首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

2.
We present a statistical analysis of the largest X-ray survey of nearby spiral galaxies in which diffuse emission has been separated from discrete source contributions. Regression and rank-order correlation analyses are used to compare X-ray properties, such as total, source and diffuse luminosities and diffuse emission temperature, with a variety of physical and multiwavelength properties, such as galaxy mass, type and activity, and optical and infrared luminosity.
The results are discussed in terms of the way in which hot gas and discrete X-ray sources scale with the mass and activity of galaxies, and with the star formation rate. We find that the X-ray properties of starburst galaxies are dependent primarily on their star-forming activity, whilst for more quiescent galaxies, galaxy mass is the more important parameter. One of the most intriguing results is the tight linear scaling between far-infrared and diffuse X-ray luminosity across the sample, even though the hot gas changes from a hydrostatic corona to a free wind across the activity range sampled here.  相似文献   

3.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

4.
Detailed three-dimensional numerical simulations of an elliptical galaxy orbiting in a gas-rich cluster of galaxies indicate that gas dynamic stripping is less efficient than the results from previous, simpler calculations by Takeda et al. and Gaetz et al. implied. This result is consistent with X-ray data for cluster elliptical galaxies. Hydrodynamic torques and direct accretion of orbital angular momentum can result in the formation of a cold gaseous disc, even in a non-rotating galaxy. The gas lost by cluster galaxies via the process of gas dynamic stripping tends to produce a colder, chemically enriched cluster gas core. A comparison of the models with the available X-ray data of cluster galaxies shows that the X-ray luminosity distribution of cluster galaxies may reflect hydrodynamic stripping, but also that a purely hydrodynamic treatment is inadequate for the cooler interstellar medium near the centre of the galaxy.  相似文献   

5.
Presented here are high spatial and spectral resolution Chandra X-ray observations of the famous interacting galaxy pair, the Mice, a system similar to, though less evolved than, the well-known Antennae galaxies. Previously unpublished ROSAT High Resolution Imager data of the system are also presented.
Starburst-driven galactic winds outflowing along the minor axis of both galaxies (but particularly the northern one) are observed, and spectral and spatial properties, and energetics are presented. That such a phenomenon can occur in such a rapidly evolving and turbulent system is surprising, and this is the first time that the very beginning – the onset, of starburst-driven hot gaseous outflow in a full-blown disc–disc merger has been seen.
Point-source emission is seen at the galaxy nuclei, and within the interaction-induced tidal tails. Further point-source emission is associated with the galactic bar in the southern system. A comparison of the source X-ray luminosity function and of the diffuse emission properties is made with the Antennae and other galaxies, and evidence of a more rapid evolution of the source population than the diffuse component is found. No evidence for variability is found between the Chandra and previous observations.  相似文献   

6.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   

7.
We present the results of a 22-cm radio survey carried out with the Australia Telescope Compact Array (ATCA) covering the A3558 complex, a chain formed by the merging ACO clusters A3556–A3558–A3562 and the two groups SC 1327−312 and SC 1323−313, located in the central region of the Shapley Concentration. The purpose of our survey is to study the effects of cluster mergers on the statistical properties of radio galaxies and to investigate the connection between mergers and the presence of radio haloes and relic sources.
We found that the radio source counts in the A3558 complex are consistent with the background source counts. The much higher optical density compared with the background is not reflected as a higher density of radio sources. Furthermore, we found that no correlation exists between the local density and the radio source power, and that steep-spectrum radio galaxies are not segregated in denser optical regions.
The radio luminosity function for elliptical and S0 galaxies is significantly lower than for cluster early-type galaxies and for those not selected to be in clusters at radio powers log  P 1.4≳22.5, implying that the probability of a galaxy becoming a radio source above this power limit is lower in the Shapley Concentration compared with any other environment. Possible explanations will be presented.
The detection of a head–tail source in the centre of A3562, coupled with careful inspection of the 20-cm NRAO VLA Sky Survey (NVSS) and of 36-cm MOST observations, allowed us to spot two extended sources in the region between A3562 and SC 1329−313, i.e. a candidate radio halo at the centre of A3562 and low brightness extended emission around a 14.96-mag Shapley galaxy. The relation between these two extended galaxies and the ongoing group merger in this region of the Shapley Concentration are discussed.  相似文献   

8.
We have derived the X-ray luminosities of a sample of galaxies in groups, making careful allowance for contaminating intragroup emission. The L X: L B and L X: L FIR relations of spiral galaxies in groups appear to be indistinguishable from those in other environments, however the elliptical galaxies fall into two distinct classes. The first class is central-dominant group galaxies, which are very X-ray luminous and may be the focus of group cooling flows. All other early-type galaxies in groups belong to the second class, which populates an almost constant band of L X/ L B over the range 9.8< log  L B<11.3 . The X-ray emission from these galaxies can be explained by a superposition of discrete galactic X-ray sources together with a contribution from hot gas lost by stars, which varies a great deal from galaxy to galaxy. In the region where the optical luminosity of the non-central group galaxies overlaps with the dominant galaxies, the dominant galaxies are over an order of magnitude more luminous in X-rays.
We also compared these group galaxies with a sample of isolated early-type galaxies, and used previously published work to derive L X: L B relations as a function of environment. The non-dominant group galaxies have mean L X/ L B ratios very similar to those of isolated galaxies, and we see no significant correlation between L X/ L B and environment. We suggest that previous findings of a steep L X: L B relation for early-type galaxies result largely from the inclusion of group-dominant galaxies in samples.  相似文献   

9.
Current theories of galaxy formation predict that spiral galaxies are embedded in a reservoir of hot gas. This gas is able to cool on to the galaxy, replenishing cold gas that is consumed by star formation. Estimates of the X-ray luminosity emitted in the cooling region suggest a bolometric luminosity of the order of 10×1041 erg s−1 in massive systems. We have used ROSAT PSPC data to search for extended X-ray emission from the haloes of three nearby, massive, late-type galaxies: NGC 2841, 4594 and 5529. We infer 95 per cent upper limits on the bolometric X-ray luminosities of the haloes of NGC 2841, 4594 and 5529 of 0.4, 1.2 and 3.8×1041 erg s−1 respectively. Thus, the true luminosity lies well below the straightforward theoretical prediction. We discuss this discrepancy and suggest a number of ways in which the theoretical model might be brought into agreement with the observational results. A possible solution is that the gravitational potentials of the dark matter haloes of these galaxies are weaker than assumed in the current model. Alternatively, the present-day accretion may be substantially less than is required on average to build the disc over the Hubble time. Our results are, however, based on only three galaxies, none of which is ideal for this kind of study. A larger data set is required to explore this important problem further.  相似文献   

10.
We discuss ROSAT HRI X-ray observations of 33 very nearby galaxies, sensitive to X-ray sources down to a luminosity of approximately 1038 erg s−1. The galaxies are selected from a complete, volume-limited sample of 46 galaxies with     for which we have extensive multiwavelength data. For an almost complete subsample with     (29/31 objects) we have HRI images. Contour maps and source lists are presented within the central region of each galaxy, together with nuclear upper limits where no nuclear source was detected. Nuclear X-ray sources are found to be very common, occurring in ∼35 per cent of the sample. Nuclear X-ray luminosity is statistically connected to host galaxy luminosity – there is not a tight correlation, but the probability of a nuclear source being detected increases strongly with galaxy luminosity, and the distribution of nuclear luminosities seems to show an upper envelope that is roughly proportional to galaxy luminosity. While these sources do seem to be a genuinely nuclear phenomenon rather than nuclear examples of the general X-ray source population, it is far from obvious that they are miniature Seyfert nuclei. The more luminous nuclei are very often spatially extended, and H  ii region nuclei are detected just as often as LINERs. Finally, we also note the presence of fairly common superluminous X-ray sources in the off-nuclear population – out of 29 galaxies we find nine sources with a luminosity greater than 1039 erg s−1. These show no particular preference for more luminous galaxies. One is already known to be a multiple SNR system, but most have no obvious optical counterpart and their nature remains a mystery.  相似文献   

11.
We use ROSAT HRI spatial data and ASCA spectral measurements for a sample of seven nearby, early-type spiral galaxies, to address the question of whether a low-luminosity active galactic nucleus (LLAGN) is present in galaxies that have a LINER 2 classification. The brightest discrete X-ray source in the ROSAT HRI observations is invariably found to be positionally coincident with the optical galactic nucleus, and in most cases its flux dominates the X-ray emission from the central region of the galaxy. All seven galaxies have X-ray spectra consistent with a two-component, soft thermal plus hard power-law, spectral form. If we exclude the two galaxies with relatively hard X-ray spectra, NGC 3628 and NGC 4594, for which there is supporting evidence for a LLAGN (or alternatively in the case of NGC 3628 a dominant ultraluminous X-ray binary), then the remaining galaxies show surprisingly similar X-ray spectral properties. Specifically the flux ratio F X(0.5–1)/ F X(2–5) , which measures the relative strengths of the thermal and non-thermal emission components, shows little scatter about a mean of 0.66, a value very similar to that measured in the classic starburst galaxy NGC 253. As there is no obvious reason why the luminosity of the hard power-law continuum emanating from a putative LLAGN should be very closely correlated with the thermal emission of the surrounding region, this suggests that that the broad-band (0.5–5 keV) X-ray emission from these LINER 2 galaxies may originate in a common set of processes probably associated with the starburst phenomenon. Conversely, it appears that in many LINER 2 galaxies and perhaps the majority, the nuclear X-ray luminosity does not derive directly from the presence of a LLAGN.  相似文献   

12.
We present the results of Giant Metrewave Radio Telescope H  i 21-cm line observations of the extremely metal deficient (XMD) blue compact galaxy (BCG) HS 0822+3542. HS 0822+3542 is the smallest known XMD galaxy; from Hubble Space Telescope ( HST ) imaging, it has been suggested that it actually consists of two still smaller (∼100 pc sized) ultra-compact dwarfs that are in the process of merging. The brighter of these two putative ultra-compact dwarfs has an ocular appearance, similar to that seen in galaxies that have suffered a penetrating encounter with a smaller companion. From our H  i imaging, we find that the gas distribution and kinematics in this object are similar to that of other low-mass galaxies, albeit with some evidence for tidal disturbance. On the other hand, the H  i emission has an angular size ∼25 times larger than that of the putative ultra-compact dwarfs. The optical emission is also offset from the centre of the H  i emission. HS 0822+3542 is located in the nearby Lynx–Cancer void, but has a nearby companion low surface brightness dwarf galaxy SAO 0822+3545. In light of all this, we also consider a scenario where the optical emission from HS 0822+3542 comes not from two merging ultra-compact dwarfs but from multiple star-forming regions in a tidally disturbed galaxy. In this model, the ocular appearance of the brighter star-forming region could be the result of triggered star formation.  相似文献   

13.
We present results from an ongoing X-ray survey of Wolf–Rayet (WR) galaxies, a class of objects believed to be very young starbursts. This paper extends the first X-ray survey of WR galaxies by Stevens &38; Strickland by studying WR galaxies identified subsequent to the original WR galaxy catalogue of Conti.   Out of a sample of 40 new WR galaxies a total of 10 have been observed with the ROSAT PSPC, and of these seven have been detected (NGC 1365, NGC 1569, I Zw 18, NGC 3353, NGC 4449, NGC 5408 and a marginal detection of NGC 2366). Of these, all are dwarf starbursts except for NGC 1365, which is a barred spiral galaxy possibly with an active nucleus. We also report on observations of the related emission-line galaxy IRAS 0833+6517.   The X-ray properties of these galaxies are broadly in line with those found for the original sample; they are X-ray overluminous compared with their blue luminosity and have thermal spectra with typically kT  ∼ 0.4 − 1.0 keV. There are some oddities: NGC 5408 is very overluminous in X-rays, even compared with other WR galaxies; I Zw 18 has a harder X-ray spectrum; NGC 1365, although thought to contain an active nucleus, has X-ray properties that are broadly similar to other WR galaxies, and we suggest that the X-ray emission from NGC 1365 is due to starburst activity.   A good correlation between X-ray and blue luminosity is found for the WR galaxy sample as a whole. However, when just dwarf galaxies are considered there is little evidence of correlation. We discuss the implications of these results on our understanding of the X-ray emission from WR galaxies and suggest that the best explanation for the X-ray activity is starburst activity from a young starburst region.  相似文献   

14.
We carry out numerical simulations of dissipationless major mergers of elliptical galaxies using initial galaxy models that consist of a dark matter haloes and a stellar bulge with properties consistent with the observed fundamental plane. By varying the density profile of the dark matter haloes [standard Navarro, Frenk & White (NFW) profile versus adiabatically contracted NFW profile], the global stellar to dark matter mass ratio and the orbit of the merging galaxies, we are able to assess the impact of each of these factors on the structure of the merger remnant. Our results indicate that the properties of the remnant bulge depend primarily on the angular momentum and energy of the orbit; for a cosmologically motivated orbit, the effective radius and velocity dispersion of the remnant bulge remain approximately on the fundamental plane. This indicates that the observed properties of elliptical galaxies are consistent with significant growth via late dissipationless mergers. We also find that the dark matter fraction within the effective radius of our remnants increases after the merger, consistent with the hypothesis that the tilt of the fundamental plane from the virial theorem is due to a varying dark matter fraction as a function of galaxy mass.  相似文献   

15.
We present the results of a numerical code that combines multi-zone chemical evolution with 1D hydrodynamics to follow in detail the evolution and radial behaviour of gas and stars during the formation of elliptical galaxies. We use the model to explore the links between the evolution and formation of elliptical galaxies and QSO activity. The knowledge of the radial gas flows in the galaxy allows us to trace metallicity gradients, and, in particular, the formation of a high-metallicity core in ellipticals. The high-metallicity core is formed soon enough to explain the metal abundances inferred in high-redshift quasars. The star formation rate and the subsequent feedback regulate the episodes of wind, outflow and cooling flow, thus affecting the recycling of the gas and the chemical enrichment of the intergalactic medium. The evolution of the galaxy shows several stages, some of which are characterized by a complex flow pattern, with inflow in some regions and outflow in other regions. All models, however, exhibit during their late evolution a galactic wind at the outer boundary and, during their early evolution, an inflow towards the galactic nucleus. The characteristics of the inner inflow could explain the bolometric luminosity of a quasar lodged at the galactic centre as well as the evolution of the optical luminosity of quasars.  相似文献   

16.
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41 ± 0.03 for   M r ≈−18  ellipticals and 0.76 ± 0.04 for   M r ≈−22.5  ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth.
There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS DR6 are consistent with flat discs with a mean and dispersion of thickness to diameter ratio of (21 ± 2) per cent, and a face-on ellipticity, e , of  ln( e ) =−2.33 ± 0.79  . Not including the effects of dust in the model leads to discs that are systematically rounder by up to 60 per cent. More luminous spiral galaxies tend to have thicker and rounder discs than lower luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies.
The marginalized value of the edge-on r -band dust extinction E 0 in spiral galaxies is   E 0≃ 0.45  mag for galaxies of median colours, increasing to   E 0= 1  mag for   g − r > 0.9  and   E 0= 1.9  for the luminous and most compact galaxies, with half-light radii  <2  h −1 kpc  .  相似文献   

17.
We present HST WFPC2 V -band imaging for 23 ultraluminous infrared galaxies (ULIRGs) taken from the QDOT redshift survey. The fraction of sources observed to be interacting is 87 per cent. Most of the merging systems show a number of compact 'knots', whose colour and brightness differ substantially from their immediate surroundings. Colour maps for nine of the objects show a non-uniform colour structure. Features include blue regions located towards the centres of merging systems which are likely to be areas of enhanced star formation, and compact red regions which are likely to be dust shrouded starbursts or active galactic nuclei. The host galaxies of the quasi-stellar objects (QSOs) in the sample were found to be either interacting systems or ellipticals. Our data show no evidence that ULIRGs are a simple transition stage between galaxy mergers and QSOs. We propose an alternative model for ULIRGs based on the morphologies in our sample and previous N -body simulations. Under this model ULIRGs as a class are much more diverse than a simple transition between galaxy merger and QSO. The evolution of IR power source and merger morphology in ULIRGs is driven solely by the local environment and the morphologies of the merger progenitors.  相似文献   

18.
The observational properties of globular cluster systems (GCSs) are vital tools to investigate the violent star formation histories of their host galaxies. This violence is thought to have been triggered by galaxy interactions or mergers. The most basic properties of a GCS are its luminosity function (number of clusters per luminosity bin) and color distributions. A large number of observed GCS show bimodal color distributions, which can be translated into a bimodality in either metallicity and/or age. An additional uncertainty comes into play when one considers extinction. These effects can be disentangled either by obtaining spectroscopic data for the clusters or by imaging observations in at least four passbands. This allows us then to discriminate between various formation scenarios of GCSs, e.g. the merger scenario by Ashman and Zepf, and the multi-phase collapse model by Forbes et al. Young and metal-rich star cluster populations are seen to form in interacting and merging galaxies. We analyse multiwavelength broad-band observations of these young cluster systems provided by the ASTROVIRTEL project. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
X-ray observations of galaxy clusters have shown that the intra-cluster gas has iron abundances of about one-third of the solar value. These observations also show that part (if not all) of the intra-cluster gas metals was produced within the member galaxies. We present a systematic analysis of 20 galaxy clusters to explore the connection between the iron mass and the total luminosity of early- and late-type galaxies, and of the brightest cluster galaxies (BCGs). From our results, the intra-cluster medium (ICM) iron mass seems to correlate better with the luminosity of the BCGs than with that of the red and blue galaxy populations. As the BCGs cannot produce alone the observed amount of iron, we suggest that ram-pressure plus tidal stripping acts together to enhance, at the same time, the BCG luminosities and the iron mass in the ICM. Through the analysis of the iron yield, we have also estimated that SN Ia are responsible for more than 50 per cent of the total iron in the ICM. This result corroborates the fact that ram-pressure contributes to the gas removal from galaxies to the ICM, being very efficient for clusters in the temperature range  2 < kT (keV) < 10  .  相似文献   

20.
We present Hubble Space Telescope ( HST ) images of seven low-redshift quasars (six taken with the Planetary Camera, one with the Wide Field Camera). These complete the sample of 14 quasars observed by the Faint Object Camera Investigation Definition Team (FOC IDT). Following subtraction of the quasar nuclear light, host galaxies can be seen in all seven cases. A combination of the optical morphology and luminosity profiles of the residual host galaxies and the results of 2D cross-correlation model fitting implies that five of the objects have elliptical host galaxies and two have disc host galaxies. The luminosities vary from slightly fainter than L * to about 1.3 mag brighter than L *.   We discuss the properties of the complete sample of 14 quasars. Nine of the objects appear to have elliptical host galaxies (all six of the radio-loud quasars in the sample as well as three radio-quiet quasars). Two further radio-quiet quasars appear to lie in disc galaxies. The other three objects (radio-quiet, ultraluminous infrared quasars) all lie in violently interacting systems. The sample as a whole has an average luminosity about 0.8 mag brighter than L *, although the radio-loud objects have hosts on average 0.7 mag brighter than the radio-quiet objects.   We compare our results with those from HST imaging of quasars by other authors. Taken together, our observations are in broad agreement with those of Bahcall et al. Radio-loud quasars appear to lie in luminous elliptical galaxies whereas radio-quiet quasars are found to lie in either elliptical or spiral hosts. Host galaxy luminosities (of radio-quiet and radio-loud quasars) are much brighter than would be expected if they followed a Schechter luminosity function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号