine the impact scenario, based on the geological and geophysical data collected during our first expedition in February 2010. Kamil Crater is a model for terrestrial small‐scale hypervelocity impact craters. It is an exceptionally well‐preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and target rocks comprising subhorizontally layered sandstones. The high depth‐to‐diameter ratio of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45°. Newly identified asymmetries, including the off‐center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well‐preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050–1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.  相似文献   

10.
The two neighboring Suvasvesi North and South impact structures in central‐east Finland have been discussed as a possible impact crater doublet produced by the impact of a binary asteroid. This study presents 40Ar/39Ar geochronologic data for impact melt rocks recovered from the drilling into the center of the Suvasvesi North impact structure and melt rock from glacially transported boulders linked to Suvasvesi South. 40Ar/39Ar step‐heating analysis yielded two essentially flat age spectra indicating a Late Cretaceous age of ~85 Ma for the Suvasvesi North melt rock, whereas the Suvasvesi South melt sample gave a Neoproterozoic minimum (alteration) age of ~710 Ma. Although the statistical likelihood for two independent meteorite strikes in close proximity to each other is rather low, the remarkable difference in 40Ar/39Ar ages of >600 Myr for the two Suvasvesi impact melt samples is interpreted as evidence for two temporally separate, but geographically closely spaced, impacts into the Fennoscandian Shield. The Suvasvesi North and South impact structures are, thus, interpreted as a “false” crater doublet, similar to the larger East and West Clearwater Lake impact structures in Québec, Canada, recently shown to be unrelated. Our findings have implications for the reliable recognition of impact crater doublets and the apparent rate of binary asteroid impacts on Earth and other planetary bodies in the inner solar system.  相似文献   

11.
Thermoluminescence (TL) dating has been used to determine the age of the meteorite impact crater at Gebel Kamil (Egyptian Sahara). Previous studies suggested that the 45 m diameter structure was produced by a fall in recent times (less than 5000 years ago) of an iron meteorite impactor into quartz‐arenites and siltstones belonging to the Lower Cretaceous Gilf Kebir Formation. The impact caused the complete fragmentation of the impactor, and the formation of a variety of impactites (e.g., partially vitrified dark and light materials) present as ejecta within the crater and in the surrounding area. After a series of tests to evaluate the TL properties of different materials including shocked intra‐crater target rocks and different types of ejecta, we selected a suite of light‐colored ejecta that showed evidence of strong thermal shock effects (e.g., partial vitrification and the presence of high‐temperature and ‐pressure silica phases). The abundance of quartz in the target rocks, including the vitrified impactites, allowed TL dating to be undertaken. The variability of radioactivity of the intracrateric target rocks and the lack of direct in situ dosimetric evaluations prevented precise dating; it was, however, possible to constrain the impact in the 2000 BC–500 AD range. If, as we believe, the radioactivity measured in the fallback deposits is a reliable estimate of the mean radioactivity of the site, the narrower range 1600–400 BC (at the 2σ confidence level) can be realistically proposed.  相似文献   

12.
Abstract— A shower of meteorite fragments fell at ~0730 h local time on 1998 June 13 near the town of Portales, New Mexico. Thus far, 51 pieces of the Portales Valley (H6) meteorite have been recovered. This meteorite has an unusually large number of metallic veins. Some of these veins are also unusually thick, having widths on the order of centimeters. These wide veins have fine Widmanstätten structure, which is the first time it has been seen in an ordinary chondrite. This structure indicates the metallic veins and the host chondrite cooled slowly. These veins appear to have been produced by shock-metamorphic processes, which we infer produced a >20 km diameter impact crater on an H-chondrite planetesimal.  相似文献   

13.
Abstract— The genesis of the 1.13-km-diameter Pretoria Saltpan crater has long been the focus of a controversy. Its origin has been explained by either meteorite impact or “cryptoexplosive” volcanic activity, but it was recently confirmed, through detailed petrographic and chemical analysis of a breccia layer forming part of the crater fill, that the crater was formed by impact. As the limited previous geophysical work failed to support an impact origin, a more detailed gravity and magnetic study was conducted. A possible 400-m-diameter circular crater located 3 km to the southwest of the main crater was also investigated with geophysical methods, including resistivity, seismics and ground-probing radar. The gravity signature of the main crater is compatible with that of a simple impact crater and the magnetic signature (no magnetic anomaly could be detected) rules out the possibility of a central magnetic volcanic body below the crater-fill sediments. The results for the possible twin or satellite crater are inconclusive. As it is the only such feature in the entire region, it should not be overlooked. A drilling program may reveal interesting results.  相似文献   

14.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

15.
16.
Fluid inclusions studies in quartz and calcite in samples from the ICDP‐Chicxulub drill core Yaxcopoil‐1 (Yax‐1) have revealed compelling evidence for impact‐induced hydrothermal alteration. Fluid circulation through the melt breccia and the underlying sedimentary rocks was not homogeneous in time and space. The formation of euhedral quartz crystals in vugs hosted by Cretaceous limestones is related to the migration of hot (>200 °C), highly saline, metal‐rich, hydrocarbon‐bearing brines. Hydrocarbons present in some inclusions in quartz are assumed to derive from cracking of pre‐impact organic matter. The center of the crater is assumed to be the source of the hot quartz‐forming brines. Fluid inclusions in abundant newly‐formed calcite indicate lower cyrstallization temperatures (75–100 °C). Calcite crystallization is likely related to a later stage of hydrothermal alteration. Calcite precipitated from saline fluids, most probably from formation water. Carbon and oxygen isotope compositions and REE distributions in calcites and carbonate host rocks suggest that the calcite‐forming fluids have achieved close equilibrium conditions with the Cretaceous limestones. The precipitation of calcite may be related to the convection of local pore fluids, possibly triggered by impact‐induced conductive heating of the sediments.  相似文献   

17.
Laguna Guatavita (Colombia), a crater 700 m across and 125 m deep containing a central lake, appears not to be a meteorite crater as widely supposed. The tectonic style is not that of an impact site and there is no raised rim or ejected debris. We could find no impactite, shock metamorphic effects or shock fractures (shatter cones). Most likely it is a collapsed crater caused by the solution and withdrawal of salt from an underlying anticline  相似文献   

18.
Abstract As part of the ICDP Chicxulub Scientific Drilling Project, the Yaxcopoil‐1 (Yax‐1) bore hole was drilled 60 km south‐southwest of the center of the 180 km‐diameter Chicxulub impact structure down to a depth of 1511 m. A sequence of 615 m of deformed Cretaceous carbonates and sulfates was recovered below a 100 m‐thick unit of suevitic breccias and 795 m of post‐impact Tertiary rocks. The Cretaceous rocks are investigated with respect to deformation features and shock metamorphism to better constrain the deformational overprint and the kinematics of the cratering process. The sequence displays variable degrees of impact‐induced brittle damage and post‐impact brittle deformation. The degree of tilting and faulting of the Cretaceous sequence was analyzed using 360°‐core scans and dip‐meter log data. In accordance with lithological information, these data suggest that the sedimentary sequence represents a number of structural units that are tilted and moved with respect to each other. Three main units and nine sub‐units were discriminated. Brittle deformation is most intense at the top of the sequence and at 1300–1400 m. Within these zones, suevitic dikes, polymict clastic dikes, and impact melt rock dikes occur and may locally act as decoupling horizons. The degree of brittle deformation depends on lithology; massive dolomites are affected by penetrative faulting, while stratified calcarenites and bituminous limestones display localized faulting. The deformation pattern is consistent with a collapse scenario of the Chicxulub transient crater cavity. It is believed that the Cretaceous sequence was originally located outside the transient crater cavity and eventually moved downward and toward the center to its present position between the peak ring and the crater rim, thereby separating into blocks. Whether or not the stack of deformed Cretaceous blocks was already displaced during the excavation process remains an open question. The analysis of the deformation microstructure indicates that a shock metamorphic overprint is restricted to dike injections with an exception of the so called “paraconglomerate.” Abundant organic matter in the Yax‐1 core was present before the impact and was mobilized by impact‐induced heating and suggests that >12 km3 of organic material was excavated during the cratering process.  相似文献   

19.
A relic impact structure was recognized within the strewn field of the Agoudal iron meteorite. The heavily eroded structure has preserved shatter cones in a limestone basement, and remnants of autochthonous and allochthonous breccias. Fragments of iron incorporated into the allochthonous breccia have a chemical composition (Ni = 5.16 wt%, Ir = 0.019 ppm) similar to that of the Agoudal meteorite, supporting a syngenetic origin of the strewn field and the impact structure. The total recovered mass of Agoudal meteorite fragments is estimated at approximately 500 kg. The estimated size of the SE–NW‐oriented strewn field is 6 × 2 km. Model calculations with minimal preatmospheric size show that a similar meteorite strewn field plus one small crater with observed shock effects could be formed by fragmentation of a meteoroid approximately 1.4 m in diameter with an impact angle of approximately 60° from the horizontal. However, the most probable is an impact of a larger, 3–4 m diameter meteoroid, resulting a strewn field with approximately 10 craters, 10–30 m in diameter each, plus numerous meteorite fragments. The calculated scattering area of meteorite shrapnel ejected from these impact craters could completely cover the observed strewn field of the Agoudal meteorite.  相似文献   

20.
Abstract– The 45 m in diameter Kamil impact crater was formed <5000 yr ago in the eastern Sahara, close to the southern border of modern Egypt. The original features of this structure, including thousands of fragments of the meteorite impactor, are extremely well preserved. With the exception of a single 83 kg regmaglypted individual, all specimens of Gebel Kamil (the iron meteorite that formed the Kamil crater) are explosion fragments weighing from <1 g to 34 kg. Gebel Kamil is an ungrouped Ni‐rich (about 20 wt% Ni) ataxite characterized by high Ge and Ga contents (approximately 120 μg g?1 and approximately 50 μg g?1, respectively) and by a very fine‐grained duplex plessite metal matrix. Accessory mineral phases in Gebel Kamil are schreibersite, troilite, daubréelite, and native copper. Meteorite fragments are cross‐cut by curvilinear shear bands formed during the explosive terrestrial impact. A systematic search around the crater revealed that meteorite fragments have a highly asymmetric distribution, with greater concentrations in the southeast sector and a broad maximum in meteorite concentration in the 125–160° N sector at about 200 m from the crater rim. The total mass of shrapnel specimens >10 g, inferred from the density map compiled in this study is 3400 kg. Field data indicate that the iron bolide approached the Earth’s crust from the northwest (305–340° N), travelling along a moderately oblique trajectory. Upon hypervelocity impact, the projectile was disrupted into thousands of fragments. Shattering was accompanied by some melting of the projectile and of the quartz‐arenite target rocks, which also suffered shock metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号