首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The regularities in the southward drift of the ionospheric current centers and luminosity boundaries during strong magnetic storms of November 2003 and 2004 (with Dst ≈ ?400 and ?470 nT, respectively) are studied based on the global geomagnetic observations and TV measurements of auroras. It has been indicated that the eastward and westward electrojets in the dayside and nightside sectors simultaneously shift equatorward to minimal latitudes of Φ min ° ~53°–55°. It has been obtained that the Φ min ° latitude decreases with increasing negative values of Dst, IMF B z component, and westward electric field strength in the solar wind. The dependence of the electrojet equatorward shift velocity (V av) on the rate of IMF B z variations (ΔB z t) has been determined. It is assumed that the electrojet dynamics along the meridian is caused by a change in the structure of the magnetosphere and electric fields in the solar wind and the Earth’s magnetosphere.  相似文献   

2.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

3.
Monthly indices of Southern Atmospheric Oscillation (SOI) and corresponding Wolf numbers, geoeffective solar flares, magnetic AE indices as well as daily average values of the southward component of the interplanetary magnetic field (IMF B z) and data on the wind characteristics at Antarctic stations Vostok, Leningradskaya, and Russkaya are analyzed. It is shown that a sharp decrease in the SOI indices, which corresponds to the beginning of El Nin’o (ENSO), is preceded one or two months before by a 20% increase in the monthly average Wolf numbers. In warm years of Southern Atmospheric Oscillation a linear relationship is observed between the SOI indices and the number of geoeffective solar flares with correlation coefficients p < ?0.5. It is shown that in warm years a change in the general direction of the surface wind to anomalous at the above stations is preceded one or two days before by an increase in the daily average values of IMF B z. An increase in the SOI indices is preceded one or two months before by a considerable increase in the monthly average values of the magnetic AE indices.  相似文献   

4.
The dependence of the zonal geomagnetic indices (AE, Ap, Kp, Kn, and Dst) on the solar wind parameters (the electric field E y component, dynamic pressure P d and IMF irregularity σB) has been studied for two types of events: magnetic clouds and high-speed streams. Based on the empirical relationships, it has been established that the AE, Ap, Kp, and Kn indices are directly proportional to the E y value at E y < 12 mV m?1 and are inversely proportional to this value at E y > 12 mV m?1 for the first-type events. On the contrary, the dependence of Dst on E y is monotonous nonlinear. A linear dependence of all geomagnetic indices on E y is typical of the second-type events. It has been indicated that the specific features of geoeffectiveness of magnetic clouds and high-speed solar wind streams are caused by the dependence of the electric field potential across the polar cap on the electric field, solar wind dynamic pressure, and IMF fluctuations.  相似文献   

5.
Intense quasimonchromatic geomagnetic pulsations with a period of ~15 min, observed on the Earth’s surface in the near-noon sector at the beginning of the recovery phase of a very strong (Dst min = ?260 nT) magnetic storm of May 15, 2005, are analyzed. The variations were registered at auroral latitudes only in the X field component, and wave activity shifted into the postnoon sector of the polar cap an hour later; in this case pulsations were observed in the X and Y field components. Within the magnetosphere the source of magnetic pulsations could be the surface waves on the magnetopause caused by the pulse of the solar wind magnetic pressure. Geomagnetic pulsations in the polar cap, observed in phase at different latitudes, could apparently reflect quasiperiodic variations in the NBZ system of field-aligned currents. Such variations can originate due to the series of pulsed reconnections in the postnoon outer cusp at large (~20 nT) positive B z values and large (about ?40 nT) negative values of IMF B x .  相似文献   

6.
The monthly values of the southern atmospheric oscillation indices (SOI), the corresponding values of the Nino-3.4 index, the data on the onsets of intense volcanic eruptions from 1870 to 2002, the daily values of the Ap and AE indices and the IMF B z component, and the data on cloudiness and wind characteristics at 14 Antarctic stations have been considered. The beginning of the warm El Nino current is observed after an increase in the amplitude of the Ap magnetic indices, which continues for more than five months. The beginning of the cold period of the La Nina southern atmospheric oscillation is as a rule related to a decrease in Ap. A change in atmospheric transparency caused by volcanic eruptions is often followed by the beginning of the cold period of the southern atmospheric oscillation (ENSO). A change in the wind system in the Antarctic Regions, related to a change in the temperature balance caused by variations in the solar wind parameters in the winter season, promotes a short-term disturbance of the circumpolar vortex and the beginning of the El Nino warm period.  相似文献   

7.
The results of studying the Pc4–5 pulsation parameters based on the method of bistatic backscatter of radio waves, using the EISCAT/Heating HF facility (Tromsø, Norway) and IMAGE ground-based magnetometers (Scandinavia), are presented. The observations were performed during the morning hours on October 3, 2006, when a substorm developed on the nightside. An analysis of the observational data obtained from 1000 to 1020 UT indicated that wave-like disturbances with periods corresponding to Pc4–5 pulsations (80–240 s) existed at that time. The variations in the full vector of the ionospheric irregularity motion and the electric field strength in an artificially disturbed high-latitude ionospheric F region has been reconstructed based on simultaneous Doppler observations on two paths. A general conformity is observed among the time variations in Pc4–5 pulsations in the magnetic and ionospheric data: between the velocity amplitude (|V|) and the X component of the Earth’s magnetic field and between the irregularity motion azimuth and the Y component. Large-scale waves, corresponding to the natural resonances of magnetic field lines (small values of the azimuthal number |m| ~ 2–4), and small-scale waves (large values |m| ~ 17–20) were simultaneously registered during the experiment based on magnetic data. It has been indicated that the periods of wave-like processes registered using the method of bistatic backscatter and ground-based magnetometers were in agreement with one another. The formation of wave-like processes is explained by the nonstationary impact of the solar wind and IMF on the Earth’s magnetosphere. The variations in the IMF, according to the ACE satellite measurements, were characterized by a sharp increase in the solar wind plasma dynamic pressure that occurred at about 09 UT on October 3, 2006, and was accompanied by rapid polarity reversals of the north-ward-southward (B z) and transverse (B y) IMF components.  相似文献   

8.
Based on the model of large-scale high-latitude current systems developed at IZMIRAN (IZMEM model), it has been indicated that auroral electrojets and current systems concentrated in the polar cap were the generators of long-period geomagnetic variations during the BEAR experiment on the electromagnetic field registration at the Scandinavian test site on June 1–July 15, 1998. Precisely circumpolar current systems, prevailing in the high-latitude ionosphere during the periods of a quiet magnetospheric state, which is characterized by the presence of the northern vertical (B z >0) component of the IMF vector in the solar wind, are responsible for the magnetotelluric fields.  相似文献   

9.
The equipment and methodical characteristics of determining the vertical component of the ionospheric plasma motion velocity Vz based on an incoherent scatter radar of Institute of Ionosphere, National Academy of Sciences and Ministry of Education and Science of Ukraine (Kharkiv), which is the only radar of such type in Central Europe, are described. Based on the radar data, the patterns of altitude and diurnal variations in Vz near the maximum of solar cycle 24 for the typical geophysical conditions (around the summer and winter solstices, the spring and fall equinoxes) at low geomagnetic activity and the specifics of these changes during ionospheric storms are presented. The results of modeling of the dynamic processes in ionospheric plasma under the conditions of the undisturbed ionosphere, including the determination of altitudetime variations in the thermospheric wind velocity, are presented. It has been established that this velocity can significantly differ from the thermospheric wind velocity calculated by the known empirical global models. This difference is likely related to the regional features of thermospheric wind that are not shown in the global models.  相似文献   

10.
The effect of the interplanetary parameters on the latitudinal position of the substorm westward electrojet is studied in the work. The data from the IMAGE chain of magnetic stations and POLAR and WIND satellites for the period close to the solar activity minimum (1995–1996) and for the period of the solar activity maximum (2000) have been used for this purpose. It has been indicated that the electrojet poleward edge reaches, on average, higher latitudes at a higher solar wind velocity and at a larger (B s ) IMF southward component. It has been indicated that the average latitude of the westward electrojet center increases with increasing solar wind velocity and decreases with increasing IMF southward component, as a result of which the electrojet center is, specifically, not observed at high geomagnetic latitudes at large values of the IMF southward component.  相似文献   

11.
Polarization characteristics (polarization type, ellipticity ε, tilt angle τ of the polarization ellipse’s major axis) of high-latitude magnetic impulse events (MIEs) observed at the latitude of the dayside polar cusp are studied. It is established that all impulses are elliptically polarized, being right-polarized in 43% of cases (R-type) and left-polarized in 57% of cases (L-type). The right-polarized MIEs on the ground are more pronounced in the azimuthal direction, whereas the left-polarized events are more clearly marked in the meridional direction. The MIEs of both polarization types have the properties of intermittent processes. It is shown that diurnal and seasonal variations in the occurrence frequency and amplitudes of the events depend significantly on the type of their polarization. The R- and L-type impulse events are predominantly observed during the descending and ascending phase of the solar cycle, respectively. Solar wind high-speed streams (HSSs) are more favorable for exciting right-polarized impulses, whereas left-polarized impulse events are more efficiently excited by coronal mass ejection (CME). It is established that R-type impulses emerge in the conditions when the orientation of the interplanetary magnetic field vector is close to the radial direction against the development of moderate magnetospheric substorms whereas the L-type impulses appear when IMF is perpendicular to the Sun–Earth line in the absence of substorms. The behavior of the characteristics of impulse events significantly depends on the value of the IMF Bz-component and on the angle θxB = arccos(Bx/B). It is conjectured that excitation of the two groups of impulses is caused by the IMF structures in the solar wind stream with the characteristic configuration in the ecliptic plane, which determine the polarization type and properties of MIEs.  相似文献   

12.
Geomagnetic pulsation in the Pc3-4 bands have been studied at high Antarctic latitudes during the local summer. The statistical relation between the occurrence probability of Pc3 and Pc4 pulsations and the solar wind (SW) and IMF parameters has been revealed by verifying the hypothesis that an indication is identical in two distributions. Different dependences of the occurrence probability of high-latitude Pc3 and Pc4 pulsations on the IMF value and orientation and SW density and velocity have been found out. It has been indicated that these dependences remain unchanged in the range of geomagnetic latitudes from 66° to 87°. It has been established that the Pc3 observation probability at small (20°–50°) IMF cone angles (θ = cos?1(B x/|B|)) is a factor of 1.5 higher than the average statistical probability and depends on the IMF value, which confirms the hypothesis that the Pc3 source is the turbulent region upstream of the magnetospheric quasiparallel low shock. On the contrary, the probability of occurrence of Pc4 weakly depends on the IMF cone angle and is maximal at θ ~ 0° and ~90°. With increasing negative B z values, the generation probability increases in the Pc4 band and tends to decrease in the Pc3 band. It has been found out for the first time that the dependence of the Pc4 occurrence probability on the IMF clock angle (? = tan?2 (B/B z) is identical in the regions of projections of closed and open field lines, whereas this dependence is different for Pc3. In the region of projections of closed field lines, the Pc3 occurrence probability increases at B z < 0 and B y > 0 (the condition under which the cusp shifts on the dawn side) and at B y < 0 and B z > 0 (which is typical of the formation of the low-latitude boundary plasma sheet). In the region of projections of open field lines such a probability increases at B y < 0 and B z < 0 (which results in the formation of the high-latitude boundary plasma sheet). Based on the discovered regularities, the conclusion has been made that the sources of generation of high-latitude Pc3 and Pc4 pulsations are different.  相似文献   

13.
Parameters of the interplanetary magnetic field and solar wind plasma during periods of 163 isolated substorms have been studied. It is shown that the solar wind velocity V and plasma density N remain approximately constant for at least 3 h before substorm onset Т o and 1 h after Т o . On average, the velocity of the solar wind exhibits a stable trend toward anticorrelation with its density over the whole data array. However, the situation is different if the values of V and N are considered with respect to the intensity of substorms observed during that period. With the growth of substorm intensity, quantified as the maximum absolute value of AL index, an increase in both the solar wind plasma velocity and density, at which these substorms appear, is obsreved. It has been found that the magnitude of the solar wind dynamic pressure P is closely related to the magnetosphere energy load defined as averaged values of the Kan–Lee electric field EKL and Newell parameter dΦ/dt averaged for 1 h interval before Т o . The growth of the dynamic pressure is accompanied by an increase in the load energy necessary for substorm generation. This interrelation between P and values of EKL and dΦ/dt is absent in other, arbitrarily chosen periods. It is believed that the processes accompanying increasing dynamic pressure of the solar wind result in the formation of magnetosphere conditions that increasingly impede substorm generation. Thus, the larger is P, the more solar wind energy must enter the Earth’s magnetosphere during the period of the growth phase for substorm generation. This energy is later released during the period of the substorm expansion phase and creates even more intense magnetic bays.  相似文献   

14.
The possibilities of improving the semiempirical model of cosmic ray (CR) modulation, proposed by us previously, are discussed. The following characteristics have been considered as model parameters in order to describe long-period CR variations using a unified model and to more completely reflect solar cycles in CR modulation as a complex interaction between two systems of fields (large-scale and local): the value and sign of the polar solar field, the average strength of the solar magnetic field (the B ss integral index), partial indices (zone-even (ZE) and zone-odd (ZO) and sector-even (SE) and sector-odd (SO) indices), the tilt of the heliospheric current sheet, and the special index (F x ) taking into account X ray flares. The role of each index in CR modulation has been revealed. When we described the long-term CR variations using many parameters and taking into account the integral index or one of four partial indices, the best results of modulation modeling during 1976–1999 were obtained for the B ss total energetic index and SO index. A difference between the model calculations and observations increases beginning from the middle of 2000; the problem features of the CR behavior and the specific features of modeling this behavior in cycle 23 of solar activity (SA) are discussed. It is assumed that a decrease in the CR density at the last SA minimums (from cycle to cycle) can be related to a decrease in the ZO index and to a recently detected similar decrease in the vertical component of the solar dipole magnetic moment.  相似文献   

15.
Earth’s bow shock is the result of interaction between the supersonic solar wind and Earth’s magnetopause. However, data limitations mean the model of the shape and position of the bow shock are based largely on near-Earth satellite data. The model of the bow shock in the distant magnetotail and other factors that affect the bow shock, such as the interplanetary magnetic field (IMF) By, remain unclear. Here, based on the bow shock crossings of ARTEMIS from January 2011 to January 2015, new coefficients of the tail-flaring angle α of the Chao model (one of the most accurate models currently available) were obtained by fitting data from the middle-distance magnetotail (near-lunar orbit, geocentric distance -20RE>X>-50RE). In addition, the effects of the IMF By on the flaring angle α were analyzed. Our results showed that: (1) the new fitting coefficients of the Chao model in the middle-distance magnetotail are more consistent with the observed results; (2) the tail-flaring angle α of the bow shock increases as the absolute value of the IMF By increases. Moreover, positive IMF By has a greater effect than negative IMF By on flaring angle. These results provide a reference for bow shock modeling that includes the IMF By.  相似文献   

16.
Temporal variations of the maximum (B max) and average (〈B〉) magnetic inductions, minimum (α min) and average (〈α〉) inclination angles of the field lines to the radial direction from the center of the Sun, and areas of the sunspot umbra S in the umbra of single sunspots during their passage across the solar disk are investigated. The variation of the properties of single sunspots has been considered at different stages of their existence, i.e., during formation, the “quiet” period, and the disappearance stage. It has been found that, for the majority of the selected single sunspots, there is a positive correlation between B max and S and between 〈B〉 and S defined at different times during the passage of sunspots across the solar disk. It is shown in this case that the nature of the dependence between the parameters α min and B max, α min and S, as well as between 〈α〉 and 〈B〉, 〈α〉 and S, can vary from sunspot to sunspot, but for many sunspots the inclination angle of the field lines decreases on average with the growth of the sunspot umbra area and the field strength.  相似文献   

17.
The electric field generation at the front of the current pulse, which originates in a coronal magnetic loop owing to the development of the Rayleigh–Taylor magnetic instability at loop footpoints, has been considered. During the τAl/V A ≈ 5?25 s time (where l is the plasma plume height entering a magnetic loop as a result of the Rayleigh–Taylor instability), a disturbance related to the magnetic field tension B ?(r,t), “escapes” the instability region with the Alfvén velocity in this case. As a result, an electric current pulse Iz(z ? V A t), at the front of which an induction magnetic field E z, which is directed along the magnetic tube axis and can therefore accelerate particles, starts propagating along a magnetic loop with a characteristic scale of Δξ ≈ l. In the case of sufficiently large currents, when B ? 2/8π > p, an electric current pulse propagates nonlinearly, and a relatively large longitudinal electric field originates E z ≈ 2I z 3 V A/c 4a2Bz 2l, which can be larger than the Dreicer field, depending on the electric current value.  相似文献   

18.
Magnetospheric-ionospheric convection has been calculated for an open model of the magnetosphere with an ellipsoidal magnetopause in an approximation of uniform IMF. It is assumed that only 0.1 part of IMF falls in the magnetosphere as a result of the effect of IMF shielding by the magnetopause. The modeling of convection has been performed for the cases when the IMF B z component is directed southward and the B y component is westward or eastward. A Tsyganenko 96 model has been used as a magnetospheric model. The model calculations are compared with the data on the ion drift in the ionosphere. A certain disagreement between the experimental and calculated data has been found in the pattern of convection on the dayside of the ionosphere for the case of B y >0, which manifested itself in the dimensions of a convection “tongue” and in the position of the convection throat on the dayside. It has been indicated that the convection pattern agrees with the results of observations if the azimuthally inhomogeneous magnetospheric conductivity is taken into account.  相似文献   

19.
The period of interplanetary, geomagnetic and solar disturbances of September 7–15, 2005, is characterized by two sharp increases of solar wind velocity to 1000 km/s and great Dst variation of the geomagnetic field (~140 nT). The time variations of theoretical and experimental geomagnetic thresholds observed during this strong geomagnetic storm, their connection with solar wind parameters and the Dst index, and the features of latitudinal behavior of geomagnetic thresholds at particular times of the storm were studied. The theoretical geomagnetic thresholds were calculated with cosmic ray particle tracing in the magnetic field of the disturbed magnetosphere described by Ts01 model. The experimental geomagnetic thresholds were specified by spectrographic global survey according to the data of cosmic ray registration by the global station network.  相似文献   

20.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号