首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We show that the present geoid has a simple low-order configuration with an axis of symmetry in the equatorial plane. We show further that it is a “tennis-ball” pattern, with an equatorial high belt and a polar low one, which is clearly controlled by the rotation of the Earth. Finally, we show that the outline of Pangea between at least 200 Ma and 125 Ma ago lay along a great circle passing through the paleo-poles of rotation. Thus, it also had an axis of symmetry in the equatorial plane. This hemispheric super-continent configuration ended in Middle Cretaceous time during a major geologic catastrophe which was accompanied by high rates of spreading, hotspot outbreaks and high sea-level stands. We interpret this evidence in terms of separate steady state lower mantle convection, responsible for the present geoid, weakly coupled to the upper mantle one. This weak coupling leads to the hemispheric continent configuration which ends when excessive heating of the upper mantle due to the insulating continental cap leads to continent dispersal. The complete cycle, from one supercontinent to the next, might be of the order of 400 Ma.  相似文献   

2.
青藏地区大地水准面形态及其与构造动力学的关系   总被引:2,自引:1,他引:2       下载免费PDF全文
利用密合法求解青藏地区大地水准面模型,研究青藏地区大地水准面主要特征及其与该区内部构造和活动的相关性.表明青藏地区大地水准而异常与青藏高原隆起的形状极为相似,大地水准面整体负异常与下地幔相关,形状起伏与上地幔相对应,岩石层反映的大地水准而异常与青藏高原活动构造有较好的对应关系.  相似文献   

3.
The effects of plate rheology (strong plate interiors and weak plate margins) and stiff subducted lithosphere (slabs) on the geoid and plate motions, considered jointly, are examined with three-dimensional spherical models of mantle flow. Buoyancy forces are based on the internal distribution of subducted lithosphere estimated from the last 160 Ma of subduction history. While the ratio of the lower mantle/upper mantle viscosity has a strong effect on the long-wavelength geoid, as has been shown before, we find that plate rheology is also significant and that its inclusion yields a better geoid model while simultaneously reproducing basic features of observed plate motion. Slab viscosity can strongly affect the geoid, depending on whether a slab is coupled to the surface. In particular, deep, high-viscosity slabs beneath the northern Pacific that are disconnected from the surface as a result of subduction history produce significant long-wavelength geoid highs that differ from the observation. This suggests that slabs in the lower mantle may be not as stiff as predicted from a simple thermally activated rheology, if the slab model is accurate.  相似文献   

4.
Pacific plate equatorial sediment facies provide estimates of the northward motion of the Pacific plate that are independent of paleomagnetic data and hotspot tracks. Analyses of equatorial sediment facies consistently indicate less northward motion than analyses of the dated volcanic edifices of the Hawaiian-Emperor chain. The discrepancy is largest 60–70 Ma B.P.; the 60- to 70-Ma equatorial sediment facies data agree with recent paleomagnetic results from deep-sea drilling on Suiko seamount [1] and from a northern Pacific piston core [2]. Equatorial sediment facies data and paleomagnetic data, combined with K-Ar age dates along the Emperor chain [3], indicate a position of the spin axis at 65 Ma B.P. of 82°N, 205°E in the reference frame in which the Pacific Ocean hotspots are fixed. This pole agrees well with the position of the spin axis in the reference frame in which the Atlantic Ocean hotspots and the Indian Ocean hotspots are fixed [4,5], supporting the joint hypotheses that (1) the Pacific Ocean hotspots are fixed with respect to the hotspots in other oceans, (2) the hotspots have shifted coherently with respect to the spin axis, and (3) the time average of the earth's magnetic field 65 Ma B.P. was an axial geocentric dipole. Global Neogene paleomagnetic data suggest that a shift of the mantle relative to the spin axis has been occurring during the Neogene in the same direction as the shift between 65 Ma B.P. and the present. All data are consistent with a model in which the hotspots (and by inference the mantle) have shifted with respect to the spin axis about a fixed Euler pole at a constant rate of rotation for the last 65 Ma.  相似文献   

5.
Gorringe Ridge is a strong uplifted block of oceanic crust and upper mantle lying at the eastern end of the Azores-Gibraltar plate boundary. The geoid over this structure derived from Seasat altimeter data exhibits a 9-m height anomaly with a north-south lateral extension smaller than 200 km. An attempt is made to interpret this geoid together with the gravity anomalies and with the seismicity, which has been compiled as a function of depth.It is first shown that the flexure of the oceanic lithosphere due to the ridge loading does not provide a good fit of the geoid anomalies and probably should be discarded, as it assumes a continuous unfractured elastic plate.Models involving local heterogeneities are then tested. The comparison of the observed geoid anomalies with the anomalies due to the uncompensated relief indicates that the topographic high has no shallow compensation.Uncompensated models, previously proposed to explain the gravity anomalies, are tested using the geoid. One model (Purdy and Bonnin, in Bonnin [11]), which involves an uplift of upper mantle material at depth, generates too strong geoid anomalies and must be discarded. Another model, which represents a nascent subduction zone (Le Pichon et al. [25]), fits both the gravity and geoid anomalies, but leads to difficulties in explaining the deep seismicity north of Gorringe Ridge.A model in isostatic equilibrium is also able to fit both gravity and geoid anomalies. This model involves a deep root of density 3.0 g cm?3, as has been previously proposed for many oceanic ridges and plateaus. This model is compatible with the deep seismicity, but the origin of this low-density material at great depth is up to now an unresolved question.More likely, dynamical models taking into account the forces induced by the convection related to the slow plate convergence in this area will have to be considered.  相似文献   

6.
A joint effect of weak zones, dividing lithospheric plates, and lateral viscosity variations (LVV) in the whole mantle on the observed geoid is investigated by a new numerical approach. This technique is based on the substantially revised method introduced by Zhang and Christensen (Geophys J Int 114:531–547, 1993) for solving the Navier–Stokes–Poisson equations in the spectral domain with strong LVV. Weak plate boundaries (WPB) are introduced based on an integrated global model of plate boundary deformations GSRM (Kreemer et al. in Geophys J Int 154:8–34, 2003). The effect of WPB on the geoid is significant and reaches ?40 to 70 m with RMS ~20 m. The peaks are observed over large subduction zones in South America and the southwestern Pacific in agreement with previous studies. The positive geoid anomaly in South America could be explained largely by a dynamic effect of decoupling of the Nazca and South American plates. The negative changes of the geoid mostly relate to mid-oceanic ridges. The amplitude of the effect depends on the viscosity contrasts at WPB compared with the plate viscosity until its value reaches the limit of 2.5–3 orders of magnitude. This value might be considered as a level at which the plates are effectively decoupled. The effect of WPB exceeds the effect of LVV in the whole mantle and generally does not correlate with it. However, inclusion of LVV reduces the geoid perturbations due to WPB by about 10 m. Therefore, it is important to consider all factors together. The geoid changes mainly result from changes of the dynamic topography, which are about ?300 to +500 m. The obtained results show that including WPB may significantly improve the reliability of instantaneous global dynamic models.  相似文献   

7.
Previous studies have shown that the Pacific geoid and gravity fields exhibit lineated anomalies, trending approximately in the direction of absolute plate motion over the underlying mantle. Because the undulations obliquely cross fracture zones they have often been attributed a convective origin. Recently, lithospheric boudinage caused by diffuse extension has been proposed as a possible mechanism. We have examined the undulations in the free-air anomalies, geoid and bathymetry over a portion of the Pacific Plate to determine quantitatively how the undulations are related to plate motion. We compare the observed data to an axisymmetric, sinusoidal undulation defined in an arbitrary frame of reference; in particular, we seek the north pole of this reference frame that maximizes the correlation between data and model. Poles that are close to the Pacific hotspot pole represent copolar undulations possibly related to plate motion. The distance between the best-fitting poles and the hotspot pole is determined as a function of undulation wavelength and reveals several minima (with distance < 10°) for discrete geoid wavebands centered on wavelengths of 160 km, 225 km, 287 km, 400 km, 660 km, 850 km, 1000 km and 1400 km. Bathymetry data have copolar bathymetric expressions as well, giving an implied admittance of 2–3 m/km. The most co-polar geoid/bathymetry undulations (with poles within 2–3° of the average Pacific Euler pole) have wavelengths of 280 km and 1050 km, respectively. The latter could have a convective origin or be related to the spacing of hotspot swells. The former may reflect lithospheric boudinage formed in response to diffuse extension, but could also have a dynamic origin since flexural dampening may only have attenuated the bathymetric amplitude by 50% or less. Radiometric dating of volcanic ridges found in the troughs of prominent gravity lineations gives ages that correlate well with documented changes in Pacific and Indo/Australian Plate motion, suggesting the ridges formed in response to intermittent plate boundary stresses and not as a direct consequence of small-scale convection or diffuse extension.  相似文献   

8.
南阿拉斯加地壳及上地幔结构成像研究   总被引:1,自引:0,他引:1       下载免费PDF全文
柳存喜  王志 《地球物理学报》2014,57(7):2113-2126
通过反演562891个纵波和156321个横波走时数据,第一次同时获得了阿拉斯加地区地壳及上地幔的纵波与横波速度以及泊松比图像,为更好地认识阿拉斯加地区的深部地震结构、太平洋板块与亚库塔特板块的俯冲几何形态提供了科学依据.成像结果表明P波和S波速度图像与泊松比结构具有很好的一致性,强的高速度和低泊松比异常沿着阿拉斯加俯冲带延伸至200 km深度,该高速度和低泊松比异常体与俯冲带的地震空间分布吻合,因此,我们认为该高速体为俯冲的太平洋板块和亚库塔特板块.从地震空间分布发现,大部分大地震(M>6.5)发生在高速度与低速度异常交界处,可能反映了俯冲板块之间强耦合作用.在俯冲带的地幔楔显示出广泛的低速度和高泊松比异常,并且这些异常与岛弧火山的位置相对应,这与大洋板块俯冲所形成的岩浆入侵作用有关.研究结果表明在南阿拉斯加俯冲带,俯冲板块的俯冲角度从兰格尔块体下方的平坦变成在布里斯托尔湾下方的陡峭,这与亚库塔特板块俯冲在兰格尔块体下方和太平洋板块俯冲在布里斯托尔湾下方有关.在基奈半岛和科迪亚克岛连接处的上地幔位置存在强烈的低速与高泊松比异常体,使该处的大洋俯冲板块变薄.这一现象可能与亚库塔特板块和太平洋板块相互碰撞作用以及软流圈强烈的上升流入侵有关.  相似文献   

9.
崔荣花  方剑  王勇 《地球物理学报》2021,64(4):1279-1290
本文利用数值法求解瞬时地幔对流问题以模拟大地水准面异常.利用两个较新的S波速度异常层析模型SEMUCB_WM1和TX2019slab,将其转换为密度异常作为控制方程的浮力驱动项;采取的黏度结构模型中,上下地幔的黏度比为1∶50.为了研究地幔不同结构对罗斯海海域大地水准面异常的影响,分别提取上、下地幔的密度异常正/负值,作为对流控制方程的输入项,计算相应的模拟大地水准面异常.将模拟大地水准面异常与观测值进行对比,发现罗斯海海域的大地水准面异常主要来自下地幔及上地幔的负密度(波速)异常,下地幔正密度异常对该区域大地水准面负异常也有一定的贡献.本文认为,地幔密度负异常在罗斯海海域大地水准面异常的形成中占据主导作用,地幔对流的动力学效应对该区域大地水准面异常的形成影响较弱.  相似文献   

10.
Thermal convection is the motor of Earth dynamics and therefore is the link between plate motions, hotspots, seismic velocity variations in the mantle, and anomalies of the gravity field. Small scale mantle anomalies, such as plumes, do, however, generally escape detection by tomographic methods. It is attempted to approach the problem of detection in a somewhat statistical manner. Correlations are sought between spherical harmonic expansions of the fields under study: the hotspot distribution, mantle velocity variations, gravity, heat flow. Using spherical harmonic representations of global fields implies integration and averaging over the whole globe. Thus, although relationships may remain masked in the space domain by a multitude of effects, tendencies may become visible in the spectra or in appropriate averages.The main results are the following: There is a significant long wavelength (n=2,3) negative correlation between the hotspot density and the P-wave velocity variation in the lower mantle. Positive hotspot density of degree 2 to 9 generally correlates with low seismic velocity in all depths of the upper mantle and with positive gravity. This fits well with plume-type convection. These results are also confirmed regionally for a number of individual mid-ocean ridges and hotspots. The hotspot density and the free air anomalies are distinctly positive above regions of low velocity extending to great depth. The effect is not distinct at ridges with shallow velocity anomalies. In a general way, we suggest that the antipodal upwellings (Pacific, Africa) are divided by downwelling currents around the shrinking Pacific. Plate boundaries can easily move away from their past connections with the deeper mantle. Small scale plume currents seem to be depicted in the hotspot expansion. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

11.
A digitised tectonic model, initially built up for regionalization of Rayleigh waves, is applied to the geoid in order to define the mean geoid heights of the following regions: 3 oceanic regions, namely young oceans (0–30 Ma) middle-aged oceans (30–80 Ma) and old oceans (> 80 Ma); trenches and subduction zones; mountains; and shields. The relative importance of the deep sources is damped or enhanced by progressively removing or adding the lower or higher degrees of the geoid. A statistical approach allows us to quantify the success of the correlation between tectonics and these filtered geoids.Significant variations are observed in these correlations for oceanic regions (including subduction zones) with a cut-off between degree-2 and higher degrees. For degrees ? 3, a well-known trend is observed: high values correspond to young oceans (ridges) and low values to old oceans, high values are also obtained for subduction zones. On the contrary, and unexpectedly, for the degree-2 alone a trend reversal is observed: geoid lows are observed over ridges and geoid highs over old oceans; trenches give the same geoid amplitude than old oceans. Clearly this denotes a degree-2 convection pattern connected to plate tectonics. In addition it is shown that the minimum and maximum inertia axes of the surface distribution of young oceans, and independently of old oceans and trenches, coincide with the Earth's equatorial inertia axes (74°E and 164°E), i.e., with the equatorial extremes of the degree-2 geoid.Plate tectonics is uncorrelated with the polar anomaly of the degree-2 geoid, namely the flattening which is not accounted for by Earth rotation. A north-south axisymmetric convection with a degree-2 pattern is proposed to explain this extra flattening; this model is supported by the latitude dependence of the depth of oceanic ridges.  相似文献   

12.
The earth's largest positive geoid height anomalies are associated with subduction zones and hotspots. Although the correlation with subduction has been noted for many years, the correlation with hotspots is fully evident only when the subduction-related geoid highs are removed from the observed field. Using the assumption that subducted lithospheric slabs are uncompensated and are thermally re-equilibrated with the asthenosphere at the maximum depth of earthquakes, the expected geoid anomaly over subduction zones is calculated. This field provides a satis-factory fit to the observed circum-Pacific high. Subtraction of this predicted anomaly leaves a residual field which is correlated, at greater than the 99% confidence level, with the distribution of hotspots. Broad residual geoid highs occur over the central Pacific and the Africa/eastern Atlantic regions, the same areas where the hotspots are concentrated. The mass anomalies associated with hotspots and subducted slabs apparently control the location of the earth's spin axis.  相似文献   

13.
Active oceanic ridges are part of the global system of diverging plate boundaries encircling the Earth. They represent weak zones of the lithosphere. They are isostatically equilibrated. The system as a whole is considered to be well adapted to the present field of plate driving forces. The search for regularities in the pattern of active oceanic ridges may, therefore, provide valuable information as to the large-scale characteristics of structures and processes in the Earth’s mantle. Two large belts of active oceanic ridges are envisaged: (1) The semi-circular belt bordering the Pacific plate which extends from South of Tasmania to Northwest of Vancouver Island over a length of 20,000 km. It appears to encircle a center P1 in the central Pacific region. (2) The circum-African belt bordering the African plate which extends from the Azores to the Gulf of Aden over a length of 24,000 km. It appears to encircle a center A1 in central Africa. The attempt is made to determine the position of these centers. Extent and position of the ridge systems are described by 34 fixed points. Points R01–R20 mark the circum-African ridge system, points R21-R34 the Pacific ridge system. A least-squares adjustment is used to determine the optimum position of the centers P1 and A1. Center P1 of the Pacific ridge system is located at 169.8°W/2.6°S. Center A1 of the circum-African ridge system is located at 11.6°E/2.4°N. The location error of the centers is less than 2.8°. In view of the great extent of the ridge systems, and considering the fact that the location of P1 and A1 is based on independent data sets, the nearly antipodal and equatorial position of the centers is remarkable. The newly defined centers P1 and A1 are located close to the Pacific pole P, at 170°W/0°N, and the African pole A, at 10°E/0°N. Within the limits of error the center P1 coincides with pole P, the center A1 with pole A. Originally, these poles were introduced in order to describe a fundamental hemispherical symmetry which is apparent in the evolution of the Earth’s lithosphere during the last 180 Ma. The new results confirm the unique position of poles P and A in the global tectonic framework.  相似文献   

14.
Up to now, tests of thermal models of the oceanic lithosphere as it cools and moves away from the ridge crest have been based mainly on topography and heat flow data. However, large areas of the ocean floor deviate from the normal subsidence due to thermal contraction and heat flow data are not very sensitive to the form of the model.

Cooling of the lithosphere causes a short-wavelength step in the geoid across fracture zones that can also be used to constrain thermal models. We have analyzed geoid data at fracture zones from the SEASAT altimeter measurements in the entire Pacific Ocean and redetermined parameters of the cooling models. We find that the data reveal two distinct regimes of cooling; one for seafloor ages in the range 0–30 Ma, the other beyond 30 Ma; this does not appear to be correlated with particular fracture zones but rather it is representative of the whole area studied, i.e., the entire south Pacific and northeast Pacific Ocean. These two trends may be interpreted in terms of two different (asymptotic) thermal thicknesses of the plate model. The smaller thermal thickness ( 65 km) found for ages <30 Ma—compared to 90 km in the age range 30–50 Ma—calls for some kind of thermal perturbation in the vicinity of the ridge crest.

From the results obtained in this study, we conclude that the half-space cooling model is unable to explain the data, that beyond 30 Ma, a simple plate model gives a satisfactory fit to the data but in the younger plate portion (ages < 30 Ma) the cooling history of the oceanic lithosphere is much more complex than predicted by the usual cooling models. Furthermore, the depth-age relationship obtained from the geoid-derived thermal parameters departs significantly beyond 30 Ma from the widely used Parsons and Sclater's depth-age curve, predicting a lesser subsidence.  相似文献   


15.
Deep seismic sounding studies carried out in 1974–79 allowed an important peculiarity of the deep structure of the Pamir-Himalayas region to be established: the thickness of the Earth's crust is almost twice as large here as on the stable plates (65–75 and 35–37 km, respectively). The absence of any evidence for doubling of crustal thickness provides grounds for rejecting the hypothesis of subduction of the rigid Hindustan plate under the geosynclinal folded constructions of the Punjab syntaxis of the Himalayas. The steep inclination of all major faults, dissecting the Earth's crust and often dislocating the M surface, is also counter to this hypothesis. Several faults reflect the dynamics and conditions of formation of deep layers of the lithosphere. For example, the structural seam of the Indus, which has an almost sheer tilt and which penetrates to subcrustal depths, is a channel along which ophiolite associations of crystalline rocks were squeezed from the mantle. The Fore Himalayan and Major Himalayan faults are the boundaries between different structural facial zones. The band of greatest thickness of crust extends within the zone of greatest thickness of the asthenospheric layer; a deep minimum in the Bouguer anomalies (?550 mGal) corresponds to this zone, as does also a depression on the surface of the geoid.Seismicity of the lithosphere of the Pamir-Himalayas region is caused by geodynamic processes manifested in the higher lithospheric layers by block displacements of the Earth's crust (mostly uplifts), and in the lower parts by shifts of the steeply inclined mantle blocks (the Pamir-Hindukush seismic focal zone).  相似文献   

16.
Least-squares collocation technique was used to process regional gravity data of the SE South American lithospheric plate in order to map intermediate (10–2000 km) wavelength geoid anomalies. The area between 35–10° S and 60–25° W includes the Paraná CFB Province, the Southern São Francisco Craton and its marginal fold/thrust belts, the Brazilian continental margin and oceanic basins. The main features in the geoid anomaly map are: (a) Paraná CFB Province is characterized by a 1000 km long and 500 km wide, NE-trending, 9 m-amplitude negative anomaly which correlates with the distribution of sediments and basalts within the Paraná basin. (b) A circular (600–800 km in diameter) positive, 8 m-amplitude geoid anomaly is located in the southern S. Francisco craton and extends into the northeastern border of the Paraná CFB Province. This anomaly partially correlates with Alto Paranaíba Igneous Province (APIP), where alkalic volcanism and tholeiitic dikes of ages younger than 80 Ma are found and where a low-velocity zone in the mantle has been mapped using seismic tomography. This positive geoid anomaly extends towards the continental margin at latitude 21° S and joins a linear sequence of short wavelength positive geoid anomalies associated with Vitoria–Trindade seamounts. (c) A NE-trending, 1000 km long and 800 km wide, 4 m-amplitude, positive geoid anomaly, which is located along the southeastern coast of Brazil, from latitude 24 to 35° S. The northern part of this anomaly correlates with the Ponta Grossa Arch and Florianopolis dyke swarm provinces. The age of this intrusive volcanism is 130–120 Ma. (d) A circular positive anomaly with 9 m of amplitude, located over the Rio Grande and Uruguay shields and offshore Pelotas basin. Few alkaline intrusives with ages between 65 and 80 Ma are found in the region and apatite fission track ages in basement rocks indicates cooling at around 30 Ma. A semi-quantitative analysis of the observed geoid anomalies using isostatic considerations suggests that the mechanism which generated Paraná CFB Province did not change, in a significant manner, the lithospheric thermal structure, since the same geoid pattern observed within this province continues northward over the Neoproterozoic fold/thrust belts systems separating the São Francisco and Amazon cratons. Therefore, this observation favours Anderson’s idea of rapid basaltic outpouring through a pull-apart mechanism along a major suture zone. A thermal component may still be present in the Southern São Francisco Craton and in the Rio Grande Shield and contiguous continental margins, sites of Tertiary thermal and magmatic reactivations.  相似文献   

17.
The tropical Pacific experienced a sustained warm sea surface condition that started in 2014 and a very strong El Nio event in 2015. One striking feature of this event was the horseshoe-like pattern of positive subsurface thermal anomalies that was sustained in the western-central equatorial Pacific throughout 2014–2015. Observational data and an intermediate ocean model are used to describe the sea surface temperature(SST) evolution during 2014–2015. Emphasis is placed on the processes involved in the 2015 El Nio event and their relationships with SST anomalies, including remote effects associated with the propagation and reflection of oceanic equatorial waves(as indicated in sea level(SL) signals) at the boundaries and local effects of the positive subsurface thermal anomalies. It is demonstrated that the positive subsurface thermal anomaly pattern that was sustained throughout 2014–2015 played an important role in maintaining warm SST anomalies in the equatorial Pacific. Further analyses of the SST budget revealed the dominant processes contributing to SST anomalies during 2014–2015. These analyses provide an improved understanding of the extent to which processes associated with the 2015 El Nio event are consistent with current El Nio and Southern Oscillation theories.  相似文献   

18.
Optimal Model for Geoid Determination from Airborne Gravity   总被引:2,自引:0,他引:2  
Two different approaches for transformation of airborne gravity disturbances, derived from gravity observations at low-elevation flying platforms, into geoidal undulations are formulated, tested and discussed in this contribution. Their mathematical models are based on Green's integral equations. They are in these two approaches defined at two different levels and also applied in a mutually reversed order. While one of these approaches corresponds to the classical method commonly applied in processing of ground gravity data, the other approach represents a new method for processing of gravity data in geoid determination that is unique to airborne gravimetry. Although theoretically equivalent in the continuous sense, both approaches are tested numerically for possible numerical advantages, especially due to the inverse of discretized Fredholm's integral equation of the first kind applied on different data. High-frequency synthetic gravity data burdened by the 2-mGal random noise, that are expected from current airborne gravity systems, are used for numerical testing. The results show that both approaches can deliver for the given data a comparable cm-level accuracy of the geoidal undulations. The new approach has, however, significantly higher computational efficiency. It would be thus recommended for real life geoid computations. Additional errors related to regularization of gravity data and the geoid, and to accuracy of the reference field, that would further deteriorate the quality of estimated geoidal undulations, are not considered in this study.  相似文献   

19.
This paper presents a survey of recent work on the gravimetric geoid. The gravity models considered are those published in the past few years by the Goddard Space Flight Center (GSFC), the Smithsonian Astrophysical Observatory (SAO) and the Ohio State University (OSU). Comparisons and analyses have been carried out through the ose of detailed gravimetric geoids which we have computed by combining the above-mentioned models with a set of 26 000, 1ox1o mean free air gravity anomalies. The accuracy of the detailed gravimetric geoid computed using the most recent Goddard Earth Model (GEM-6) in conjunction with the set 1ox1o mean free air gravity anomalies is assessed at 2 m on the continents of North America, Europe And Australia, 2 to 5 m in the North-East Pacific and North Atlantic areas and 5 to 10 m in other areas where surface gravity data are sparse. Rms differences between this detailed geoid and the detailed geoids computed using the other satellite gravity fields in conjunction with same set of surface data range from 3 to 7 m. The maximum differences in all cases occurred in the Southern Hemisphere where surface data and satellite observations are sparse. These differences exhibited wavelengths of approximately 30o to 50o in longitude. Detailed geoidal heights were also computed with models truncated to 12th degree and order as well as 8th degree and order. This truncation resulted in a reduction of the rms differences to a maximum of 5 m. Comparisons have been made with the astrogeodetic data of Rice (United States), Bomford (Europe), and Mather (Australia) and also with geoidal heights from satellite solutions for geocentric station coordinates in North America and the Caribbean.  相似文献   

20.
杨峰 《地震》2020,40(4):33-48
选取黑龙江、 吉林、 辽宁、 内蒙古区域地震台网, 以及NECESSArray流动台阵记录的223个远震事件的波形资料, 采用多道互相关方法得到了22569个P波相对走时数据, 并计算了相应的走时灵敏度核, 应用有限频率层析成像反演得到中国东北地区上地幔600 km以上的P波三维速度结构模型, 利用检测板评估了反演结果的分辨率。 结果表明, 松辽盆地下方80~200 km的深度上呈主体的低速异常, 与这一地区上地幔浅部的高地温值和低密度的特征相互对应, 可能暗示了部分熔融的地幔。 南北重力梯度带两侧的速度结构明显不同, 这一差异可以延伸到200 km以下, 表明在中国东北地区南北重力梯度带有可能是一条上地幔内部结构的变化带, 或是深部结构的分界线。 长白山火山区下呈大范围的低速异常, 并可从上地幔浅部延伸到地幔转换带中, 推测此低速异常可能反映了地幔转换带内上涌的热物质, 上涌的原因则主要是受到太平洋板块俯冲运动的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号