首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
根据2017年12月—2019年12月和2018年小浪底水库泄洪期间对黄河下游营养盐的月观测和日观测,系统的分析了黄河下游溶解态营养盐浓度、组成和通量变化.结果表明,除DON(溶解有机氮)、DSi(溶解态硅)和DIP(溶解无机磷)外,其他各溶解态营养盐浓度均呈丰水期低、枯水期高的特点.在观测期间,DSi/DIN(溶解态...  相似文献   

2.
Biologically important nutrient concentrations in Dokai Bay have declined as a result of reductions in anthropogenic inputs of total nitrogen and total phosphorus. A decrease in nutrient concentrations affects phytoplankton growth, thereby changing the biochemical characteristics of autochthonous particulate matter. We therefore investigated changes in the C/N/P molar ratio of suspended particulate matter (SPM) in the summer, when phytoplankton growth is vigorous, before environmental quality standards (EQSs) were attained (1995–1998) and afterward (2006–2009). We found that the ratio of particulate organic nitrogen (PON) to particulate phosphorus (PP) changed in conjunction with changes in the ratio of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIP) that resulted from reductions in nutrient loading. Furthermore, we suggest that because the DIP concentration in seawater was high before EQSs were attained, inorganic phosphorus was possibly adsorbed onto SPM. After the attainment of EQSs, however, the DIP concentration fell, and PON/PP was high. Phosphorus limitation of phytoplankton growth in the mouth of the bay may explain the high PON/PP ratios after EQS attainment.  相似文献   

3.
Phosphorus dynamics in Tokyo Bay waters were investigated along with other oceanographic variables. Seasonal variations of dissolved inorganic phosphorus (DIP) and particulate phosphorus (PP) are inversely correlated with each other, and reflect variation in biological activity. A high concentration of PP in summer surface waters is caused by high primary production. The PP settled in the deeper layer is decomposed, and orthophosphate is regenerated within the water column and in sediments. Even during summer stratification period, the regenerated orthophosphate is occasionally advected upward by wind-induced water mixing and contributes to phytoplankton growth in the upper layer. Some dissolved organic phosphorus is producedin situ from PP, but it may be rapidly decomposed in the water column. The ratios of Cchlorophylla and CN in particulate matter suggest that phytoplankton in the summer surface waters of Tokyo Bay are limited neither by nitrogen nor by phosphorus. The PN ratio in particulate matter varies substantially but it is positively correlated with the ambient concentration of DIP. Phytoplankton take up and store phosphorus within their cells when ambient DIP exceeds their demand. An abundance of total phosphorus in the summer water column can be attributed to increased discharge of river waters, although enhanced release of orthophosphate from anoxic sediments cannot be discounted.  相似文献   

4.
Phytoplankton primary production and its regulation by light and nutrient availability were investigated in the shallow, tropical coastal waters of Bandon Bay, Southern Thailand. The bay was meso‐eutrophicated and highly turbid, receiving river water discharge. Water column stratification was consistently weak during both rainy and dry seasons. Dissolved inorganic nitrogen (DIN) was higher off the river mouth than in the other regions, suggesting that river water discharge was a main source of DIN. By contrast, dissolved inorganic phosphorus (DIP) showed a significant negative correlation with total water depth, implying that regeneration around the sea floor was an important source of DIP. Surface DIN and DIP showed positive correlations with surface primary production (PP) and water column primary productivity (ΣPP*), respectively. The combined correlation and model analyses indicate that total water depth had an ambivalent influence on water column primary production (ΣPP); shallower water depth induced more active regeneration of nutrients, but it also caused higher turbidity and lower light availability as a result of enhanced resuspension of sediments. Furthermore, there was a vertical constraint for phytoplankton during the rainy season: total water depth tended to be shallower than euphotic zone depth. In conclusion, light limitation and vertical constraint owing to shallow water depth appear to be more important than nutrient limitation for water column primary production in Bandon Bay.  相似文献   

5.
Seasonal variations in freshwater, salt, dissolved inorganic phosphorus (DIP) and dissolved inorganic nitrogen (DIN) in the Bangpakong estuary, Thailand were investigated by employing the database obtained in the National Research Council of Thailand (NRCT)-Japan Society for the Promotion of Science (JSPS) cooperative project from 1994 to 1997. The results showed that variation in interaction between coastal sea and river discharge played an important role in controlling the characteristics of the water in the estuary. Residence time of fresh water was short in wet season and dry season, but it was long in the transition period from season to season. DIP and DIN load depended on river discharge, while high peak concentrations were related to loading and the long residence time in the transition period between dry and wet seasons. A strong eutrophic condition could possibly occur when the concentration of DIP and DIN were high during the onset of the wet season from April to July. The annual average of inorganic nutrient budgets indicated that the Bangpakong estuary is the internal source of 38.2 tons/month DIP and the internal sink of 4.9 tons/month DIN. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
基于2009年6–9月,2014年5月,2014年7–8月在乳山湾外邻近海域的综合调查资料,分析了该开放海域水体与沉积物中氮、磷营养盐的组成和分布,并在潮汐潮流数值模式计算水通量的基础上分析了近岸开放区域无机氮(DIN)和无机磷(DIP)的循环与收支的主要过程,量化了潮汐潮流、初级生产的消耗与转化、底界面过程与内部循环等过程对氮和磷营养盐循环与收支的影响。结果表明,夏季乳山湾外邻近海域水体DIN和DIP的浓度与分布受陆源输入和潮汐潮流的共同影响,高值均出现在湾口区域;沉积物-水界面存在DIN和DIP从沉积物向上覆水释放的现象,使得底层水体的氮、磷营养盐浓度高于表层水体。氮的收支表明,研究海域水体内部循环过程是初级生产所需DIN的主要来源,占初级生产总消耗量的86%,其次是水交换作用(11%),底界面扩散对初级生产的贡献相对较小(3%);水体DIN的移出主要是通过埋藏、向外海的输送和水体反硝化作用,其比例分别为80%、16%和4%。磷的收支显示,研究海域水体内部循环过程贡献了初级生产所需DIP的91%,其次是水交换作用(9%),底界面扩散对初级生产的贡献小于1%;水体DIP支出主要是通过沉积埋藏和向外海的输送,其比例分别为67%和33%。研究结果表明内部循环过程是近海水体氮和磷获得补充的主要途径,不过外部来源的氮、磷营养盐结构与系统内部具有显著的差异,且系统内磷的埋藏效率要高于氮,其必将对乳山湾外邻近海域营养盐结构和初级生产产生长远的影响。  相似文献   

7.
文章根据岙山监测浮标周边海域2015年9-12月水质调查资料,采用水质有机污染指数(A)、富营养化指数(E)和营养状态质量指数(NQI)等进行评价。结果表明:岙山监测浮标周边海域水质化学需氧量(COD)、溶解氧(DO)、油类(oils)符合二类海水水质标准,无机磷(DIP)和无机氮(DIN)含量均超过二类海水水质标准,DIP最高为0.048mg/L,DIN最高为0.753mg/L,总磷(TP)各月平均含量范围0.098~0.185mg/L,总氮(TN)各月平均含量范围0.650~0.818mg/L,叶绿素a(Chl a)含量基本稳定,DIN是主要的超标污染因子;富营养化评价结果显示,岙山监测浮标周边海域水质富营养程度严重,E值最高达9.10,NQI值最高为4.58;有机污染评价结果表明,岙山监测浮标周边海域水质总体处于轻度污染状态,A值最小为10月的1.90,最大为12月的2.73;使用A值、E值和NQI值方法同时对岙山监测浮标周边海域进行评价,其结果变化的一致性较好。  相似文献   

8.
The objective of this study was to examine whether dissolved inorganic phosphate (DIP) is removed from the Eastern Mediterranean Sea by adhering to atmospherically deposited loess particles sinking through the water column. In a series of radiolable experiments, loess from the Negev Desert, treated in various ways, was added to surface (SSW) and deep (DSW) seawater spiked with 32PO4−3. It was shown that when fresh loess reaches the Mediterranean SSW approximately 1.3 μmol P/g are released (11% of the total P concentration). Biological activity and inorganic particles removed similar amounts of the tracer (30–40%) from SSW. It was estimated that about 0.2 μmol P/g of ‘aged loess' (proxy of particles sinking into DSW), were removed from poisoned SSW and DSW, while there was minor adsorption when either nothing or quartz powder was added. The adsorbed DIP accounts for approximately 15% of the released P and is equivalent to about 2% of the remaining P (11.17 μmol P/g loess). Therefore, the process of DIP removal by atmospherically derived particles exists, but due to the higher release of P, the result is a net addition of dissolved atmospheric phosphorus in seawater. It is postulated that in actual SSW where dust concentrations are much lower, biological uptake out-competes inorganic adsorption, although it was demonstrated that the decrease in loess particle concentrations tends to increase their adsorption capacity. As the loess descends into the DSW it continues to remove DIP and thus transports phosphate from the water column to the sediments. A preliminary quantitative estimate suggests that the process of DIP removal by loess particles cannot explain the phosphate ‘deficit' in the Eastern Mediterranean DSW characterized by unusually high DIN/DIP ratios (27) reported by others.  相似文献   

9.
Based on a hydrodynamic-ecological model, the temperature, salinity, current, phytoplankton(Chl a),zooplankton, and nutrient(dissolved inorganic nitrogen, DIN, and dissolved inorganic phosphorous, DIP)distributions in the Beibu Gulf were simulated and the nutrient budget of 2015 was quantitatively analyzed. The simulated results show that interface processes and monsoons significantly influence the ecological processes in the gulf. The concentrations of DIN, DIP, phytoplankton and zooplankton are generally higher in the eastern and northern gulf than that in the western and southern gulf. The key regions affected by ecological processes are the Qiongzhou Strait in winter and autumn and the estuaries along the Guangxi coast and the Red River in summer.In most of the studied domains, biochemical processes contribute more to the nutrient budget than do physical processes, and the DIN and DIP increase over the year. Phytoplankton plays an important role in the nutrient budget; phytoplankton photosynthetic uptake is the nutrient sink, phytoplankton dead cellular release is the largest source of DIN, and phytoplankton respiration is the largest source of DIP. The nutrient flux in the connected sections of the Beibu Gulf and open South China Sea(SCS) inflows from the east and outflows to the south. There are 113 709 t of DIN and 5 277 t of DIP imported from the open SCS to the gulf year-around.  相似文献   

10.
We examined the contribution of submarine groundwater discharge (SGD) to nutrient budgets in Hwasun Bay, Jeju Island, Korea in August 2009, October 2014, and May 2015. The concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) in fresh groundwater were in the range of 285?716 μM and 2.3?3.2 μM, respectively, which were each 1?2 orders of magnitude higher than those in the bay seawater. The outer-bay seawater flowing into the bay was oligotrophic (2.9 ± 1.9 μM for DIN and 0.2 ± 0.3 μM for DIP). Nutrient budget calculations were performed for each season by accounting for submarine fresh groundwater discharge (SFGD) and water residence times. In August 2009 (DIN = 1.8 μM and DIN:DIP ratio = 4.6 for the outerbay water), DIN inputs from SFGD accounted for approximately 40% of the DIN inventory in the bay seawater. In October 2014 (DIN = 1.1 μM and DIP < 0.05 μM for the outer-bay water), DIP from SFGD accounted for approximately 100% of the DIP inventory in the bay seawater. In May 2015, mean concentrations of DIN and DIP in the bay seawater were 8.6 ± 12 μM and 0.11 ± 0.04 μM, respectively, with conservative behaviors in the bay seawater in association with excessive groundwater inputs. These results imply that SGD plays a critical but different role in nutrient budgets and stoichiometry in coastal waters off a volcanic island depending on open-ocean nutrient conditions.  相似文献   

11.
于1998年10号台风、2000年10号台风碧利斯和2000年6月厦门地区特大暴雨影响期间。在厦门港湾对表层海水溶解无机氮(DIN)、溶解无机磷(DIP)以及盐度、DO、Chla等相关环境因子进行定点连续观测。描述了台风暴雨期间和恢复期DIN、DIP的变化特征。对水动力因素、底质再悬浮、有机物氧化降解及生物活动等因素的影响进行了初步的探讨。  相似文献   

12.
广西近海营养盐的时空分布特征   总被引:2,自引:1,他引:1  
利用2006~2007年4个航次的大面调查数据,分析讨论了广西近海4个季节营养盐的时空分布变化特征。结果表明,该海域在春、夏、秋三季,活性硅酸盐和溶解无机氮分布趋势是近岸高,远岸低,由北向南呈梯度快速递减,高值区主要出现在廉州湾、铁山港和茅尾海三个区域;夏季磷酸盐在雷州半岛与涠洲岛之间出现高值;冬季3类营养盐在调查海区内分布均匀且为一年最低值。对该海区营养盐结构分析表明,硅在该海区过剩,溶解无机氮基本能满足浮游植物的生长需要,但在春季溶解无机氮和磷浓度都较低,属于寡营养型;夏季该海区磷浓度充足,在秋冬两季磷为该海区的限制性元素。  相似文献   

13.
Lagoa de Araruama in the state of Rio de Janeiro, Brazil, is a hypersaline lagoon with salinity varying spatially from 45 to 56. We collected water samples during monthly cruises throughout the lagoon, and along the streams feeding the system, from April 1991 to March 1992. Nutrients and other water quality parameters exhibited great spatial and temporal variations. Mass balance calculations indicate large amounts of anthropogenic nutrient inputs. The data indicate that the lagoon currently is oligotrophic but is in a state of transition to become a mesotrophic system. Molar dissolved inorganic nitrogen:dissolved inorganic phosphorus (DIN/DIP) varied between 2.2:1 and 659:1 with a volume-weighted average of 22:1. The high DIN/DIP ratio contrasts with that found in nearby lagoons, suggesting that phytoplankton primary production is limited by phosphorus in Lagoa de Araruama. The major loss of DIP is apparently driven by biological assimilation and diagenic reactions in the sediments. Calculations indicate that the lagoon is slightly net autotrophic at +0.9 mol C m−2 yr−1. This suggests that the biomass of the primary producers is restricted by phosphorus availability. Phosphorus retention in the sediment and the hypersaline state of the lagoon prevent changes in autotrophic communities and the formation of eutrophic conditions.  相似文献   

14.
Water and sediment samples were collected at Datong from June 1998 to March 1999 to examine seasonal changes in the transports of nitrogen (N) and phosphorus (P) from the Changjiang River (Yangtze River) to the East China Sea (ECS). Dissolved inorganic nitrogen (DIN; dominated by nitrate) concentration exhibited small seasonality, and DIN flux was largely controlled by water discharge. Dissolved inorganic phosphorus (DIP) concentration was inversely correlated with water discharge, and DIP was evenly delivered throughout a year. The transports of DIN and DIP from the Changjiang River were consistent with seasonal changes in nutrient distributions and P limitation in the Changjiang Estuary and the adjacent ECS. Dissolved organic and particulate N (DON and PN) and P (DOP and PP) varied parallel to water discharge, and were dominantly transported during a summer flood. The fluxes of DOP and particulate bioavailable P (PBAP) were 2.5 and 4 times that of DIP during this period, respectively. PBAP accounted for 12–16% of total particulate P (PP), and was positively correlated with the summation of adsorbed P, Al–P and Fe–P. Ca–P, the major fraction of PP, increased with increasing percent of CaCO3. The remobilization of riverine DOP and PBAP likely accounted for the summer elevated primary production in DIP-depleted waters in the Changjiang Estuary and the adjacent ECS. The Changjiang River delivered approximately 6% of DIN (1459 × 106 kg), 1% of DIP (12 × 106 kg), and 2% of dissolved organic and particulate N and P to the totals of global rivers. The construction of the Three Gorges Dam might have substantially reduced the particulate nutrient loads, thereby augmenting P limitation in the Changjiang Estuary and ECS.  相似文献   

15.
利用2003年7月台风发生期问对虾工厂化养成后期3个用日的实测数据,分析研究了该时期水环境中无机氮(DIN)、无机磷(DIP)的含量变化及其与环境因子的关系。结果表明:在该养殖生态系统中,台风气候对DIN,DIP的含量变化影响较大,尢以养成密度较大的养殖池最为明显,物理、生物、化学过程在不同周日均得到了良好体现;但无论养成密度大小,水环境中的N/P比值及浮游植物量均较高,说明该生态系中浮游植物对营养盐含量变化有较宽的适应范围。  相似文献   

16.
海水中碱性磷酸酶活力的测定及其在磷的循环中的作用初探   总被引:18,自引:3,他引:18  
建立了海水介质中浮游植物、细菌及游离态三种碱性磷酸酶活力的分光测定法。在厦门西港海域及实验生态中分别测定了这三种碱性磷酸酶的活力;同时采用~(32)P示踪法探讨了碱性磷酸酶对小球藻直接利用溶解有机磷(DOP)的影响。结果表明,浮游植物体的碱性磷酸酶活力占主导地位;当水体溶解无机磷降低到一定浓度时,浮游植物体碱性磷酸酶活力可突增,它提供了浮游植物直接利用DOP的条件。  相似文献   

17.
The northward migration of spring bloom was observed in the Sea of Japan from April to May 1997 by the Ocean Color and Temperature Scanner (OCTS) on board the Advanced Earth Observing Satellite (ADEOS). This phenomenon is well simulated with a numerical ecosystem model coupled with a hydrodynamic model. The hydrodynamic model is the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model (MOM). The ecosystem model consists of five components: dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), phytoplankton, zooplankton and detritus. Results of the numerical ecosystem model suggest that the mesoscale development of the spring bloom in the Sea of Japan is related to that of sea water temperature, and that the bloom is limited by the depletion of DIN. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Information on the distribution of dissolved Folin phenol active substances (FPAS) such as tannin and lignin in the seawater along the west coast of India is provided. Notable amounts of FPAS (surface concentrations: 80 g/l to 147 g/l and bottom concentrations: 80 g/l to 116 g/l) were detected in the seawater along the coast. The distribution pattern brings about a general depth-wise decrease. A seaward decrease was observed in the southern stations whereas reverse was the case in northern stations. A significant negative correlation was observed between FPAS concentration and dissolved oxygen in sub-surface samples. The appreciable amounts of FPAS detected in the coastal waters indicate the presence of organic matter principally originating from terrestrial (upland and coastal marsh) ecosystems in the marine environment. In this context, they may be used as tracers to determine the fate of coastalborn dissolved organic matter in the ocean and to determine directly the relationship between allochthonous and autochthonous organic matter.  相似文献   

19.
根据1987年3月至1988年12月笔者在九龙江口、厦门西海域的调查研究资料,着重讨论颗粒态磷(PP)、溶解态无机磷(DIP)、溶解态有机磷(DOP)、总磷(TP)等各种形态磷的含量分布、季节变化,及其与叶绿素(Chl.a)、总悬浮物量(TSM)等其他要素的关系。  相似文献   

20.
The wintertime ratio of inorganic dissolved nitrogen to phosphorus (DIN/DIP) in the surface waters of the Baltic Sea is typically below the molar Redfield ratio of 16, which expresses the presence of an excess inorganic dissolved phosphorus (eDIP) reserve compared to DIN. We assessed the role of the vernal phytoplankton bloom period (VPBP) in the consumption of the potential wintertime eDIP reserve, and the role of eDIP after the VPBP as a nutritional agent for the summertime growth of the cyanobacteria in the Baltic Sea. We employed a high-frequency dataset collected by the unattended monitoring systems on board merchant ships. The dataset encompasses the Baltic basins from the Arkona Basin to the Western Gulf of Finland and the time period from 1993 to 2009. All the observed values of the wintertime DIN/DIP ratio were below the molar Redfield ratio; the ratio showed a declining trend during the study, suggesting that there is a pronounced wintertime stock of the potential eDIP in the waters of the Baltic Sea, and that this stock has lately increased in magnitude. The VPBP took up excessively DIP to DIN than calculated according to the uptake in the molar Redfield ratio, thus reducing the potential eDIP reserve. On average, 59% of the potential eDIP reserve was left in the water after the VPBP as eDIP. eDIP was typically exhausted in the time frame early June–early July, matching well the timing of the appearance of cyanobacteria in substantial numbers in the water-column. eDIP clearly fueled the cyanobacterial growth in every instance in which it was possible to clarify their relationship. The cyanobacteria must still have another DIP source than eDIP to form extensive late-summer blooms, except in the western Gulf of Finland, where eDIP remained detectable up to early August. The annual role of eDIP for cyanobacterial growth depends greatly on the weather of late spring and early summer: this may sometimes launch the cyanobacterial growth much earlier than is usually expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号