首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We investigate the launching of outflows from the disc–magnetosphere boundary of slowly and rapidly rotating magnetized stars using axisymmetric and exploratory 3D magnetohydrodynamic simulations. We find long-lasting outflows in the following cases. (1) In the case of slowly rotating stars , a new type of outflow, a conical wind , is found and studied in simulations. The conical winds appear in cases where the magnetic flux of the star is bunched up by the disc into an X-type configuration. The winds have the shape of a thin conical shell with a half-opening angle  θ∼ 30°–40°  . About 10–30 per cent of the disc matter flows from the inner disc into the conical winds. The conical winds may be responsible for episodic as well as long-lasting outflows in different types of stars. There is also a low-density, higher velocity component (a jet) in the region inside the conical wind. (2) In the case of rapidly rotating stars (the 'propeller regime'), a two-component outflow is observed. One component is similar to the conical winds. A significant fraction of the disc matter may be ejected into the winds. The second component is a high-velocity, low-density magnetically dominated axial jet where matter flows along the opened polar field lines of the star. The jet has a mass flux of about 10 per cent of that of the conical wind, but its energy flux (dominantly magnetic) can be larger than the energy flux of the conical wind. The jet's angular momentum flux (also dominantly magnetic) causes the star to spin down rapidly. Propeller-driven outflows may be responsible for the jets in protostars and for their rapid spin-down. The jet is collimated by the magnetic force while the conical winds are only weakly collimated in the simulation region. Exploratory 3D simulations show that conical winds are axisymmetric about the rotational axis (of the star and the disc), even when the dipole field of the star is significantly misaligned.  相似文献   

2.
Viscous Keplerian discs become sub-Keplerian close to a black hole since they pass through sonic points before entering into it. We study the time evolution of polytropic viscous accretion discs (both in one- and two-dimensional flows) using smoothed particle hydrodynamics. We discover that for a large region of the parameter space spanned by energy, angular momentum and polytropic index, when the flow viscosity parameter is less than a critical value, standing shock waves are formed. If the viscosity is very high then the shock wave disappears. In the intermediate viscosity, the disc oscillates very significantly in the viscous time-scale. Our simulations indicate that these centrifugally supported high density regions close to a black hole play an active role in the flow dynamics, and consequently, the radiation dynamics.  相似文献   

3.
We examine the behaviour of accretion flow around a rotating black hole in presence of cooling. We obtain global flow solutions for various accretion parameters that govern the accreting flow. We show that standing isothermal shock wave may develop in such an advective accretion flow in presence of cooling. This shocked solution has observational consequences as it successfully provides the possible explanations of energy spectra as well as generation of outflows/jets of various galactic and extra-galactic black hole candidates. We study the properties of isothermal shock wave and find that it strongly depends on the cooling efficiency. We identify the region in the parameter space spanned by the specific energy and specific angular momentum of the flow for standing isothermal shock as a function of cooling efficiencies and find that parameter space gradually shrinks with the increase of cooling rates. Our results imply that accretion flow ceases to contain isothermal shocks when cooling is beyond its critical value.  相似文献   

4.
Whilst observations provide many examples of collimated outflows or jets from astrophysical bodies, there remain unresolved questions relating to their formation, propagation and stability. The ability to form scaled jets in the laboratory has provided many useful insights. Experiments (Lebedev et al.: 2002, ApJ 564, 113) using conical arrays of fine metallic wires on the MAGPIE generator (1MA in 240 ns) have produced radiatively cooled collimated jets in vacuum using the redirection of convergent flows by a conical shock. Here we present results of a jet produced by this method propagating through a photo-ionized, quasi-stationary gas cloud. A working surface is observed at the head of the jet. The velocity of this working surface is lower than the velocity of a jet tip in vacuum.  相似文献   

5.
This paper is devoted to the study of sonic points and shocks in stationary, axially symmetric, isothermal flows around a Kerr black hole. We first show the dependence of the location of the sonic point with the flow's angular momentum for different isothermal sound speeds. With our selected shock jump conditions, we then discuss the properties of the shock, including the location and the strength. The ambiguity regarding the shock locations is removed by stability analysis. We also find some differences between the shock in isothermal flows and that in adiabatic flows. Subject headings: accretion, accretion disks-black hole physics-hydrodynamics-relativity-shock waves.  相似文献   

6.
I present a scenario by which an accretion flow with alternating angular momentum on to a newly born neutron star in a core collapse supernova(CCSN) efficiently amplifies magnetic fields and by that launches jets. The accretion flow of a collapsing core on to the newly born neutron star suffers spiral standing accretion shock instability(SASI). This instability leads to a stochastically variable angular momentum of the accreted gas, which in turn forms an accretion flow with alternating directions of the angular momentum, and hence alternating shear, at any given time. I study the shear in this alternating-shear sub-Keplerian inflow in published simulations, and present a new comparison with Keplerian accretion disks. From that comparison I argue that it might be as efficient as Keplerian accretion disks in amplifying magnetic fields by a dynamo. I suggest that although the average specific angular momentum of the accretion flow is small,namely, sub-Keplerian, this alternating-shear accretion flow can launch jets with varying directions, namely,jittering jets. Neutrino heating is an important ingredient in further energizing the jets. The jittering jets locally revive the stalled accretion shock in the momentarily polar directions, and by that they explode the star. I repeat again my call for a paradigm shift from a neutrino-driven explosion of CCSNe to a jet-driven explosion mechanism that is aided by neutrino heating.  相似文献   

7.
In the following paper, we present an internal shocks model, iShocks, for simulating a variety of relativistic jet scenarios; these scenarios can range from a single ejection event to an almost continuous jet, and are highly user configurable. Although the primary focus in the following paper is black hole X-ray binary jets, the model is scale and source independent and could be used for supermassive black holes in active galactic nuclei or other flows such as jets from neutron stars. Discrete packets of plasma (or 'shells') are used to simulate the jet volume. A two-shell collision gives rise to an internal shock, which acts as an electron re-energization mechanism. Using a pseudo-random distribution of the shell properties, the results show how for the first time it is possible to reproduce a flat/inverted spectrum (associated with compact radio jets) in a conical jet whilst taking the adiabatic energy losses into account. Previous models have shown that electron re-acceleration is essential in order to obtain a flat spectrum from an adiabatic conical jet: multiple internal shocks prove to be efficient in providing this re-energization. We also show how the high-frequency turnover/break in the spectrum is correlated with the jet power,  ν b ∝ L ∼0.6W  , and the flat-spectrum synchrotron flux is correlated with the total jet power,   F ν∝ L ∼1.4W  . Both the correlations are in agreement with previous analytical predictions.  相似文献   

8.
Many magneto-hydrodynamic (MHD) models have been developed to describe the acceleration and collimation of stellar jets, in the framework of an infall/outflow process. Thanks to high angular resolution instrumentation, such as the one on-board the Hubble Space Telescope (HST), we are finally able to test observationally the proposed ideas. We present the results obtained by us from the first 0”.1 resolution spectra of the initial portion (within 100–200 AU from the source) of the outflows from visible T Tauri stars, taken with the Space Telescope Imaging Spectrograph (STIS). We obtain the jet morphology, kinematics and excitation in different velocity intervals, and we derive the jet mass and momentum fluxes. These results confirm the predictions of magneto-centrifugal models for the jet launch. Recently we have also found indications for rotation in the peripheral regions of several flows. The derived rotational motions appear to be in agreement with the expected extraction of angular momentum from the star/disk system caused by the jet, which in turn allows the star to accrete up to its final mass. Improvements to resolution are expected from observations with STIS in the ultraviolet, and with the forthcoming AMBER spectrometer to be mounted at the VLTI.  相似文献   

9.
A study is made of axisymmetric, low sonic-Mach-number flows of a viscous fluid with angular momentum outside of a black-hole. The viscosity is an eddy viscosity due to turbulence in the sheared flows. Self-similar solutions arise naturally, reducing the Navier-Stokes equations to a set of nonlinear ordinary differential equations. These equations are solved analytically for flows of constant specific angular momentum and numerically for more general flows. For flows with non-constant specific angular momentum, the momentum flux density includes a planar discontinuity which is interpreted as an accretion disc. In general, two flow regions appear on each side of the disk, corresponding to accretion onto the disk and jet-like outflows along the ±z-axes. Physical interpretations of the solutions show that these flows arise in response to point sources of axial momentum at the origin directed in the ±z-directions. The power needed to maintain this momentum input is assumed to come from the mass accretion onto the black hole.The hydrodynamic flows are generalized to include a magnetic field. In the limit of infinite electrical conductivity, the possible types of flow patterns are the same as in hydrodynamic case. The magnetic field alters the relative amounts of reversible and irreversible momentum and angular momentum transport by the flow. For a flow with turbulent viscosity, the magnetic field acts to reduce the level of the turbulence and the effective value of the eddy viscosity.  相似文献   

10.
Collimated jets are believed to be an essential ingredient of the star formation process, and we are now able for the first time to test observationally the theories for their formation and propagation. The major advances achieved in recent years are reviewed, regarding the observed morphology, kinematics and excitation properties of jets, from the parsec-scale `giant outflows' down to the `microjets' from T Tauri stars. High angular resolution images and spectra have provided valuable estimates of jet diameter, space velocity, temperature, ionization fraction, electron and total density, both along and across the flow. We can thus calculate key physical quantites, as the shock excitation parameters, or the mass and momentum fluxes in the flow. The results obtained appear to validate the popular magneto-centrifugal models for jet launching, although some important issues are still under debate, as to the cause of knotty structures, observed wind thermal properties, and the dynamical relationship between jets and molecular outflows. Among the most interesting recent findings, we mention the observed indications for jet rotation, with inferred toroidal velocities consistent with the prescribed angular momentum balance between infall and outflow.  相似文献   

11.
Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, “knotty” jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.  相似文献   

12.
Oscillation modes of relativistic slender tori   总被引:1,自引:0,他引:1  
Accretion flows with pressure gradients permit the existence of standing waves which may be responsible for observed quasi-periodic oscillations (QPO's) in X-ray binaries. We present a comprehensive treatment of the linear modes of a hydrodynamic, non-self-gravitating, polytropic slender torus, with arbitrary specific angular momentum distribution, orbiting in an arbitrary axisymmetric space–time with reflection symmetry. We discuss the physical nature of the modes, present general analytic expressions and illustrations for those which are low order, and show that they can be excited in numerical simulations of relativistic tori. The mode oscillation spectrum simplifies dramatically for near Keplerian angular momentum distributions, which appear to be generic in global simulations of the magnetorotational instability. We discuss our results in light of observations of high frequency QPO's, and point out the existence of a new pair of modes which can be in an approximate 3:2 ratio for arbitrary black hole spins and angular momentum distributions, provided the torus is radiation pressure dominated. This mode pair consists of the axisymmetric vertical epicyclic mode and the lowest order axisymmetric breathing mode.  相似文献   

13.
We investigate the linear stability of a shocked accretion flow on to a black hole in the adiabatic limit. Our linear analyses and numerical calculations show that, despite the post-shock deceleration, the shock is generally unstable to non-axisymmetric perturbations. The simulation results of Molteni, Tóth & Kuznetsov can be well explained by our linear eigenmodes. The mechanism of this instability is confirmed to be based on the cycle of acoustic waves between the corotation radius and the shock. We obtain an analytical formula to calculate the oscillation period from the physical parameters of the flow. We argue that the quasi-periodic oscillation should be a common phenomenon in accretion flows with angular momentum.  相似文献   

14.
The fine structure of the quasar 3C 345 in polarized emission at 7 mm and 2 cm has been investigated. The kinematics is shown to correspond to an anticentrifuge: the thermal plasma of the surrounding space accretes onto the disk, flows to the center, and is ejected in the form of a rotating bipolar outflow that carries away the excess angular momentum as it accumulates. The bipolar outflow consists of a high-velocity central jet surrounded by a low-velocity component. The low-velocity flows are the rotating hollow tubes ejected from the peripheral part of the disk with a diameter ~Ø1 = 2.2 pc and from the region Ø2 = 1 pc. The high-velocity jet with a diameter Ø3 = 0.2 pc is ejected from the central part of the disk, while the remnant falls onto the forming central body. The ejection velocity of the high-velocity flow is v ? 0.06c. At a distance up to ~1 pc, the jet accelerates to an apparent velocity v ~ 8c. Further out, uniform motion is observed within ~2 pc following which deceleration occurs. The jet structure corresponding to a conical diverging helix with an increasing pitch is determined by gasdynamic instability. The counterjet structure is a mirror reflection of the nearby part of the jet. The brightness temperature of the fragment of the high-velocity flow at the exit from the counterjet nozzle is T b ≈ (1012?1013) K. The disk inclined at an angle of 60° to the plane of the sky shadows the jet ejector region. Ring currents observed in the tangential directions as parallel chains of components are excited in the rotating flows. The magnetic fields of the rotating bipolar outflow and the disk are aligned and oriented along the rotation axis. The translational motions of the jet and counterjet are parallel and antiparallel to the magnetic field, which determines their acceleration or deceleration. The quasar core is surrounded by a thermal plasma. The sizes of the HII region reach ~30 pc. The electron density decreases with increasing distance from the center from N e ≈ 108 to ≈105 cm?3. The observed emission from the jet fragments at the exit from the nozzle is partially absorbed by the thermal plasma, is refracted with increasing distance—moves with an apparent superluminal velocity, and decelerates as it goes outside the HII region.  相似文献   

15.
Molecular outflows and the jets which may drive them can be expected to display signatures associated with rotation if they are the channels through which angular momentum is extracted from material accreting on to protostars. Here, we determine some basic signatures of rapidly rotating flows through three-dimensional numerical simulations of hydrodynamic jets with molecular cooling and chemistry. We find that these rotating jets generate a broad advancing interface which is unstable and develops into a large swarm of small bow features. In comparison to precessing jets, there is no stagnation point along the axis. The greater the rotation rate, the greater the instability. On the other hand, velocity signatures are only significant close to the jet inlet since jet expansion rapidly reduces the rotation speed. We present predictions for atomic, H2 and CO submillimetre images and spectroscopy including velocity channel maps and position–velocity diagrams. We also include simulated images corresponding to Spitzer IRAC band images and CO emission, relevant for APEX and eventual ALMA observations. We conclude that protostellar jets often show signs of slow precession but only a few sources display properties which could indicate jet rotation.  相似文献   

16.
The aim of this work is to model the jets produced by conical wire arrays on the MAGPIE generator, and to design and test new setups to strengthen the link between laboratory and astrophysical jets. We performed the modelling with direct three-dimensional magneto-hydro-dynamic numerical simulations using the code GORGON. We applied our code to the typical MAGPIE setup and we successfully reproduced the experiments. We found that a minimum resolution of ∼100 μm is required to retrieve the unstable character of the jet. We investigated the effect of changing the number of wires and found that arrays with less wires produce more unstable jets, and that this effect has magnetic origin. Finally, we studied the behaviour of the conical array together with a conical shield on top of it to reduce the presence of unwanted low density plasma flows. The resulting jet is shorter and less dense.  相似文献   

17.
Allowing for the conical shape of ultrarelativistic blazar jets with opening angles of a few degrees on parsec-scales, we show that their bulk Lorentz factors and viewing angles can be much larger than the values usually inferred by combining their flux-variability and proper-motion measurements. This is in accord with our earlier finding that such ultrarelativistic (Lorentz factor,  Γ > 30  ) conical jets can reconcile the relatively slow apparent motions of Very Long Baseline Interferometry (VLBI) knots in TeV blazars with the extremely fast flows implied by their rapid γ-ray variability. This jet geometry also implies that de-projected jet opening angles will typically be significantly underestimated from VLBI measurements. In addition, de-projected jet lengths will be considerably overestimated if high Lorentz factors and significant opening angles are not taken into account.  相似文献   

18.
This conclusive paper summarizes the results of our studies of the fine and superfine structure of the blazar OJ 287 at wavelengths of 7 mm and 2 cm in polarized emission with angular resolution is 20 μas. The orientation of the polarization of its fragments is almost orthogonal to the motion of the flows, suggesting that the magnetic field of the structures is oriented along the direction of the flow velocity. This is determined by the rotation of the flows—the excitation of ring currents and the generation of a solenoidal magnetic field, which applies both to the arms along which the surrounding matter is transferred to the center, the northern (m = 16%) and southern (m = 5%) ones, and to the ejected flows carrying away an excess angular momentum. The polarization level of the jet and counterjet flows reachesm = 15–20%and rises as one recedes fromthe nozzle due to a decrease in the optical depth of the fragments. The polarization level of the counterjet at the nozzle exit reaches 10%, while that of the jet is considerably lower. This is related to the location of the jet nozzle in the opposite direction relative to the observer, the influence of the screen. The special position refers to the nozzles. The polarization level is m - 2%. In the case of outbursts, the polarization increases with brightness, λ = 7 mm. At λ = 2 cm there is an inverse dependence. The spectral index of outbursts lies within the range α = 0–0.8.  相似文献   

19.
After briefly reviewing observations of molecular outflows from young stars, we discuss current ideas as to how they might be accelerated. Broadly speaking it is thought that such outflows represented either deflected accreted gas, or ambient material that has been pushed by a poorly collimated wind or accelerated by a highly collimated jet. Observations tend to favour the latter model, with jets being the clear favourite at least for the youngest flows. Jets from young stars may accelerate ambient gas either through the development of a boundary layer, where ambient and jet material are turbulently mixed, or at the working surface of the jet, i.e. the bow shock, via the prompt entrainment mechanism. Recently, we (Downes and Ray, 1999) have investigated, through simulations, the efficiency of prompt entrainment in jets from young stars as a means of accelerating ambient molecular gas without causing dissociation. Prompt entrainment was found to be very poor at transferring momentum from the jet to its surroundings in both the case of ``heavy' (not surprizingly) but also ``equi-density' (with respect to the ambient environment) jets. Moreover the transfer efficiency decreases with increasing density as the bow shock takes on a more aerodynamic shape. Models, however, in which jets are the ultimate prime movers, do have the advantage that they can reproduce several observational features of molecular outflows. In particular a power law relationship for mass versus velocity, similar to what is observed, is predicted by the simulations and the so-called ``Hubble Law' for molecular outflows is naturally explained. Pulsing of the jet, i.e. varying its velocity, is found to have little effect on the momentum transfer efficiency at least for the dynamically young jets we have studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
In this paper, we explore the radial structure of radiatively inefficient accretion flows (RIAFs) in the presence of an ordered magnetic field and convection. We assume the magnetic field has the toroidal and vertical components. We apply the influences of convection on equations of angular momentum and energy. The convective instability can transport the angular momentum inward or outward. We establish two cases for consideration of the effects of convection parameter on magnetized RIAFs. In the first case, we assume the convection parameter as a free parameter and in the other case we calculate convection parameter through use of mixing length theory. In both cases, the solutions show that a magnetized RIAF is very sensitive to the convection parameter and transport direction of angular momentum due to convection. Moreover, we show that the convection strength strongly depends on magnetic field and viscosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号