首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David L. Rabinowitz 《Icarus》1997,130(2):287-295
This paper predicts the size distribution of the Earth-approaching asteroids with diameterd= 10 m to 10 km, assuming they originate as the fragments of main-belt asteroids with a cumulative size distribution proportional tod−2.5and that they have self-similar fragmentation properties. The resulting distribution is dominated by “fast-track” bodies originating from parent asteroids with orbits close to the 3:1 mean-motion resonance with Jupiter. Because the dynamical lifetimes of these Earth approachers are shorter than their collisional lifetimes, their size distribution is nearly proportional tod−3.0, the production distribution in the main belt. This prediction, however, is at odds with the Spacewatch observations. The observed distribution is relatively flat ford> ∼100 m, and relatively steep ford< ∼100 m, so that the number of Earth approachers withd∼ 10 m to 0.3 km is overestimated. If these populations are predominantly of main-belt origin, then the size distribution in the main belt is not a simple power law. A nonuniform size distribution with wave-like oscillations, possibly caused by a cutoff at small sizes, would lead to Earth approachers with a size distribution in better agreement with the observations. If such wave-like oscillations are realistic, then the main belt is sufficient to supply the observed number of Earth approachers throughout the observed size range.  相似文献   

2.
Some analytical relations for the phase space functions of a self-consistent spherical stellar system are derived. The integral constraints on the distribution function by imposing a given (r) density distribution andN(E) fractional energy distribution are determined. For the case of radially-anisotropic velocity distribution in theE0 limit the constraint by an exponentialN(E) implies thatf(E, J 2) tends to zero in the order (–E)3/2. This lends analytical support to the use of the Stiavelli and Bertin (1985) distribution function for modeling elliptical galaxies. Maximum phase space density constraint confirms the necessity of high collapse factors to produce such a distribution function. Limits on the steepness of an exponentialN(E) for the case when (r) resembles the emissivity law of ellipticals are also derived.  相似文献   

3.
The line absorption probability distribution functions and the reemission coefficients are derived for the non-coherent scattering functionsR III andR IV. The appropriate line profile function forR III is shown to be a simple Voigt function, while forR IV, the line absorption probability distribution function is more complex involving a linear combination of two Voigt functions and another more complex probability distribution. The structure of the reemission coefficients forR III andR IV is then discussed.  相似文献   

4.
This paper analyzes the distribution of the orbits of near-Earth minor bodies from the data on more than 7500 objects. The distribution of large near-Earth objects (NEOs) with absolute magnitudes of H < 18 is generally consistent with the earlier predictions (Bottke et al., 2002; Stuart, 2003), although we have revealed a previously undetected maximum in the distribution of perihelion distances q near q = 0.5 AU. The study of the orbital distribution for the entire sample of all detected objects has found new significant features. In particular, the distribution of perihelion longitudes seriously deviates from a homogeneous pattern; its variations are roughly 40% of its mean value. These deviations cannot be stochastic, which is confirmed by the Kolmogorov-Smirnov test with a more than 0.9999 probability. These features can be explained by the dynamic behavior of the minor bodies related to secular resonances with Jupiter. For the objects with H < 18, the variations in the perihelion longitude distribution are not so apparent. By extrapolating the orbital characteristics of the NEOs with H < 18, we have obtained longitudinal, latitudinal, and radial distributions of potentially hazardous objects in a heliocentric ecliptic coordinate frame. The differences in the orbital distributions of objects of different size appear not to be a consequence of observational selection, but could indicate different sources of the NEOs.  相似文献   

5.
We interpret the de‐reddened UBV data for the field SA 133 to deduce the stellar density and metallicity distribution functions. The logarithmic local space density for giants, D*(0) = 6.40, and the agreement of the luminosity function for dwarfs and sub‐giants with the one of Hipparcos confirms the empirical method used for their separation. The metallicity distribution for dwarfs gives a narrow peak at [Fe/H] = +0.13 dex, due to apparently bright limiting magnitude, Vo = 16.5, whereas late‐type giants extending up to z ∼ 4.5 kpc from the galactic plane have a multimodal distribution. The metallicity distribution for giants gives a steep gradient d[Fe/H]/dz = –0.75 dex kpc–1 for thin disk and thick disk whereas a smaller value for the halo, i.e. d[Fe/H]/dz = –0.45 dex kpc–1. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The bivariate spectral type-luminosity class distribution combined with thez-distribution and broad-band photometric data have been used in order to derive integrated colors in Johnson's UBVRIJKL system for the solar neighborhood.The frequency distribution of white dwarfs is also taken into account for theU-B, B-V colors.  相似文献   

7.
The aim of this work is to study the gravity and the effective temperature distribution on the outer equipotential surface of a contact binary. In particular, the lines of constant g, (the iso‐g curves), are computed and plotted on the outer surface Cs of contact configurations. Since the gravity distribution would also specify the effective temperature distribution on the binary's common photosphere through the gravity darkening effect, these lines correspond to isothermals too. Applications have been made to two contact binaries; namely, to AW UMa and OO Aql, two systems with very different mass ratios. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We present the first in-depth statistical survey of flare source heights observed by RHESSI. Flares were found using a flare-finding algorithm designed to search the 6 – 10 keV count-rate when RHESSI’s full sensitivity was available in order to find the smallest events (Christe et al. in Astrophys. J. 677, 1385, 2008). Between March 2002 and March 2007, a total of 25 006 events were found. Source locations were determined in the 4 – 10 keV, 10 – 15 keV, and 15 – 30 keV energy ranges for each event. In order to extract the height distribution from the observed projected source positions, a forward-fit model was developed with an assumed source height distribution where height is measured from the photosphere. We find that the best flare height distribution is given by g(h)∝exp (−h/λ) where λ=6.1±0.3 Mm is the scale height. A power-law height distribution with a negative power-law index, γ=3.1±0.1 is also consistent with the data. Interpreted as thermal loop-top sources, these heights are compared to loops generated by a potential-field model (PFSS). The measured flare heights distribution are found to be much steeper than the potential-field loop height distribution, which may be a signature of the flare energization process.  相似文献   

9.
The Infra-Red Astronomical Satellite (IRAS) observations of the zodiacal dust emission are used to fit the dust grain composition and distribution in the ecliptical plane. We obtain a good fit to the data for a density distribution of black-body grains given by p = pr 0.66/log(1.7r/R) for r < 0.87R and r < 3oR  相似文献   

10.
The energization of a charged test-particle of mass m in contact with a large ensemble of charged particles of mass M at equilibrium is studied with the Fokker-Planck equation for Coulomb collisions and a quasi-linear diffusion operator for wave-particle interactions. The features of the nonequilibrium steady state velocity distribution of the test-particle system is studied as a function of the mass ratio m/M, and the relative strengths of the wave-particle interactions and Coulomb collisions. It is shown that the steady distribution function is not necessarily a Kappa distribution. The temperature of heavy minor ions given by the model is shown to vary linearly with the mass ratio as observed in the solar wind. The time evolution of the distribution function with and without the energization by wave-particle interactions is calculated and it is demonstrated that the Kullback relative entropy rather than the Tsallis nonextensive entropy rationalizes the results obtained.  相似文献   

11.
A new formula for the distribution of matter in the solar system is derived by assuming that the planets were formed from trapped particles of a cosmic dust disk attached to the Sun. Contrary to Boltzmann's distribution which predicts thermal collapse of this cloud on the Sun, it is found that if the primeval particles move on circular orbits according to Kepler's law, then their velocities obey a 2-D global Maxwellian and their distribution in space is given by p 0 (r)=(α r 2)\exp(-α r) (Km-1); α = 888.73 × 106 Km. The form ofp 0 (r) agrees with the observed mass distribution of the planets and explains their present large angular momentum. PACS numbers: 96.35.Cp, 96.35.Fs This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The surface distribution of dark clouds along the major and minor axes were compiled to give a general formula expressing the surface distribution along both axes simultaneously. Absorption values were determined, assuming the parameters of the standard cloud model as a function of the distance from the two-dimensional distribution of dark clouds. Iso-cloud line numbers were drawn as a function of bothX andY. Two knots appeared in the new distribution function. This may announce the beign of the spiral arms. The knots may indicate the least possible number of the dark clouds per kiloparsec beyond which spiral structure may be possible. The projected distance of the two knots on the X-axis may correspond to some spiral features found by other investigators.  相似文献   

13.
The problem of solitary electron acoustic (EA) wave propagation in a plasma with nonthermal hot electrons featuring the Tsallis distribution is addressed. A physically meaningful nonextensive nonthermal velocity distribution is outlined. It is shown that the effect of the nonthermal electron nonextensivity on EA waves can be quite important. Interestingly, we found that the phase speed of the linear EA mode increases as the entropic index q decreases. This enhancement is weak for q>1, and significant for q<1. For a given nonthermal state, the minimum value of the allowable Mach numbers is lowered as the nonextensive nature of the electrons becomes important. This critical limit is shifted towards higher values as the nonthermal character of the plasma is increased. Moreover, our plasma model supports rarefactive EA solitary waves the main quantities of which depend sensitively on q. This dependency (for q>1) becomes less noticeable as the nonthermal parameter decreases. Nevertheless, decreasing α yields for q<0 a different result, a trend which may be attributed to the functional form of the nonthermal nonextensive distribution. Our study (which is not aimed at putting the ad hoc Cairns distribution onto a more rigorous foundation) suggests that a background electron nonextensivity may influence the EA solitons.  相似文献   

14.
In this paper, we investigate static cylindrically symmetric solution in metric f(R) gravity by taking matter in the form of dust. The assumption of constant Ricci scalar curvature is taken to find the solution. The energy distribution of this solution is explored by applying Landau-Lifshitz energy-momentum complex. In addition, we explore the stability as well as constant scalar curvature conditions for some viable f(R) models along with their energy distribution. It is interesting to mention here that these models satisfy the above mentioned conditions.  相似文献   

15.
We investigate selection effects on the size and frequency relation (logN-logS curve) of cosmic gamma-ray bursts. After analyzing the published data, we find an indication that an effect is caused by the different time profiles of the bursts. The effect is important for small bursts and causes significant changes in the logN-logS curve. in order to avoid this selection effect, we mention that it is essential to use the logN-logP relation of the logN-logS relation, as already suggested by other authors. Here,P is the peak flux of the burst, which is free from bias due to the difference in time profiles. After an analysis of the published data, we find a distribution nearP –3/2 in the range above a peak flux of 40 counts/0.25 s.We also show that the relation between the logN-logP curve and the observed celestial distribution for the bursts can easily be explained by our general arguments on a disk-like spatial distribution of burst sources in the Galaxy.  相似文献   

16.
A statistical analysis of RHESSI X-ray flares in the 12–25 keV band during the period from February 2002 to June 2005 is presented. We found that a power-law with an index of 1.80± 0.02 can fit well the frequency distribution of the peak count rates. This power-law does not change significantly with time. However, the frequency distribution of the flare durations cannot be fitted well by a single power-law. There is a weak correlation between the peak count rates and the characteristic times like rise times, decay times, or durations. But the correlation between the rise times and decay times seems to be strong. We discuss the results obtained and compare them with previous works. The frequency distribution of rise times for the sub-group events with a similar magnitude of peak count rates is also shown. In particular, we propose a new parameter R a , the growth factor of the count rate, defined as the peak count rate divided by the rise time, to reflect the characteristics of the rising phases of flares. The distribution of R a is shown and discussed.  相似文献   

17.
The distribution of pairwise distances f(l) for different dependences r(z) of the metric distance is used to reveal inhomogeneities in the spatial distribution of 201 long (T 90>2s) gamma-ray bursts with measured redshifts z. For a fractal set with dimensionality D, this function behaves asymptotically as f(l) ∼ l D−1 for small l. Signs of fractal behavior with dimensionality D = 2.2–2.5 show up in all the models considered for the spatial distribution of the gamma-ray bursts. Several spatially distinct groups of gamma-ray bursts are identified. The group with equatorial coordinates ranging from 23h56m to 0h49m and δ from +19° to +23° with redshifts of 0.81–0.94 is examined separately.  相似文献   

18.
Claims continue to be made that detector selection effects can explain the deviation of the gamma-ray burst brightness distributions from the -3/2 power law expected for homogeneous burst sources. However, these effects are insufficient to explain the BATSE observations. The BATSE sensitivity threshold does vary with time, independent of the burst brightness; however, a homogeneous distribution of standard candle sources would still produce a -3/2 power law. The variation in the threshold does affect inhomogeneous source models. As an example, the effect of a time-varyingC min on theC max/C min distribution of an extended Galactic halo model is shown here. To fit the BATSEC max/C min distribution including a varyingC min requires a larger observing distance (relative to the scale-height of the halo) than for a constantC min; however, the observations can still be fit using the halo models.  相似文献   

19.
Growth rates for both the RH- and LH-modes of an EM wave propagating along a magnetic field through an isotropic loss-cone plasma have been obtained. It is found that growing modes can exist, and are found to depend critically on the mirror ratioR, and the specific details of the distribution function of the energetic component. To study the energetic-particle distribution observed at low energies by satellites within the magnetosphere, an isotropic double-humped loss-cone velocity distribution is then studied with a view to determining whether the secondary hump can introduce an instability not present for monotonic distribution. It is found that such a distribution can be unstable in a mirror geometry if the energetic component is sufficiently monoenergetic. Within the magnetosphere, nearly monoenergetic fluxes are observed, peaking in the energy range 1–10 keV, depending on the McIlwain parameterL. It is possible that the initial injection of monoenergetic particles may have been much more sharply peaked than the one presently observed, and, as a result of wave-particle interactions, subsequently relaxed to the presently observed distribution. It is seen here that the EM waves within the magnetosphere can contribute to the relaxation of such an initial injection.  相似文献   

20.
Wavelet analysis is applied to distributions of points generated by iterating the standard map. The initial condition is chosen so that the points fill the largest chaotic region. When the standard map parameterk=1.3, the distribution of points contains many voids corresponding to islands in the chaotic region. The wavelet transform is dominated by contributions from these islands. Fork=10 the chaos fills phase space and no structure is apparent; the wavelet transform reveals statistical fluctuations in the distribution of points.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号