首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We report here on particulate and dissolved210Pb profiles at 16 stations, and on total210Pb profiles at 3 stations, all occupied during the Pacific GEOSECS expedition. Comparison with measurements at Yale on GEOSECS library samples indicates that during separation of particulate lead from dissolved lead, our filtered water samples suffered some loss of210Pb in the filtration system; this effect appears to have reduced the dissolved210Pb activities by ~ 20% in stations where the water was filtered. However, for these first Pacific data on the210Pb distribution between the two phases, this effect does not significantly interfere with our recognition of the major features of both particulate and dissolved210Pb distributions.The dissolved210Pb profiles in general vary geographically, following the226Ra profiles. In deep water,226Ra increases northward and eastward from the southwest Pacific, from ~ 22dpm/100kg, to over 40 dpm/100 kg in the northeast Pacific. Our dissolved210Pb profiles show a similar increase in deep water, varying from about 10 to 20 dpm/100 kg along this line, and are commonly characterized by a mid-depth maximum. This210Pb maximum reflects the mid-depth226Ra maximum of the Pacific Deep Water observed along the western boundary current.In surface water at low latitudes there is a significant210Pb flux from the atmosphere, which produces a210Pb/226Ra activity ratio generally greater than unity. This flux penetrates as deep as 600 m, as indicated by an “induced”210Pb minimum caused by the surface maximum. The surface water210Pb excess decreases toward high southern latitudes and vanishes in the Circumpolar region.The particulate210Pb profiles show a general increase with depth, from ~ 0.3dpm/100kg in subsurface water to ~ 1.5dpm/100kg in bottom water, with or without a mid-depth maximum that reflects the226Ra or dissolved210Pb maximum. The particulate210Pb normally comprises about 2% of the total210Pb in subsurface water, and this fraction increases to about 10% near the bottom. As the filtration loss is not taken into account, the fraction of particulate210Pb quoted here is an upper limit. Since the particulate matter concentrations are quite uniform in the water column below a few hundred meters, the210Pb activity of the particulate matter also increases with depth. The particulate matter has a210Pb concentration of ~ 100dpm/g in subsurface water, but the concentration increases to ~ 500dpm/g or more toward the bottom. This indicates that there is a cumulative adsorption of Pb onto the suspended particles as they are sinking through the water column.  相似文献   

2.
The progressive weakening and final disappearance (in 1979) of the long-term meromictic structure of the Dead Sea are clearly reflected in the depth profiles of210Pb and210Po. In 1977/78, prior to overturn, dissolved210Pb (35–50 dpm kg?1) predominated over particulate210Pb (1–2 dpm kg?1) in the oxic upper waters, whereas the reverse was true in the anoxic deep waters (16–20 dpm kg?1 particulate vs. 2–5 dpm kg?1 dissolved). The exact extent of the disequilibrium between210Pb and226Ra is hard to evaluate in the upper oxic layers, because the progressive deepenings resulted in mixing with deep waters. By contrast, one can estimate the residence time of dissolved210Pb in the unperturbed anoxic deepest layers, because these remained isolated, at about 3 years. Following the overturn of 1979, dissolved210Pb exceeded particulate210Pb at all depths. The210Po profiles of the stratified lake resembled in shape those of its grandparent210Pb, but with distinct characteristics of their own in the oxic upper waters where particulate210Po (8–12 dpm kg?1) was greatly in excess over particulate210Pb, while dissolved210Po (25–40 dpm kg?1) was slightly deficient. Immediately following the overturn, dissolved and particulate210Po were similar (about 15 dpm kg?1), at all depths. The destruction of the lake's meromictic structure was accompanied by a reduction of its210Pb inventory, while that of210Po was almost unaffected. Thus, at overturn a transient state was created with the inventory of210Po exceeding that of210Pb.  相似文献   

3.
The distribution of210Po and210Po in dissolved (<0.4 μm) and particulate (>0.4 μm) phases has been measured at ten stations in the tropical and eastern North Atlantic and at two stations in the Pacific. Both radionuclides occur principally in the dissolved phase. Unsupported210Pb activities, maintained by flux from the atmosphere, are present in the surface mixed layer and penetrate into the thermocline to depths of about 500 m. Dissolved210Po is ordinarily present in the mixed layer at less than equilibrium concentrations, suggesting rapid biological removal of this nuclide. Particulate matter is enriched in210Po, with210Po/210Pb activity ratios greater than 1.0, similar to those reported for phytoplankton. Box-model calculations yield a 2.5-year residence time for210Pb and a 0.6-year residence time for210Po in the mixed layer. These residence times are considerably longer than the time calculated for turnover of particles in the mixed layer (about 0.1 year). At depths of 100–300 m,210Po maxima occur and unsupported210Po is frequently present. Calculations indicate that at least 50% of the210Po removed from the mixed layer is recycled within the thermocline. Similar calculations for210Pb suggest much lower recycling efficiencies.Comparison of the210Pb distribution with the reported distribution of226Ra at nearby GEOSECS stations has confirmed the widespread existence of a210Pb/226Ra disequilibrium in the deep sea. Vertical profiles of particulate210Pb were used to test the hypothesis that210Pb is removed from deep water by in-situ scavenging. With the exception of one profile taken near the Mid-Atlantic Ridge, significant vertical gradients in particulate210Pb concentration were not observed, and it is necessary to invoke exceptionally high particle sinking velocities to account for the inferred210Pb flux. It is proposed instead that an additional sink for210Pb in the deep sea must be sought. Estimates of the dissolved210Pb/226Ra activity ratio at depths greater than 1000 m range from 0.2 to 0.8 and reveal a systematic increase, in both vertical and horizontal directions, with increasing distance from the sea floor. This observation implies rapid scavenging of210Pb at the sediment-water interface and is consistent with a horizontal eddy diffusivity of 3?6 × 107 cm2/sec. The more reactive element Po, on the other hand, shows evidence of rapid in-situ scavenging. In filtered seawater,210Po is deficient, on the average, by ca. 10% relative to210Pb; a corresponding enrichment is found in the particulate phase. Total inventories of210Pb and210Po over the entire water column, however, show no significant departure from secular equilibrium.  相似文献   

4.
Measurements have been made of226Ra and both dissolved and particulate forms of210Pb and210Po in a vertical profile at 85°50′N, 108°50′W in the Arctic Ocean.In the upper water column226Ra shows a concentration maximum that is coincident with one in the nutrients, silicate, phosphate, and nitrate, while at the same depth, dissolved and particulate210Pb and210Po all show minimum concentrations. It is suggested that the concentration maxima are partly due to sources of the respective elements in the continental shelf sediments, the shelf waters being subsequently advected into the Arctic Ocean basins. The210Pb and210Po minima have similarly been explained by interaction between the shelf sediments and overlying waters. An estimate is made of the possible contributions of shelf sediments to the layer of silica-rich water which covers the Canada Basin at a depth of 100–150 m.Residence times have been calculated for dissolved210Pb and210Po at various depths in the water column. Surface water residence times of dissolved and particulate forms of these radionuclides are longer than in surface Atlantic waters, probably due to lower biological activity in the surface waters of the Canada Basin. An estimatee has been made of the average sinking velocity of particulate material.  相似文献   

5.
The distribution of “ash” (the non-combustible fraction of marine suspended matter) and concentrations of particulate Al, Ca, Fe, Cr, Ni, Cu, Sr and234Th in surface waters and of210Pb,230Th and234Th in two vertical profiles (385–4400 m) of the Indian Ocean are reported.The ash concentrations in surface waters follow the primary productivity pattern, with higher abundances in samples south of 40°S and lower concentrations in the equatorial and subtropical regions. Opaline silica and CaCO3 are the dominant components of the ash in samples from >40°S and from 7°N to 39°S, respectively. Aluminosilicates are only a minor constituent of the surface particulate matter. The metal/Al ratios in the surface particles are significantly higher compared to their corresponding crustal ratios for all the metals analyzed in this work. Comparison of enrichment factors between marine aerosols, plankton and surface oceanic particles, seem to indicate that this high metal/Al ratio in surface particles most likely arises from their involvement in marine biogeochemical cycles. Particulate234Th activity in surface waters parallels the ash abundance implying that its scavenging efficiency from surface waters depends on the particulate concentration.The particulate230Th and210Pb concentration profiles increase monotonously with depth. It is difficult to ascribe this increase to a process other than the in-situ vertical scavenging of230Th and210Pb from the water column by settling particles. The mean settling velocities of particles calculated from the particulate230Th data using a one-dimensional settling model is about 2 × 10?3 cm/s. The settling velocity computed from the particulate230Th profiles does not appear to be compatible with the particulate210Pb depth profiles; one possible explanation to account for the disparity would be that230Th and210Pb are scavenged by different size populations of particles.On the whole, the geographic distribution of particulate matter, their composition and settling velocities in the Atlantic, Pacific and Indian Oceans are similar indicating that they are controlled by quite similar processes in the marine hydrosphere.  相似文献   

6.
The vertical distributions of210Pb and226Ra in the Santa Barbara Basin have been measured. The210Pb/226Ra activity ratio is close to unity in surface water, but ranges from 0.2 to 0.6 in deep water with a mean value of 0.3 (d > 250m), suggesting rapid removal of210Pb from the water column. The210Pb concentrations in the particulate phase at different water depths indicate that the removal of210Pb is due to adsorption on settling particles.It is estimated that the particulate210Pb contributes about 50–70% of the total210Pb measured on unfiltered water samples of the Santa Barbara Basin. The fate of210Pb (and Pb) in the water column is thus strongly controlled by the settling particles, which have a mean residence time of one year or less in the basin. Material balance calculation for210Pb in the basin suggests that there is an external source supplying about 70–80% of the210Pb observed in particulate material or sediments. This excess210Pb is most likely provided by particles entering the basin loaded already with210Pb.  相似文献   

7.
Samples from the MANOP Santa Barbara Basin sediment trap intercomparison were analyzed for the isotopes of uranium, thorium, radium, lead, and polonium. All of the traps showed approximately the same compositions and isotopic ratios, indicating that they trapped similar materials. The234Th flux via falling particles was very close to the flux predicted from the production and scavenging rates of234Th from the water column. The210Pb content of the trapped particles and the surface sediments were the same, however, the measured flux of210Pb was seven times greater than the predicted flux. Predicted and measured fluxes of228Th and210Po were similarly out of balance. To explain this apparent inconsistency, we suggest (as others have done) that the Santa Barbara Basin is an area where scavenging from the water column is intensified and where sediments deposited initially on the margins may be physically remobilized on a short time scale. These two effects increase the apparent area from which the basin derives the longer-lived isotopes but does not increase significantly the supply of the short-lived234Th.  相似文献   

8.
210Pb and226Ra profiles have been measured at five GEOSECS stations in the Circumpolar region. These profiles show that226Ra is quite uniformly distributed throughout the Circumpolar region, with slightly lower activities in surface waters, while210Pb varies with depth as well as location or area. There is a subsurface210Pb maximum which matches the oxygen minimum in depth and roughly correlates with the temperature and salinity maxima. This210Pb maximum has its highest concentrations in the Atlantic sector and appears to originate near the South Sandwich Islands northeast of the Weddell Sea. Concentrations in this maximum decrease toward the Indian Ocean sector and then become fairly constant along the easterly Circumpolar Current.Relative to226Ra, the activity of210Pb is deficient in the entire water column of the Circumpolar waters. The deficiency increases from the depth of the210Pb maximum toward the bottom, and the210Pb/226Ra activity ratio is lowest in the Antarctic Bottom Water, indicating a rapid removal of Pb by particulate scavenging in the bottom layer and/or a short mean residence time of the Antarctic Bottom Water in the Circumpolar region.226Ra is essentially linearly correlated with silica and barium in the Circumpolar waters. However, close examination of the vertical profiles reveals that Ba and Si are more variable than226Ra in this region.  相似文献   

9.
Profiles of226Ra and dissolved210Pb have been measured at several stations in the Red Sea. At one station in the central Red Sea an expanded profile was measured including226Ra and dissolved and particulate210Pb and210Po. These profiles show several distinct features: (1)226Ra displays a mid-depth maximum of about 13 dpm/100 kg at about 500 m; (2) dissolved210Pb concentrations are uniformly low at about 2 dpm/100 kg with little lateral or vertical variation; (3) the surface-water210Pb excess which is commonly observed in low-latitude open ocean regions is entirely lacking; (4)210Pb and210Po activities are essentially identical to each other in both particulate and dissolved phases although210Po activities appear somewhat lower; (5) about 20% of the210Pb and210Po in the water column residues on particulate matter.Assuming the atmospheric210Pb flux to be in the dissolved form and at the lower level of the normal range i.e. 0.5 dpm/cm2 yr, the residence time of the dissolved Pb is about 1.5 years. However, if the same atmospheric flux is entirely in particulate form, then the residence time of the dissolved Pb is about 5 years. The residence time of Pb in the particulate phase is less than 0.4 years if all the Pb is removed only by sinking particles.  相似文献   

10.
This paper presents the results of226Ra intercalibration measurements made by three groups of investigators (LDGO, USC and SIO) on the seawater samples collected in profile at three Geosecs intercalibration stations. A common radium standard prepared from an NBS bulk standard for the Geosecs program has been adopted by all groups. At Geosecs-I station in the Northeast Pacific, the new226Ra results obtained from reoccupation of the station show that the agreement of the three groups has been significantly improved over the initial comparison made in 1970.At Geosecs-II in the Northwest Atlantic, the initial comparison of the226Ra profiles showed that the USC data were systematically higher than the SIO data by 1 radium unit of 10?14 g/kg. This corresponds to a relative difference of 20% due to the very low radium content of Atlantic waters. The new results obtained from reoccupation of the station show that both the USC and SIO data are consistent with their previous data. Thus, a systematic difference of 1 radium unit still exists. However, the new LDGO profile falls in between those of USC and SIO, lying closer to the SIO profile.At Geosecs-III station in the Southwest Pacific, the226Ra measurements show that the LDGO data are systematically higher than the SIO data by about 10% above 3.4 km depth. Below this depth, both sets of data agree and show a sharp decrease in radium concentration. This radium discontinuity corresponds to the benthic front which is a density discontinuity separating the Deep and Bottom Water in the South Pacific.  相似文献   

11.
Particulate and soluble,210Pb activities have been measured by filtration of large-volume water samples at two stations in the South Atlantic. Particulate phase210Pb (caught by a 0.4-μm filter) varies from 0.3% of total210Pb in equatorial surface water to 15% in the bottom water. The “absolute activity” of210Pb per unit mass of particulate matter is about 107 times the activity of soluble210Pb per unit mass of water, but because the mass ratio of particulate matter to water is about 10?8, the particulate phase carries only about 10% of the total activity. In Antarctic surface water the particulate phase carries 40% of the total210Pb activity; the absolute activity of this material is about the same as in other water masses and the higher fraction is due to the much larger concentration of suspended matter in surface water in this region.In the equatorial Atlantic the particulate phase210Pb activity increases with depth, by a factor of 40 from surface to bottom, and by a factor of 4 from the Antarctic Intermediate Water core to the Antarctic Bottom Water. This increase with depth is predicted by our previously proposed particulate scavenging model which indicated a scavenging residence time of 50 years for210Pb in the deep sea. A scavenging experiment showed that red clay sediment removes all the210Pb from seawater in less than a week. The Antarctic particulate profile shows little or no evidence of scavenging in this region, which may be due to the siliceous nature of the particulate phase in circumpolar waters. Our previous observation that the210Pb/226Ra activity ratio is of the order of 0.5 in the deep water is further confirmed by the two South Atlantic profiles analyzed in the present work.  相似文献   

12.
Ten GEOSECS profiles from the North Pacific have been analyzed for210Pb. GEOSECS226Ra data on the same profiles are used to calculate210Pb excess or deficiency relative to secular equilibrium. The resultant profiles are divisible into a thermocline zone (<2000m) showing an expected decrease with depth, a mid-water zone of about 2000 m showing small constant deficiencies with a zone of increasing deficiency to a bottom zone of about 1000 m having the highest deficiency virtually invariant with depth. The exponentially decreasing portion in the thermocline yields a “diffusion” coefficient of 3 cm2/s. The mid-water deficiencies yield ? model residence times of 400 years northeast of Hawaii decreasing to 100 years at the most marginal stations.  相似文献   

13.
Disequilibrium between210Po and210Pb and between210Pb and226Ra has been mapped in the eastern and central Indian Ocean based on stations from Legs 3 and 4 of the GEOSECS Indian Ocean expedition.210Po/210Pb activity ratios are less than 1.0 in the surface mixed layer and indicate a residence time for Po of 0.6 years.210Po and210Pb are generally in radioactive equilibrium elsewhere in the water column except at depths of 100–500 m, where Po may be returned to solution after removal from the surface water, and in samples taken near the bottom at a few stations.210Pb excesses relative to226Ra are observed in the surface water but these excesses are not as pronounced as in the North Pacific and North Atlantic. The difference is attributable to a lower flux of210Pb from the atmosphere to the Indian Ocean. Below the main thermocline,210Pb activities increase with depth to a broad maximum before decreasing to lower values near the bottom. Departures from this pattern are especially evident at stations taken in the Bay of Bengal (where210Pb/226Ra activity ratios as low as 0.16 are observed) and near the Mid-Indian Ridge. The data suggest that removal of210Pb at oceanic boundaries, coupled with eddy diffusion along isopycnals, can explain gradients in210Pb near the boundary. Application of a simple model including isopycnal diffusion, chemical removal, production and radioactive decay produces fits the observed210Pb/226Ra gradients for eddy diffusion coeffients of ~ 107 cm2/s. High productivity in surface waters of the Bay of Bengal makes this region a sink for reactive nuclides in the northern Indian Ocean.  相似文献   

14.
A vertical diffusion-advection model with a scavenging removal rate which is first-order in concentration is applied to the deep-water Geosecs-I profiles of four trace metals. The actual model scavenging rates are obtained by calibration of the vertical advection velocity with the radiocarbon profile from the same station — the14C data givew = 3.7m/yr. “Scavenging residence times”, τψ, of 1400 years for Cu, 3200 years for Sb, and 2500 years for Sc are obtained. For these three elements the fit of the data to the scavenging-model equation is better than the fit to a conservative mixing model with no in-situ removal. TheFχ comparison test is used to assess the probability that the improved fit given by the scavenging model is due merely to a random selection of data from an infinite set of values with a distribution governed by the stable-conservative model. This probability is found to be only 0.6% for Cu and only 3% for Sb. For Sc, however, the probability is 19% so that the two models cannot be distinguished for this element. The Ni profile shows no effect of scavenging; a lower limit of 3000 years is estimated for τψ but the value is probably much greater. The association of Cu and Pb as two elements with definite indication of scavenging in deep water is consistent with experimental adsorption studies; the lack of indication of scavenging of Ni is consistent with the hypothesis that clay minerals are the scavenging agent for Pb and Cu. The method of comparing scavenging and conservative mixing-model fits to the profiles provides a mechanism for defining a set of trace elements which show consistent scavenging effects over large ocean areas, so that the reality of the deep-sea scavenging process for non-radioactive elements can be tested.  相似文献   

15.
Two ocean profiles from the Peru Basin from regions with different surface productivities were analyzed for total210Pb and201Po to evaluate the influence of particulates in the water column on their distribution. Comparison with a published226Ra profile for the region was made. The profile closest to the coast, where upwelling and productivity are high, shows depletion of210Pb relative to226Ra at all depths, with particularly marked excursions from radioactive equilibrium at the surface and in the bottom water.210Po appears to be deficient relative to210Pb at depth as well. Mean residence times in the deep water, relative to particulate removal from the water column to the sediments, of about 100 years for210Pb and about two years for210Po are indicated. The profile northwest of the upwelling region shows the226Ra210Pb210Po system close to equilibrium at all depths to 1500 m (except for the effect of atmospheric210Pb input seen at the surface.  相似文献   

16.
A mooring of three conical time-series sediment traps was deployed at two sites in the western Northwest Pacific Ocean for 9 months. Total mass fluxes and activities of 210Pb and 230Th were determined for the settling particles to elucidate their scavenging and transport processes. Sediment samples also were analyzed for 210Pb activities. Total mass fluxes, 210Pb fluxes and 230Th fluxes showed large seasonal variations and their weighted mean fluxes tended to increase with depth, with an especially large increase near-bottom. The ratios of the observed 210Pb fluxes to the 210Pb deficiency fluxes in the upper traps at the two sites were only 0.02 and 0.12, and were attributable to advective export of 210Pb from the surface waters. Those ratios in the near-bottom traps ranged between 1.22 and 2.63. This suggests that these high ratios are due to effective particle scavenging, large lateral 210Pb import and input of resuspended particles that have not become incorporated into the sediments. The mean total 230Th fluxes at the near-bottom traps were 4.2–6.7 times higher than that expected from production in the overlying water column. The 210Pb activities in the surficial sediments were much lower than those in the near-bottom traps. The 210Pb accumulation rates estimated from the excess 210Pb inventory in the sediment column were 40–70% higher than the mean 210Pb fluxes at the near-bottom traps. The ratios of the 210Pb accumulation rates to the 210Pb deficiency fluxes at the near-bottom traps ranged between 2.0 and 3.7. The high fluxes of particulate 210Pb and 230Th at the near-bottom traps reflected a combination of enhanced scavenging of dissolved nuclides and the lateral redistribution of particulate matter by downslope and alongshore transports. However, it was not possible to discriminate among the various processes contributing to high nuclide fluxes.  相似文献   

17.
In Funka Bay of Hokkaido, Japan, seawater, suspended matter and settling matter were collected once every month in the summer of 1974. These samples were analyzed for234Th, a short-lived daughter of dissolved238U. A pronounced disequilibrium between234Th and238U, and a highly variable concentration of234Th were found. Positive correlation, however, exist among the deficiency of234Th relative to238U in seawater, the concentration of particulate234Th, the fraction of particulate234Th to total234Th in seawater, the total dry weight of suspended matter, and the primary productivity during the month previous to sampling. The specific activity of234Th for the settling particles (620 ± 170 dpm/g) was nearly equal to that for suspended particles (720 ± 600 dpm/g) but much greater than that for plankton (47 ± 24 dpm/g). These facts suggest that suspended particles are somehow closely related to the removal of heavy metals from seawater, in spite of the negligibly small settling flux of suspended matter. The residence time of thorium in Funka Bay (mean depth: 60 m) is found to be about 60 days, which is nearly equal to those of210Pb and210Po.  相似文献   

18.
The 210Pb dating method was first introduced by Goldberg (1963), and since then has been applied to study sediment from lakes, estuaries and coastal marine environments. Hundreds of studies around the world have used 210Pb as a geochronological tool in aquatic ecosystems. However little attention has been paid to the potential of this naturally occurring isotope as an environmental tracer of ecological events. Here we report three instances in which 210Pb profiles measured on undisturbed sediment cores from lakes, rivers and fjords show us the potential of 210Pb profile as a tracer of natural and anthropogenic processes. The methodology used here is a suite of techniques combining biogeochemistry (micro-electrodes), paleomagnetism (susceptibility), sediment characteristics (LOI) and visualization (SPI and X-ray) applied to the interpretation of 210Pb profiles. We measured 210Pb profiles on sediments from a river, Cruces River (Chile), which recorded a clear shift in the water chemistry caused by a pulp mill effluent to the river. Here metal mobilization and remobilization of the tracer may be the cause of the observed profile. We also measured 210Pb profiles in sediment from two fjords of Southern Chile (Pillan and Reñihue), the sudden deposition change of fresh 210Pb with depth observed could very well be the result of bioturbation but it occurred in a seafloor area deprived of bioturbators. In this case, 210Pb recorded the onset of aquaculture activities (fish farming) that took place two decades ago. Finally, 210Pb profiles measured in two lakes in the “pampa Argentina”: Epecuen and Venado showed a particular shape with depth. These profiles apparently registered a sudden depositional event with recent 210Pb material, probably related to strong shifts in precipitation and drought cycles in that part of the world. These three examples show that 210Pb profiles provide valuable information not only on geochronology, but also related to natural and anthropogenic short term processes, as shown here, but these are not always reported and well understood.  相似文献   

19.
Excess210Pb measurements and varve chronology were used to establish a sediment accumulation rate of 0.19 cm/yr in a 95-cm-long box core raised from the Gulf of California. Varve thickness is unchanged over the entire length of the core, indicating a constant rate of sediment accumulation. The32Si specific activity of biogenic silica shows an exponential decrease with depth in this core. The half life of32Si, calculated from these data and the 0.19-cm/yr sediment accumulation rate, is276 ± 32 years. As most of the silica and32Si supplied to the Gulf of California is a result of upwelling of deep ocean water, this half life determination should be relatively insensitive to secular variations in the atmospheric supply of32Si.  相似文献   

20.
An experiment was designed to assess the relative importance of sediment accumulation and bioturbation in determining the vertical distribution of nuclides in estuarine sediments. A diver-collected core, 120 cm long, was raised from central Long Island Sound and analyzed down its length for:210Pb and226Ra;239, 240Pu; and Mn, Zn, Cu, and Pb. Sampling for chemical analysis was guided by X-radiography of the core. Excess210Pb (relative to226Ra) is roughly homogeneous in the top 2–4 cm of the core, then decreases quasi-exponentially to zero at (or above) 15 cm.239, 240Pu and excess Zn, Cu, and Pb, relative to background values at greater depths in the core, are distributed like excess210Pb in the top 10–15 cm. The absence of Mn enrichment at the top of the core, in contrast to other cores raised from this station, suggests that 1–3 cm of sediment was lost by erosion at the site of this core sometime prior to sampling. Below 15 cm excess210Pb and excess Zn, Cu, and Pb are found only in the bulk sample from 25 to 30 cm and in clearly identifiable burrow fillings dissected from 70 cm and 115 cm depth. Infilling of large burrows, excavated and then abandoned by crustaceans, is therefore a mechanism for transfer of surficial material to depth in these sediments.The bioturbation rate in the top several centimeters at this station has been determined previously using234Th (24-day half-life). The distribution of239, 240Pu can be used to estimate a bioturbation rate for the underlying layer (to ~10 cm depth); this rate is found to be 1–3% of the maximum mixing rate for the top 2–3 cm. Using these two mixing rates in a composite-layer, mixing + sedimentation model, the distribution of excess210Pb in the top 15 cm was used to constrain the sediment accumulation rate, ω. While the apparent rate of sediment accumulation (assuming no mixing below 2–4 cm) is 0.11 cm/yr, the model requires ω < 0.05 cm/yr. Thus in an area of slow sediment accumulation, a low rate of bioturbation below the surficial zone of rapid mixing causes an increase of at least a factor of two in apparent accumulation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号