首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
Blithfield (EL6) is one of five known enstatite chondrite breccias. It consists of troilite-rich clasts (35 ± 5vol.%) embedded in an extremely metallic Fe,Ni-rich matrix (65 ± 5 vol.%) that contains metal nodules up to 17 mm in size. Clasts and matrix agglomerated independently in the solar nebula under conditions of high and lowpS2/pO2 ratios, respectively. The matrix accreted to an EL chondrite planetesimal and was metamorphosed to~ 1000°C, above the FeNiS eutectic; chondrule textures were obliterated. The S-rich eutectic melt was lost from the matrix. The matrix material was buried to a depth of at least 3 km; accreting troilite-rich material was incorporated into the matrix as clasts. The breccia cooled through~ 500°C at 1000–10,000°C/Myr. After cooling below~ 500°C, Blithfield was quenched, possibly by impact excavation from depth and deposition onto the surface.Clasts or inclusions that are enriched in sulfide and depleted in metallic Fe,Ni are common in brecciated enstatite chondrites. Variations in thepS2/pO2 ratio in the nebular regions where these materials formed may explain many of their petrologic properties. The silica-rich clasts in Adhi Kot (EH4) formed at very highpS2/pO2ratios(> 1027); niningerite, free silica and troilite were produced from the sulfurization of enstatite and metallic Fe. The troilite-rich clasts in Blithfield and Atlanta (EL6) as well as the troilite-rich regions of the Hvittis (EL6) matrix formed at somewhat lowerpS2/pO2 ratios where sulfurization of metalic Fe produced troilite. The Ni content of the residual metal increased, forming some metal of martensitic composition. The dark inclusions in Abee (EH 4), which contain up to 9 wt.% oldhamite, formed at highpS2/pO2 ratios in the presence of an additional Ca-rich component.  相似文献   

2.
The Abee E4 enstatite chondrite breccia consists of clasts (many rimmed by metallic Fe, Ni), dark inclusions and matrix. The clasts and matrix were well equilibrated by thermal metamorphism, as evidenced by uniform mineral compositions, recrystallized chondrules, low MnO content of enstatite and high abundance of orthoenstatite. The clasts acquired their metal-rich rims prior to this metamorphic episode. The occurrence in Abee of relatively unmetamorphosed dark inclusions, clasts with nearly random magnetic orientations and a matrix with a uniform magnetic orientation [18,19] indicates that clast and matrix metamorphism occurred prior to the agglomeration of the breccia.The dark inclusions are an unusual kind of enstatite chondritic material, distinguished from the clasts and matrix by their relative enrichments in REE [21–23], low relative abundances of kamacite, total metallic Fe, Ni and silica, lower niningerite/(total sulfide) ratios, high relative abundances of oldhamite and martensite, smaller euhedral enstatite, more heterogeneous enstatite and metallic Fe, Ni, more calcic enstatite and more nickeliferous schreibersite.We propose the following model for the petrogenesis of the Abee breccia: The maximum metamorphic temperature of breccia parent material was?- 840°C (the minimum temperature of formation of Abee niningerite) and perhaps near 950–1000°C (the Fe-Ni-S eutectic temperature). Euhedral enstatite crystals in metallic Fe, Ni- and sulfide-rich areas grew at these metamorphic temperatures into pliable metal and sulfide. Breccia parent material was impact-excavated from depth, admixed with dark inclusions and rapidly cooled (700 to 200°C in about 2 hours) [15]. During this cooling, clast and matrix material acquired thermal remanent magnetization. Random conglomeration of clasts and unconsolidated matrix materials caused the clasts to have random magnetic orientations and the matrix areas to have net magnetic intensities of zero (due to the cancellation of numerous randomly oriented magnetic vectors of equal intensity in the matrix). A subsequent ambient magnetic field imparted a uniform net magnetic orientation to the matrix and caused the magnetic orientations of the clasts to be somewhat less random. The Abee breccia was later consolidated, possibly by shock or by shallow burial and very long-period/low-temperature (< 215°C) metamorphism.  相似文献   

3.
The concentrations of 25 major, minor and trace elements have been determined in four clasts, a metal-rich inclusion and two dark metal-poor inclusions from the Abee enstatite chondrite. The clasts are heterogeneous, displaying 2-fold enrichments or depletions in some elements. The data suggest that there are two generations of metal, one with low, the other with high concentrations of refractory siderophiles. The other elemental patterns can be understood in terms of variations in the abundance of major minerals. We infer that Sc and Mn are located largely in the niningerite ((Fe,Mg)S), V in the troilite (FeS) and rare earth elements in the oldhamite (CaS).Heterogeneities among the clasts are probably primary, resulting from the accretion-agglomeration process, although shock processes in a regolithic setting remain a possibility provided that they were followed by a period of metamorphism sufficient to erase petrologic evidence.In the dark inclusions the concentrations of the rare earths, Eu excepted, are 4 × higher than mean EH levels; this infers enhanced amounts of CaS. The dark inclusions are low in siderophiles, Sc, Mn, K, Na and Al, implying low amounts of metal, niningerite and feldspar. The origin of the dark inclusions is unclear; they do not appear to be the result of a simple, single-stage process.  相似文献   

4.
Rare-earth elements and Ba in Khohar, Abee, Indarch, Atlanta, Jajh deh Kot Lalu, and Nakhla were determined accurately by isotope dilution technique; for Atlanta only, Fe (total), Mg and Ca were also determined. Khohar shows in two aliquants a strikingly large, positive anomaly for Ce. A fragment of Abee is outstanding in having a large positive Yb anomaly and a zigzag RE pattern. It is considered that the Yb anomaly is not necessarily associated with the zigzaggedness in question. Anyway, these facts corroborate our previous observations that abundances of Ce and/or Yb could be sometimes anomalous in meteoritic and lunar materials.Atlanta also has a significant negative Eu anomaly, similar to the Eu depletions observed in lunar basalts and Ca-poor achondrites by other workers. Besides, this enstatite chondrite has a RE pattern which indicates that this meteorite is cumulate-type (solid-type) material separated perhaps from a considerably fractionated melt. Accordingly, it is suggested that it is not always appropriate to classify this type II enstatite chondrite as “chondrite”. Two fragments from Abee and Atlanta show different RE patterns. It is also observed that Ba abundances are sometimes sporadically and irregularly high.  相似文献   

5.
Phase equilibria in a portion of the system forsterite-plagioclase (An50Ab50 by weight)-silica-H2O have been determined at 15 kbar pressure under H2O-saturated conditions. The composition of the liquid pertinent to the piercing point forsterite + enstatite solid solution + amphibole + liquid + vapor is similar to that of calc-alkaline andesite. The electron microprobe analysis of the glass coexisting with the above three crystalline phases is very close to that of the piercing point determined by phase assemblage observations; however, the glass near (< 8 μm) forsterite crystals is significantly depleted in the normative forsterite component. With the addition of 10 wt.% KAlSi3O8, the composition of this piercing point becomes even closer to the compositions of calc-alkaline andesites. It is also shown that the liquid coexisting with forsterite and enstatite solid solution remains silica-rich (60–62 wt.%) over a wide (~ 100°C) temperature range. The present experimental studies support the view that liquids similar in composition to calc-alkaline andesites can be generated by direct partial melting of hydrous upper mantle at least at or near 15 kbar.  相似文献   

6.
Olivine clasts, which have mantles formed by reaction of the olivine with the breccia matrix, are present in the high-grade thermally metamorphosed Apollo 14 breccias. The mantled olivine clasts are most abundant in 14311, but they are also present in 14304 and 14319. Typically the mantles consist of two zones: an inner corona containing pyroxene, ilmenite and commonly plagioclase, and an outer light-colored halo where the matrix is depleted in ilmenite. The growth of the coronas involved matrix-to-corona diffusion of TiO2 and corona-to-matrix diffusion of MgO and FeO. These diffusive fluxes can be attributed to chemical potential gradients developed between mineral assemblages in local equilibrium at the olivine-corona boundary and the matrix.  相似文献   

7.
The meteorite Abee is a type 4 enstatite chondrite with many centimeter-size clasts. The paleomagnetic conglomerate test was applied to these clasts, to study the thermal and magnetic history of the meteorite. The directions of magnetization in mutually oriented clasts are significantly different, suggesting the meteorite was not reheated to temperatures much above 100°C during or after accretion. Paleointensity estimates were made using Thellier's method. Interior samples which were probably not reheated during entry into the earth's atmosphere show paleointensities of several oersteds. The fusion crust is also strongly magnetized, showing paleointensities up to 60 Oe.  相似文献   

8.
Determinations of40Ar/39Ar and U-Th-Pb are reported for three clasts from the Abee (E4) enstatite chondrite, which has been the object of extensive consortium investigations. The clasts give40Ar/39Ar plateau ages and/or maximum ages of 4.5 Gy, whereas two of the clasts give average ages of 4.4 Gy. Within the range of 4.4–4.5 Gy these data do not resolve any possible age differences among the three clasts.206Pb measured in these clasts is only ~1.5–2.5% radiogenic, which leads to relatively large uncertainties in the Pb isochron age and in the207Pb/206Pb model ages. The Pb data indicate that the initial207Pb/206Pb was no more than 0.08±0.07% higher than this ratio in Can?on Diablo troilite. The U-Th-Pb data are consistent with the interpretation that initial formation of these clasts occurred 4.58 Gy ago and that the clasts have since remained closed systems, but are contaminated with terrestrial Pb. The40Ar/39Ar ages could be gas retention ages after clast formation or impact degassing ages. The thermal history of Abee deduced from Ar data appears consistent with that deduced from magnetic data, and suggests that various Abee components experienced separate histories until brecciation no later than 4.4 Gy ago, and experienced no appreciable subsequent heating.  相似文献   

9.
Ten whole chondrules separated from the Dhajala (H3, 4), Hallingeberg (L3), and Semarkona (LL3) chondrites were individually analyzed for bulk element composition by instrumental neutron activation with half of each chondrule subsequently sacrificed for oxygen isotopic analysis and half retained for petrographic and electron microprobe analysis. On a three-isotope plot (δ17O vs. δ18O), the chondrules neither cluster near their respective chondrite hosts nor in the vicinities of previously recognized chondrite group averages. Instead, they define a trend resolvable into mixing and fractionation components but dominated by mixing in a manner similar to that previously observed for clasts from the LL3 chondrite ALHA76004. Covariations of chondrule isotopic mixing and fractionation parameters with petrological parameters were sought by two-variable linear least-squares regression analyses. However, the only two isotopic/petrological correlations significant at the 95% confidence level were δ17O vs. total bulk Fe (r = ?0.68) and mixing parameter,m18, vs. bulk weight ratio (CaO + Al2O3)/MgO (r = +0.67). Other correlations of apparent statistical significance were found by treating the chondrules as separate porphyritic (3 porphyritic olivine-pyroxene, 1 porphyritic olivine, 1 barred olivine) and non-porphyritic (4 radial pyroxene, 1 granular pyroxene/cryptocrystalline) textural subgroups. The reliability of the trends, based on so few samples, is not clear but the results at least indicate that possible existence of distinct isotopic/petrological subgroups of chondrules should be further investigated. Absence of certain isotopic/petrological trends expected as condensation effects argues against direct nebular condensation as the dominant process of chondrule formation. Instead, a model involving melting of heterogeneous solids, followed by various degrees of liquid/gas exchange, is favored. In any case, chondrule oxygen isotopic evolution was dominated by two-component mixing; fractional vaporization was, at most, a second-order effect. In addition to chondrules, parent bodies of unequilibrated ordinary chondrites must have also incorporated a16O-rich component which might have been fine-grained “matrix”.  相似文献   

10.
In order to understand the origin of iron-rich olivine in the matrices of type 3 ordinary chondrites, the reaction of metallic iron and enstatite, with and without forsterite and SiO2, has been experimentally reproduced at temperatures between 1150° and 800°C and PO2 between 10−11 and 10−16 atm (between the IQF and MW buffers). The olivine produced ranges from Fo58 to Fo34 and this composition does not change significantly with temperature and time of the runs. The magnesian olivine which forms does become more magnesian with increasing forsterite/enstatite ratio of the starting materials. Iron-rich olivine (Fo< 35) cannot be formed by the reaction of enstatite and metallic iron, with or without forsterite as starting materials but it can be formed in the presence of free silica. The composition of olivine becomes more iron-rich with increasing silica/enstatite ratio. The compositional range of olivine formed from each mixture is 25–30 mole% Fo regardless of the temperature, composition, mineral assemblage, and run duration.From these experimental results, two possibilities suggested for the origin of the iron-rich olivine in the matrices of type 3 ordinary chondrites: (1) free silica must have been present if the iron-rich olivine was formed by solid-state reactions under oxidizing condition in the solar nebula; (2) reaction of silicon-rich gas with metallic iron took place under oxidizing condition in the solar nebula. Though it is difficult to define which alternative was dominant, the formation of free silica or silicon-rich gas may be a result of fractional condensation. This is possible if there is a reaction relation between forsterite and gas to produce enstatite. The suggested fractional condensation is supported by the fact that the compositions of the fine-grained matrices of type 3 ordinary chondrites are more silica-rich than the bulk compositions of the chondrites. Though it is not known whether such conditions were established all over the nebula or locally in the nebula, both fractionation and more oxidizing conditions than the average solar nebula are required for the formation of matrix olivine.  相似文献   

11.
We report on a40Ar-39Ar study of the Apollo 16 breccia 67435 and present ages of five samples representing matrix, lithic clasts and plagioclase clasts. While the matrix age spectrum does not have a well-defined plateau, the two lithic clasts gave plateau ages of 3.96 and 4.04 AE. Since all samples had apparent ages of ~1 AE in the fractions ≤600°C extraction temperature, the breccia might have been assembled in a rather mild process at about that time or even more recently out of material with different metamorphic ages. The two plagioclase samples, of which one was a single 9-mg mineral clast and the other a 15-mg composite of several clasts, also have ages of ~1 AE in the low-temperature release fractions, but are apparently undisturbed by any ~4-AE events since they both have well-defined plateaux at 4.42 AE. The age of these strongly calcic plagioclase clasts, believed to be remnants of the anorthositic lunar crust, establishes a lower age limit to the end of the early lunar differentiation and thus places a strong constraint to the lunar evolution.  相似文献   

12.
The reaction between enstatite (En95.3Fs4.7) and CaCO3 has been studied at pressures between 23 and 77 kbars and at temperatures between 800° and 1400°C. At 1000°C enstatite and CaCO3 react to form dolomite and diopside solid solutions at pressures below approximately 45 kbars and magnesite and diopside solid solutions at higher pressures. The curve for the reaction dolomitess + enstatitess ? magnesitess + diopsidess lies between 40 to 45 kbars at 1000°C and between 45 and 50 kbars at 1200°C. It is very close to the graphite-diamond transition curve. These experimental results indicate that calcite (or aragonite) is unstable in the presence of enstatite, and that dolomite and magnesite are the stable carbonates at high pressures. The forsterite + aragonite assemblage is, however, stable to at least 80 kbars at 800°C. It is suggested that in the upper mantle where enstatite is present, dolomite is stable to depths of about 150 km and magnesite is stable at greater depths in the continental regions, assuming that the partial pressure of CO2 is equal or close to the total pressure. It is also suggested that carbonate inclusions in pyroxene can be used as an indicator of the depth of their equilibration; dolomite inclusions in enstatite would be formed at depths shallower than 150 km and magnesite inclusions in diopside at greater depths. Eclogite and peridotite inclusions in kimberlite may be classified on this basis.  相似文献   

13.
Many isolated grains of a reddish pleonaste-type spinel occur in fines and metabreccia samples, particularly 14 319. Electron microprobe analyses (104) of spinels and their associated phases include 58 of pleonaste which show Mg/(Mg + Fe) 0.44–0.62 and Cr/(Cr + Al) 0.017–0.134 (atomic), plus minor amounts of other ions, and differ greatly from almost all previously recorded lunar spinels; almost no spinels of intermediate composition were found. Two types of compositional zoning exist: a diffuse primary one with cores lower in Ti, and a narrow secondary one from reaction with matrix yielding rims higher in Cr, Ti, and Mn. At contacts with breccia matrix there is a narrow corona of almost pure plagioclase (An80-An94), free of opaque minerals and pyroxene. Two types of solid inclusions found in the pleonaste are calcic plagioclase, and tiny spherical masses of nickel-rich sulfide.  相似文献   

14.
Nitrogen contents range from a few parts per million in ordinary chondrites and achondrites to several hundred parts per million in enstatite chondrites and carbonaceous chondrites. Four major isotopic groups are recognized: (1) C1 and C2 carbonaceous chondrites have δ15N of+30to+50%.; (2) enstatite chondrites have δ15N of?30to?40‰; (3) C3 chondrites have low δ15N with large internal variations; (4) ordinary chondrites have δ15N of?10to+20‰. The major variations are primary, representing isotopic abundances established at the time of condensation and accretion. Secondary processes, such as spallation reactions, solar wind implantation and metamorphic loss may cause small but observable isotopic variations in particular cases. The large isotopic difference between enstatite chondrites and carbonaceous chondrites cannot be accounted for by equilibrium condensation from a homogeneous nebular gas, and requires either unusually large kinetic effects, or a temporal or spatial variation of isotopic composition of the nebula. Nitrogen isotopic heterogeneity in the nebula due to nuclear processes has not been firmly established, but may be required to account for the large variations found within the Allende and Leoville meteorites. The unique carbonaceous chondrite, Renazzo, has δ15N of+170%., which is well beyond the range of all other data, and also requires a special source. It is not yet possible, from the meteoritic data, to establish the mode of accretion of nitrogen onto the primitive Earth.  相似文献   

15.
Reaction coronas of pyroxene ± ilmenite occur around clasts of olivine in Apollo 14 high-grade metamorphic breccias. In experiments of several months duration, there was no evidence of corona formation at 1000°C, but at 1050°, withfO2 at or above Ilm-Ru-Fe and below Fe-Fe1?x O, incipient coronas formed around Fo50–70 in synthetic 14311 matrix. In addition, withfO2 controlled by Ilm-Ru-Fe at 1050°C, the olivines reduced to Fo68, En69 + Fe. Reduction of olivine under these conditions is inconsistent with the calculated stability relations and is attributed to uncertainties in the activity coefficient for olivine or pyroxene. The experiments also suggest that vesicularity in the Apollo 14 high-grade breccias may correlate with the amount of glassy material in their unmetamorphosed precursors. The metamorphic event is attributed to burial in a hot ejecta blanket, such as that of the Imbrium event.  相似文献   

16.
The Filakopi Pumice Breccia (FPB) is a very well exposed, Pliocene volcaniclastic unit on Milos, Greece, and has a minimum bulk volume of 1 km3. It consists of three main units: (A) basal lithic breccia (4–8 m) mainly composed of angular to subangular, andesitic and dacitic clasts up to 2.6 m in diameter; (B) very thickly bedded, poorly sorted pumice breccia (16–17 m); and (C) very thick, reversely graded, grain-supported, coarse pumice breccia (6.5–20 m), at the top. The depositional setting is well constrained as shallow marine (up to a few hundred metres) by overlying fossiliferous and bioturbated mudstone. This large volume of fine pumice clasts is interpreted to be the product of an explosive eruption from a submarine vent because: (1) pumice clasts are the dominant component; (2) the coarse pumice clasts (>64 mm) have complete quenched margins; (3) very large (>1 m) pumice clasts are common; (4) overall, the formation shows good hydraulic sorting; and (5) a significant volume of ash was deposited together with the coarsest pyroclasts.The bed forms in units A and B suggest deposition from lithic-rich and pumiceous, respectively, submarine gravity currents. In unit C, the coarse (up to 6.5 m) pumice clasts are set in matrix that grades upwards from diffusely stratified, fine (1–2 cm) pumice clasts at the base to laminated shard rich mud at the top. The coarse pumice clasts in unit C were settled from suspension and the framework was progressively infilled by fine pumice clasts from waning traction currents and then by water-settled ash. The FPB displays important features of the products of submarine explosive eruptions that result from the ambient fluid being seawater, rather than volcanic gas or air. In particular, submarine pyroclastic deposits are characterised by the presence of very coarse juvenile pumice clasts, pumice clasts with complete quenched rims, and good hydraulic sorting.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: J. Donelly-Nolan  相似文献   

17.
Synthesis of pyrope-knorringite solid solution series   总被引:1,自引:0,他引:1  
The garnet solid solution series between pyrope Mg3Al2Si3O12 and knorringite Mg3Cr2Si3O12 has been synthesized from oxide mixtures at pressures of 60–80 kbars and 1400–1500°C. Lattice parameters and refractive indices of solid solutions vary linearly with (molecular) composition within the limits of measurement. The lattice parameter of pure knorringite is 11.600Åand its refractive index is 1.83. The genetic significance of mineral inclusions in natural diamonds is discussed, particularly in the light of the very high knorringite contents often found in garnet inclusions. It is suggested that the most common mineral assemblage occurring as inclusions in diamonds (olivine + knorringite-rich garnet + enstatite) might be explained in terms of subduction into the mantle of olivine + chrome-spinel + enstatite cumulates originally formed by crystallization of mafic magmas within the oceanic crust. The cumulate assemblage experienced alteration by circulating hydrothermal solutions, resulting in the introduction of some carbonate and serpentine minerals. During subduction, this assemblage was partially melted at depth below 150 km, accompanied by reduction of carbonate, to form a reconstituted assemblage consisting of olivine + knorringite-rich garnet + enstatite ± diamond.  相似文献   

18.
We have discovered four clasts in three ordinary-chondrite regolith breccias which are a new kind of type 3 chondrite. Like ordinary and carbonaceous type 3 chondrites, they have distinct chondrules, some of which contain glass, highly heterogeneous olivines and pyroxenes, and predominantly monoclinic low-Ca pyroxenes. But instead of the usual fine-grained, Fe-rich silicate matrix, the clasts have a matrix composed largely of aggregates of micron- and submicron-sized graphite and magnetite. The bulk compositions of the clasts as well as the types of chondrules (largely porphyritic) are typical of type 3 ordinary chondrites, although chondrules in the clasts are somewhat smaller (0.1–0.5 mm). A close relationship with ordinary chondrites is also indicated by the presence of similar graphite-magnetite aggregates in seven type 3 ordinary chondrites. This new kind of chondrite is probably the source of the abundant graphite-magnetite inclusions in ordinary-chondrite regolith breccias, and may be more common than indicated by the absence of whole meteorites made of chondrules and graphite-magnetite.  相似文献   

19.
A new method for the sampling of sublimates from high-temperature volcanic gases has been used at Merapi volcano, Java, in 1978. The sublimates were collected on the inner walls of silica tubes introduced into fumarolic vents. Volcanic gases were allowed to move freely through the tubes and as they cooled, a fraction of the volatile components condensed on the inner walls of the tubes along the temperature gradient. The sublimates were then analyzed by a combination of light microscopy, scanning electron microscopy, electron microprobe and X-ray diffraction.Six successive zones of different compositions and mineralogical associations have been identified along the covered range of temperatures (900° to around 400°C). From the high to the low temperatures, these zones are composed of: (1) cristobalite, magnetite, hercynite; (2) molybdenite; (3) acmite; (4) halite, sylvite; (5) sphalerite, pyrite; and (6) galena. Equilibrium calculations show that these crystalline phases are stable for pS2, pC1, and pO2, values typical of magma-buffered gases that have not been contaminated by atmospheric oxygen.The deposits observed in the tubes may be useful in aiding the understanding of the mechanisms acting during the cooling of the gaseous phase on its way to the surface and before its emission into the atmosphere.  相似文献   

20.
Helium, neon and argon were analysed in matrix samples and in different clasts of the polymict-brecciated LL-chondrite St. Mesmin. All clasts have high K-Ar ages with a mean value of4.40 ± 0.26Ga. One exotic H-group xenolith, however, has a K-Ar age of only1.36 ± 0.05Ga. The low age indicates that the St. Mesmin breccia was compacted to its present structure relatively late in its history and that the St. Mesmin meteorite developed from regolith material on the meteorite's parent body. This is further demonstrated by the high concentrations of solar noble gases in the matrix and the cosmic ray pre-exposure of one individual clast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号