首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

New light is shed on the derivation of the energy flux of the linear MHD waves. It is shown that, according to a suggestion of Lighthill, the usual perturbation procedure, which starts from the general expression for the energy flux, need not be supplemented by an averaging procedure. As a result, it is shown that to second order in the wave amplitude, a quantity identifiable as the wave energy flux is conserved. Some of the subtleties inherent in the derivation of the pertubation energy equation are discussed.  相似文献   

2.
A macroscopic form of Ohm's law is obtained for isotropic porous media saturated with an electrically conductive fluid by using volumetric averaging concepts. Closure of the macroscopic charge transport equation is aided by approximative modelling of the average geometric structures of three different types of isotropic porous media, namely foamlike materials, granular media and crossflow over prismatic bundles. Modelling of the microscopic charge transport necessitated the introduction of a representative interstitial flux of charge carriers and required quantification of the geometric tortuosity applicable to transport phenomena in general. Deterministic expressions for the formation factor are obtained and compare favourably with experimental results.  相似文献   

3.
Micro- and macro-dispersive fluxes in canopy flows   总被引:3,自引:0,他引:3  
Resolving every detail of the three-dimensional canopy morphology and its underlying topography remains untenable when modeling high Reynolds number geophysical flows. How to represent the effects of such a complex morphological variability and any concomittant topographic variability into one-dimensional bulk flow representation remains a fundamental challenge to be confronted in canopy turbulence research. Theoretically, planar averaging to the scale of interest should be applied to the time-averaged mean momentum balance; however, such averaging gives rise to covariance or dispersive terms produced by spatial correlations of time-averaged quantities that remain ‘unclosed’ or require parameterization. When the averaging scale is commensurate with few canopy heights, these covariances can be labeled as ‘micro-dispersive’ stresses. When averaging is intended to eliminate low-wavenumber topographic variations, we refer to these covariances as ‘macro-dispersive’ terms. Two flume experiments were used to explore the magnitude and sign of both micro- and macro-dispersive fluxes relative to their conventional Reynolds stresses counterparts: a rod-canopy with variable roughness density and a dense rod canopy situated on gentle hilly terrain. When compared to the conventional momentum flux, the micro-dispersive fluxes in the lowest layers of sparse canopies can be significant (∼50%). For dense canopies, the dispersive terms remain negligible when compared to the conventional momentum fluxes throughout. For the macro-dispersive fluxes, model calculations suggest that these terms can be neglected relative to the Reynolds stresses for a deep canopy situated on a narrow hill. For the region in which topographic variations can interact with the pressure, both model calculations and flume experiments suggest that the macro-dispersive fluxes cannot be neglected, and their value can be 20% of the typical Reynolds stresses.  相似文献   

4.
Perspective on theories of non-Fickian transport in heterogeneous media   总被引:1,自引:0,他引:1  
Subsurface fluid flow and solute transport take place in a multiscale heterogeneous environment. Neither these phenomena nor their host environment can be observed or described with certainty at all scales and locations of relevance. The resulting ambiguity has led to alternative conceptualizations of flow and transport and multiple ways of addressing their scale and space–time dependencies. We focus our attention on four approaches that give rise to nonlocal representations of advective and dispersive transport of nonreactive tracers in randomly heterogeneous porous or fractured continua. We compare these approaches theoretically on the basis of their underlying premises and the mathematical forms of the corresponding nonlocal advective–dispersive terms. One of the four approaches describes transport at some reference support scale by a classical (Fickian) advection–dispersion equation (ADE) in which velocity is a spatially (and possibly temporally) correlated random field. The randomness of the velocity, which is given by Darcy’s law, stems from random fluctuations in hydraulic conductivity (and advective porosity though this is often disregarded). Averaging the stochastic ADE over an ensemble of velocity fields results in a space–time-nonlocal representation of mean advective–dispersive flux, an approach we designate as stnADE. A closely related space–time-nonlocal representation of ensemble mean transport is obtained upon averaging the motion of solute particles through a random velocity field within a Lagrangian framework, an approach we designate stnL. The concept of continuous time random walk (CTRW) yields a representation of advective–dispersive flux that is nonlocal in time but local in space. Closely related to the latter are forms of ADE entailing fractional derivatives (fADE) which leads to representations of advective–dispersive flux that are nonlocal in space but local in time; nonlocality in time arises in the context of multirate mass transfer models, which we exclude from consideration in this paper. We describe briefly each of these four nonlocal approaches and offer a perspective on their differences, commonalities, and relative merits as analytical and predictive tools.  相似文献   

5.
This study introduces the dispersive fluid flux of total fluid mass to the density-driven flow equation to improve thermohaline modeling of salt and heat transports in porous media. The dispersive fluid flux in the flow equation is derived to account for an additional fluid flux driven by the density gradient and mechanical dispersion. The coupled flow, salt transport and heat transport governing equations are numerically solved by a fully implicit finite difference method to investigate solution changes due to the dispersive fluid flux. The numerical solutions are verified by the Henry problem and the thermal Elder problem under a moderate density effect and by the brine Elder problem under a strong density effect. It is found that increment of the maximum ratio of the dispersive fluid flux to the advective fluid flux results in increasing dispersivity for the Henry problem and the brine Elder problem. The effects of the dispersive fluid flux on salt and heat transports under high density differences and high dispersivities are more noticeable than under low density differences and low dispersivities. Values of quantitative indicators such as the Nusselt number, mass flux, salt mass stored and maximum penetration depth in the brine Elder problem show noticeable changes by the dispersive fluid flux. In the thermohaline Elder problem, the dispersive fluid flux shows a considerable effect on the shape and the number of developed fingers and makes either an upwelling or a downwelling flow in the center of the domain. In conclusion, for the general case that involves strong density-driven flow and transport modeling in porous media, the dispersive fluid flux should be considered in the flow equation.  相似文献   

6.
A novel, non-intrusive fluorescence imaging technique has been used to quantitatively measure the pore geometry, fluid velocity, and solute concentration within a saturated, three-dimensional porous medium. Discrete numerical averages of these quantities have been made over a representative volume of the medium and used to estimate macroscopic quantities that appear in conventional continuum models of flow and transport. The approach is meant to illustrate how microscopic information can be measured, averaged, and used to characterize medium-scale processes that are typically approximated constitutively. The experimental system consisted of a clear, cylindrical column packed with clear spherical beads and a refractive index-matched fluid seeded with fluorescent tracer particles and solute dye. By illuminating the fluid within the column with a scanning planar laser beam, details of flow and concentration within the pore spaces can be quantitatively observed, allowing for three-dimensional, dimensional, time dependent information to be obtained at good resolution. In time dependent information to be obtained at good resolution. In the current experiment, volumetrically averaged velocities and void-to-volume ratios are first compared with bulk measurements of fluid flux and medium porosity. Microscopic measurements of concentration are then used to construct cross-sectionally averaged profiles, mean breakthrough curves, and direct measurements of the dispersive flux, velocity variance, and concentration variance. In turn, the dispersive flux measurements are compared with mean concentration gradients to provide a basis for confirming the Fickian dispersion model and estimating dispersion coefficients for the medium. Coefficients determined in this manner are compared with others based upon traditional length-scale arguments, mean breakthrough analyses, and curve fits with numerical simulations.  相似文献   

7.
Factors affecting longitudinal dispersion in estuaries of different scale   总被引:1,自引:0,他引:1  
Traditionally, the overall diluting capacity of an estuary is characterized using a coefficient of longitudinal dispersion, Kxe, which is given by the ratio of the dispersive flux of a dissolved substance to its tidally averaged longitudinal gradient. A steady-state model, which assumes a balance between the dispersive and non-dispersive fluxes and an exponential increase in estuary cross-sectional area towards the sea, has been used to derive expressions for the axial salinity distribution and the dispersive flux of salt. The model was set up assuming either a constant dispersion coefficient along the estuary or one that increased with distance towards the sea. By comparing salinity predictions with data from five UK estuaries, estimates were made of the maximum dispersive salt flux and the corresponding maximum salinity gradient for each system. The results indicated that there was an approximately linear relation between the fluxes and gradients, and the slope of a line plotted through the origin provided an estimate of a common Kxe for all five estuaries. The magnitude of Kxe was found to be about 90 m2 s–1 with a standard deviation of approximately ±32 m2 s–1. It is concluded that a representative value of 100 m2 s–1 for Kxe is a reasonable first choice when setting up a cross-sectionally averaged estuary model. The results also showed that larger systems, such as the Thames, had lower salinity gradients and lower dispersive salt fluxes, whilst smaller estuaries displayed the opposite characteristics. The model was used to predict the variation in the non-advective flux of salt along an estuary. The distribution was found to be similar to the corresponding flux distribution estimated from observations at the seaward end of the Tees estuary, despite appreciable spatial variations in the individual flux components. Allowing for a small decrease in freshwater flow, the model indicated that there was a decrease in the maximum dispersive flux between neap and spring tides. It is argued that such a reduction in flux can result in a seaward shift in the salinity distribution to a region of greater cross-section, where the freshwater transport per unit area again balances the reduced upstream dispersive flux, as found in the neap to spring response in the Tees estuary.Responsible Editor: Hans Burchard  相似文献   

8.
2005年3~10月,陕西省关中东部华县毕家乡东林场农业灌溉用井群体出现强烈的翻花、冒泡、响声现象,个别井水色浑浊。其历时之长,范围之广,在陕西省内近30年来少见。我们从中国地震局监测预报司编著的《地震前兆异常落实工作指南》的主导思想出发,对华县井水宏观异常现象进行了较为深入的现场取样调查、测量与分析,从化学成因的角度对这一宏观异常现象进行分析解释,所得结果得到了跨断层水准测量结果的佐证。认为该次井水的宏观气体异常作为当地地震短临前兆的依据不充分。最后给出了分析处理井水宏观气体异常现象的一些建议。  相似文献   

9.
10.
A macroscopic transport model is developed, following the Taylor shear dispersion analysis procedure, for a 2D laminar shear flow between parallel plates possessing a constant specified concentration. This idealized geometry models flow with contaminant dissolution at pore-scale in a contaminant source zone and flow in a rock fracture with dissolving walls. We upscale a macroscopic transient transport model with effective transport coefficients of mean velocity, macroscopic dispersion, and first-order mass transfer rate. To validate the macroscopic model the mean concentration, covariance, and wall concentration gradient are compared to the results of numerical simulations of the advection–diffusion equation and the Graetz solution. Results indicate that in the presence of local-scale variations and constant concentration boundaries, the upscaled mean velocity and macrodispersion coefficient differ from those of the Taylor–Aris dispersion, and the mass transfer flux described by the first-order mass transfer model is larger than the diffusive mass flux from the constant wall. In addition, the upscaled first-order mass transfer coefficient in the macroscopic model depends only on the plate gap and diffusion coefficient. Therefore, the upscaled first-order mass transfer coefficient is independent of the mean velocity and travel distance, leading to a constant pore-scale Sherwood number of 12. By contrast, the effective Sherwood number determined by the diffusive mass flux is a function of the Peclet number for small Peclet number, and approaches a constant of 10.3 for large Peclet number.  相似文献   

11.
The results of a series of high-resolution numerical experiments are used to test and compare three nonlinear models for high-concentration-gradient dispersion. Gravity stable miscible displacement is considered. The first model, introduced by Hassanizadeh, is a modification of Fick’s law which involves a second-order term in the dispersive flux equation and an additional dispersion parameter β. The numerical experiments confirm the dependency of β on the flow rate. In addition, a dependency on travelled distance is observed. The model can successfully be applied to nearly homogeneous media (σ2 = 0.1), but additional fitting is required for more heterogeneous media.The second and third models are based on homogenization of the local scale equations describing density-dependent transport. Egorov considers media that are heterogeneous on the Darcy scale, whereas Demidov starts at the pore-scale level. Both approaches result in a macroscopic balance equation in which the dispersion coefficient is a function of the dimensionless density gradient. In addition, an expression for the concentration variance is derived. For small σ2, Egorov’s model predictions are in satisfactory agreement with the numerical experiments without the introduction of any new parameters. Demidov’s model involves an additional fitting parameter, but can be applied to more heterogeneous media as well.  相似文献   

12.
The paper addresses the problem of the resistance due to vegetation in an open channel flow, characterized by partially and fully submerged vegetation formed by colonies of bushes. The flow is characterized by significant spatial variations of velocity between vertical profiles that make the traditional approach based on time averaging of turbulent fluctuations inconvenient. A more useful procedure, based on time and spatial averaging (Double-Averaging Method) is applied for the flow field analysis and characterization. The vertical distribution of mean velocity and turbulent stresses at different spatial locations has been measured with a 3D Acoustic Doppler Velocimeter (ADV) for two different vegetation densities where fully submerged real bushes (salix pentandra) have been used. Velocity measurements were completed together with the measurements of drag exerted on the flow by bushes at different flow depths. The analysis of velocity measurements allows depicting the fundamental characteristics of both the mean flow field and turbulence. The experimental data show that the contribution of form-induced stresses to the momentum balance cannot be neglected. The mean velocity profiles and the spatially averaged turbulent intensity profiles allow inferring that the vegetation density is a driving parameter for the development of a mixing layer at the canopy top in the case of submerged vegetation. Moreover, the net upward turbulent momentum flux, evaluated with the methodology proposed by Lu and Willmarth (1973), appears to be damped for increased vegetation density; this finding can rationally explain the reduction of the suspended sediment transport capacity typically observed in free surface flows over a vegetated bed.  相似文献   

13.
14.
云南地区地震宏观异常特征研究   总被引:3,自引:2,他引:3  
付虹  万登堡  张立 《地震研究》2003,26(3):209-216
经历史震例及近几年地震震前短临跟踪预报实践,对宏观异常进行深入剖析,认为:宏观异常内容和数量多少与震级有关;宏观异常不只是短临和临震异常信息。也有不少是中短期、短期异常信息;宏观异常分布在震中及附近地区;最早出现的宏观异常地点对未来地震震中有一定指示意义。  相似文献   

15.
Summary A three-stream infra-red radiation scheme for use particularly in boundary layer models is described. Local uniformity of the atmosphere (i.e. a generalization of the cooling to space approximation in clear air) is assumed, and the radiation equation is solved by simple collocation rather than by the full discrete ordinate method. In clear air the scheme corresponds to the usual approximation, which incorporates the Elsasser factor in the transmission function to account for diffuse radiation. The band models of Goody for water vapour and Elsasser for carbon dioxide are used for the band averaging of the transmission functions. Consistent with this, the band averaging of the radiation flux in cloud is undertaken by replacing the rapidly varying absorption coefficients for the gases by the actual band-averaged values of those coefficients. The band averaging is precise in the limits of strong and weak gaseous absorption.  相似文献   

16.
This model is based on the concept of transport concentration, defined as the time-averaged concentration in a given location of a lagoon, which determines the long-term net transport of sediments as the sum of a dispersive and an advective flux. Dispersive net flux of sediments is due to the alternate components of the tidal flow, while the advective net flux of sediments is due to the residual (Eulerian) component of the tidal, fluvial and littoral flow and possibly to the asymmetry between flow and ebb tide.  相似文献   

17.
Blowouts are depressions that occur on coastal dunes, deserts and grasslands. The absence of vegetation in blowouts permits high speed winds to entrain and remove sediment. Whereas much research has examined patterns of wind flow and sediment transport on the stoss slopes and lee of sand dunes, no study has yet investigated the connections between secondary air‐flow structures and sediment transport in a blowout where zones of streamline compression, expansion and steering are less clearly delineated. In this study we investigated the variability of sediment flux and its relation to near‐surface wind speed and turbulence within a trough blowout during wind flow that was oblique to the axis of the blowout. Wind flow was measured using six, three‐dimensional (3D) ultrasonic anemometers while sediment flux by eight sand traps, all operating at 25 Hz. Results demonstrated that sediment flux rates were highly variable throughout the blowout deflation basin, even over short distances (< 0.5 m). Where flow was steadiest, flux was greatest. Consequently the highest rates of sediment transport were recorded on the erosional wall crest where flow was compressed and accelerated. The strength of correlation between sediment flux and wind parameter improved with an increase in averaging interval, from 10 seconds to 1 minute. At an interval of 10 seconds, however, wind speed correlated best with flux at seven of eight traps, whereas at an interval of one minute Turbulent Kinetic Energy (TKE) provided the best correlation with flux at six of the eight traps. Correlation between sediment flux and wind parameters was best in the centre of the blowout and poorest on the erosional wall crest. The evidence from this paper suggests, for the first time, that TKE may be a better predictor of sediment transport at minute scale averaging intervals, particularly over landforms where wind flow is highly turbulent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
When dealing with the macroscopic behavior of a fractured porous medium, one is faced with the problem of computing the large-scale parameters from the fracture network properties. In particular, when the retained model is the quasi-steady two-equation model, three effective coefficients have to be estimated. This upscaling problem has been reviewed using a volume averaging method by Quintard and Whitaker. As a result, a closed form of the macroscopic model was obtained with associate closure problems that can be used for the determination of the required parameters. In this paper, we use the corresponding problems to study and discuss the behavior of the effective properties of 2D densely fractured systems. First, the emphasis is put on the large-scale fracture permeability tensor, which is related to the degree of interconnection of the fractures combined to the effect of matrix diffusion. Secondly, the exchange coefficient is considered, in particular, its dependence on the matrix blocks geometry. Finally, we compare our approach with numerous techniques currently proposed in the literature.  相似文献   

19.
It is more and more popular to estimate the exchange of water vapor, heat and CO2fluxes between the land surface and the atmosphere using the eddy covariance technique. To get believable fluxes, it is necessary to correct the observations based on the different surface conditions and to determine relevant techinical parameters. The raw 10 Hz eddy covariance data observed in the Yucheng and Changbai Mountains stations were recalculated by various averaging periods (from 1 to 720 min) respectively, and the recalculated results were compared with the results calculated by the averaging period of 30 mins. Meanwhile, the distinctions of fluxes calculated by different averaging periods were analyzed. The continuous 15 days observations over wheat fields in the Yucheng station were mainly analyzed. The results are shown that: (i) In the Yucheng station, compared with the observations by 30 min, when the averaging period changes from 10 to 60 min, the variations of the eddy-covariance estimates of fluxes were less than 2%; when the averaging period changes less than 10 min, the estimate of fluxes reduced obviously with the reduction of the averaging period (the max relative error was -12%); and when the averaging period exceeds 120 min, the eddy covariance estimates of fluxes will be increased and become unsteady (the max relative error is over 10%); (ii) the eddy covariance estimates of fluxes over wheat field in the Yucheng station suggusted that it is much better to take 10 min as an averaging period in studying diurnal change of fluxes, and take 30min for a long-term flux observation; and (iii) normalized ratio was put forward to determine the range of averaging period of eddy covariance measurements. By comparing the observations over farmlands and those over forests, it is indicated that the increase of eddy covariance estimates over tall forest was more than that over short vegetation when the averaging period increased.  相似文献   

20.
We demonstrate evidence that past composite based studies centred around the onset of Forbush decrease (FD) events may have improperly isolated the maximal galactic cosmic ray (GCR) decrease associated with the FD events. After an adjustment of the composite to account for such shortcomings we find indications of anomalous cloud cover decreases (of around 3%) located in the upper levels of the troposphere at high southern latitudes. These cloud changes are detectable after latitudinal averaging, suggesting the possibility of a second order relationship between the rate of GCR flux and cloud cover in this region. The maximal cloud change is observed in advance of the maximal GCR decrease; this implies that if the observed cloud changes bear a causal relationship to the rate of GCR flux, then cloud properties may be sensitive to changes in GCR conditions rather than the maximal deviations themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号