首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In explosive volcanic eruptions, vesicular magma droplets, produced by fragmentation, are propelled into the atmosphere where they are chilled to form pumices. The thermal history of droplets and the permeability of their internal bubble networks determine how much they are deformed in the eruption jet, and hence what information pumices record about the state of the magma at fragmentation. We study these aspects of the `Minoan' plinian eruption of Santorini Volcano by quantifying the rate of oxidation reactions that took place when air entered the hot magma fragments. In our experiments white Minoan pumices were heated for minutes to hours between 600 and 850°C, either in air, or in an atmosphere with an oxygen fugacity at the Ni–NiO buffer. Pumices were unchanged by heating at Ni–NiO. Those heated in air often became pink to dark pink, depending on heating time, and their Curie temperatures, as determined by magnetic susceptibility measurements, increased. We use oxidation rates deduced from these experiments, in conjunction with calculations of the rate of conductive cooling and of the rate at which air can enter a pumice, to constrain the conditions experienced by pumices during the eruption. Natural Minoan pumices less than about 5 cm in radius are white, whereas larger ones often have white rims and pink interiors with Curie temperatures higher than those of white material. We infer that small pumices were cooled before being oxidized, and that oxidation of the interiors of large clasts mostly took place during flight, at temperatures within a few tens of degrees of magmatic values. White rims of large pumices, despite being permeable, were cooled before oxidation could occur. Permeability developed in the liquid state, but did not develop early enough, with respect to cooling, or was not large enough to allow extreme oxidation. We give measurements of pumice permeabilities that should be close to magmatic values.  相似文献   

2.
Tianchi volcano in Changbaishan area is located at the border between China and Democratic People's Republic of Korea, and is one of the most dangerous volcanoes in China. It has experienced several explosive eruptions in late Pleistocene and Holocene, i.e. 50000aBP eruption, 946 AD eruption, 1668 AD eruption, 1702 AD eruption, 1903 AD eruption. Especially, the 946 AD eruption(also known as "Millennium eruption")of this volcano is considered to be one of the largest volcanic eruptions in the world in the past 2000a. The eruption history and strata sequence of Tianchi volcano have long been the focus of attention. The stratigraphic unit division of fallout deposits in the past millennium is controversial, especially for the heterogeneous trachytic pumices(erupted from the Yuanchi stage)above the off-white pumices(erupted from the Chifeng stage). In this paper, through the detailed field exploration and strata comparation, it was found that there was no depositional interval between the two stage eruptions, or the interval was not long, and thus, it is believed that two stages of fallout pumice should be classified into the Millennium eruption. The off-white fallout pumices in Chifeng stage are relatively homogeneous, with angular shape, normal grading and good sorting. The median size(MdΦ)and the sorting coefficient(σΦ)of Chifeng pumice are in the range of -4.25~-1.3 and 0.93~1.53, respectively. The eruption of Yuanchi stage is in pulsing pattern, and the strata show interbedding of rich khaki pumice layer and rich black pumice layer. The pumices with angular shape show inconspicuous grain grading and good sorting. The median size(MdΦ)and the sorting coefficient(σΦ)of Yuanchi pumice are in the range of -2.55~-0.6 and 1~1.68, respectively. Both the granularities of the pumice particles from two stages are normally distributed and fall into the air-fall field in the median diameter versus sorting diagram. The pumices from 50000aBP and pyroclastic flow of Millennium eruption were also shown in the diagram. Phenocrysts in pumices are mainly feldspar and pyroxene, but the phenocrysts with obvious resorbed characteristic in Yuanchi black pumice are bigger, and the phenocryst contents are a little higher than those in others. Feldspar content in off-white pumice in Chifeng stage was 0.24%~1.77%, that in khaki pumice in Yuanchi stage was 0.2%~7.5%, and that in black pumice in Yuanchi stage was 3.02%~8.0%. The phenocrysts in Chifeng pumice are broken, which represents more violent explosion. The vesicles inside the pumice also reflect the intensity of the eruption. The Chifeng pumices have large, continuous vesicles and thin vesicle walls. The Yuanchi khaki pumices have continuous vesicles but thicker vesicle wall than the Chifeng pumices. The vesicularity is the lowest and the vesicle walls are the thickest in the black pumices in Yuanchi stage, indicating the eruption strength become weaker from Chifeng stage to Yuanchi stage. The Chifeng pumices with SiO2 content of 69.12~72.71wt%, K2O content of 4.33~4.52wt%, Na2O content of 5.26~5.39wt%, Al2O3 content of 10.32~11.99wt%, CaO content of 0.29~0.95wt%, MgO content of 0.11~0.51wt%, TiO2 content of 0.23~0.43wt% are comendite in composition. The pumices from 50000aBP eruption are comendite in composition, and their SiO2 content(65.56~68.28wt%)is slightly lower than Chifeng pumices. The Yuanchi khaki pumices with SiO2 content of 62.14~63.29wt%, K2O content of 5.35~5.7wt%, Na2O content of 5.35~5.62wt%, Al2O3 content of 15.00~15.59wt%, CaO content of 1.06~1.61wt%, MgO content of 0.25~0.57wt%, TiO2 content of 0.4~0.64wt% belong to trachyte in composition, and are close to the composition of the black pumices on the Tianwen Peak. The Yuanchi black pumices are also trachyte in composition, but have obviously lower SiO2(59.51~60.59wt%), K2O(4.39~4.84wt%), and Na2O(4.94~5.08wt%)content, and higher Al2O3(15.81~16.42wt%), CaO(2.78~3.66wt%), MgO(1.43~1.9wt%), TiO2(1.04~1.4wt%)content than the khaki pumices. The above results show that the eruptive intensity of the Yuanchi stage is weaker than that of the Chifeng stage and the several magmatic compositions of pumices from the Millennium eruption reveal a complex magma system under the Tianchi volcano. The magma layers with different compositions may exist in the magma chamber contemporaneously. At Chifeng stage, only the upper comendite magma erupted, but the magma below erupted in the pulsing pattern at the Yuanchi stage.  相似文献   

3.
We describe a magma mingling episode from Ruapehu volcano between two andesite magmas, one very much minor in volume relative to the other. The event acted to trigger eruption of the andesitic Pourahu pyroclastic flow which is preserved in a thick sequence of tephras and laharic deposits in the southeastern ring plain of the volcano. The predominant andesite is pale brown coloured and porphyritic containing phenocrysts of plagioclase-clinopyroxene-orthopyroxene-Fe-Ti oxides. Rare clasts of a darker andesite are different texturally, less vesicular, and contain distinctive microphenocrysts of plagioclase and quench olivine. Equally rare clasts, of streaky pumice consisting of interbanded ‘dark’ and ‘light’ andesite attest to mingling between these two andesite components.Chemical analyses of discrete clasts demonstrate that the Pourahu pyroclastic flow andesites span much of the compositional spectrum of Ruapehu andesites. This observation demonstrates heterogeneity in the products of a relatively small eruption. The darker clast analyses and those from associated distal fall deposits lie within the fields defined by the dominant light coloured clasts. Phenocryst and microphenocryst geothermometry suggest slightly higher temperatures in the dark component. However, glasses from groundmass and phenocryst inclusions in the same specimen may differ considerably, leading us to conclude that many phenocrysts are in fact xenocrystic and were incorporated in the melts as they migrated towards the surface.We prefer a model in which a small volume of hot andesite magma injects a vent-feeding magma chamber, triggering vesiculation and eruption. We infer that the process of magma withdrawal extended downward into the magma body causing the dark component to intermingle with the lighter (dominant) component, ‘sucking’ more dark magma into the chamber. Our observations are entirely consistent with the existence of a plexus of small, possibly interlinked magma chambers beneath Ruapehu.  相似文献   

4.
We have characterized pumice products belonging to the climactic phase of the 800-year-b.p. Quilotoa eruption. Bulk rock compositions, petrography, mineral, and glass chemistry and textural investigations were performed on the three end-member pumice types, namely white, gray, and mingled pumices. All the investigated pumice clasts are dacites characterized by the same bulk rock composition and mineralogical assemblage, but glass compositions and bulk textures change according to different pumice types. White pumice has higher crystallinity (~48 wt%), abundant euhedral pheno/microphenocrysts, no groundmass microlites, the most evolved glass compositions (74–78 wt% SiO2), and heterogeneous vesicle populations marked by deformed and highly coalesced vesicles with thin walls. Gray pumice exhibits lower crystallinity (29–36 wt%), abundant broken and/or resorbed crystals, ubiquitous groundmass phenocryst fragments and microlites, the widest range of glass compositions (69–78 wt% SiO2), and quite homogeneous poorly deformed and coalesced vesicles with thicker walls. Mingled pumices are characterized by the alternation of bands or patches with white and gray pumice compositional and textural characteristics. We attribute heterogeneities in glass compositions and crystal and vesicle textures to processes occurring within volcanic conduits as magma is ascending to the surface. In particular, the above observations and results are consistent with an origin of a gray magma by heating of the original white magma in a strongly sheared region of the conduit because of a mechanism of viscous dissipation and crystal grinding and resorption at the conduit walls. The less viscous gray magma, therefore, would enable the onset and preservation of a high mass flux of the eruption otherwise difficult to explain for highly viscous crystal-rich dacitic magmas.Editorial responsibility: D. Dingwell  相似文献   

5.
长白山天池火山大约 1 000年前的大喷发,形成了巨厚的火山碎屑流堆积层,其主要组成是浮岩与火山灰。以往的研究普遍认为其中的浮岩为灰白色,属流纹质。笔者在考察中发现了不少黑色及少量其它颜色的浮岩,系统地采集了各色样品作浮岩化学成分分析,结果表明,灰白色浮岩与黑色浮岩分别为流纹质和粗面质,灰色浮岩属于粗面质但靠近流纹质端元。它们都来源于地壳岩浆房,是岩浆房内不同分异演化阶段的产物,它们同时喷出说明岩浆房内具有分带性及不同性质岩浆的混合  相似文献   

6.
The 79 AD eruption of Vesuvius included 8 eruption units (EU1–8) and several complex transitions in eruptive style. This study focuses on two important transitions: (1) the abrupt change from white to gray pumice during the Plinian phase of the eruption (EU2 to EU3) and (2) the shift from sustained Plinian activity to the onset of caldera collapse (EU3 to EU4). Quantification of the textural features within individual pumice clasts reveals important changes in both the vesicles and groundmass crystals across each transition boundary. Clasts from the white Plinian fall deposit (EU2) present a simple story of decompression-driven crystallization followed by continuous bubble nucleation, growth and coalescence in the eruptive conduit. In contrast, pumices from the overlying gray Plinian fall deposit (EU3) are heterogeneous and show a wide range in both bubble and crystal textures. Extensive bubble growth, coalescence, and the onset of bubble collapse in pumices at the base of EU3 suggest that the early EU3 magma experienced protracted vesiculation that began during eruption of the EU2 phase and was modified by the physical effects of syn-eruptive mingling-mixing. Pumice clasts from higher in EU3 show higher bubble and crystal number densities and less evidence of bubble collapse, textural features that are interpreted to reflect more thorough mixing of two magmas by this stage of the eruption, with consequent increases in both vesiculation and crystallization. Pumice clasts from a short-lived, high column at the onset of caldera collapse (EU4) continue the trend of increasing crystallization (enhanced by mixing) but, unexpectedly, the melt in these clasts is more vesicular than in EU3 and, in the extreme, can be classified as reticulite. We suggest that the high melt vesicularity of EU4 reflects strong decompression following the partial collapse of the magma chamber.Editorial responsibility: D.B. Dingwell  相似文献   

7.
Large silicic explosive eruptions are the most catastrophic volcanic events. Yet, the intratelluric mechanisms underlying are not fully understood. Here we report a field and laboratory study of the Kos Plateau Tuff (KPT, 161 ka, Aegean Volcanic Arc), which provides an excellent geological example of conduit processes that control magma vesiculation and fragmentation during intermediate- to large-scale caldera-forming eruptions. A prominent feature of the KPT is the occurrence of quite unusual platy-shaped tube pumice clasts in pyroclastic fall and current deposits from the early eruption phases preceding caldera collapse. On macroscopic and SEM observations, flat clast faces are elongated parallel to tube vesicles, while transverse surfaces often occur at ~ 45° to vesicle elongation. This peculiar pumice texture provides evidence of high shear stresses related to strong velocity gradients normal to conduit walls, which induced vesiculation and fragmentation of the ascending magma. Either an increasing mass discharge rate without adequate enlargement of a narrow central feeder conduit or a developing fissure-like feeder system related to incipient caldera collapse provided suitable conditions for the generation of plate tube pumice within magma volumes under high shear during the pre-climactic KPT eruption phases. This mechanism implies that the closer to the conduit walls (where the stronger are the velocity gradients) the larger was the proportion of plate vs. conventional (lensoid) juvenile fragments in the ascending gas–pyroclast mixture. Consequently, plate pumice clasts were mainly entrained in the outer portions of the jet and convecting regions of a sustained, Plinian-type, eruption column, as well as in occasional lateral blast currents generated at the vent. As a whole, plate pumice clasts in the peripheral portions of the column were transported at lower altitudes and deposited by fallout or partial collapse closer to the vent relative to lensoid ones that dominated in the inner column portions. The plate tube pumice proportion decreased abruptly up to disappearance during the emplacement of the main pyroclastic currents and lithic-rich breccias related to extensive caldera collapse at the eruption climax, as a consequence of an overall widening of the magma feeder system through the opening of multiple conduits and eruptive vents, along with fissure erosion, concomitant to the disruption of the collapsing block.  相似文献   

8.
Triggering mechanisms of large silicic eruptions remain a critical unsolved problem. We address this question for the ~2.08-Ma caldera-forming eruption of Cerro Galán volcano, Argentina, which produced distinct pumice populations of two colors: grey (5%) and white (95%) that we believe may hold clues to the onset of eruptive activity. We demonstrate that the color variations correspond to both textural and compositional variations between the clast types. Both pumice types have bulk compositions of high-K, high-silica dacite to low-silica rhyolite, but there are sufficient compositional differences (e.g., ~150?ppm lower Ba at equivalent SiO2 content and 0.03?wt.% higher TiO2 in white pumice than grey) to suggest that the two pumice populations are not related by simple fractionation. Trace element concentrations in crystals mimic bulk variations between clast types, with grey pumice containing elevated Ba, Cu, Pb, and Zn concentrations in both bulk samples (average Cu, Pb, and Zn concentrations are 27, 35, and 82 in grey pumice vs. 11, 19, and 60 in white pumice) and biotite phenocrysts and white pumice showing elevated Li concentrations in biotite and plagioclase phenocrysts. White and grey clasts are also texturally distinct: White pumice clasts contain abundant phenocrysts (44?C57%), lack microlites, and have highly evolved groundmass glass compositions (76.4?C79.6?wt.% SiO2), whereas grey pumice clasts contain a lower percentage of phenocrysts/microphenocrysts (35?C49%), have abundant microlites, and have less evolved groundmass glass compositions (69.4?C73.8?wt.% SiO2). There is also evidence for crystal transfer between magma producing white and grey pumice. Thin highly evolved melt rims surround some fragmental crystals in grey pumice clasts and appear to have come from magma that produced white pumice. Furthermore, based on crystal compositions, white bands within banded pumice contain crystals originating in grey magma. Finally, only grey pumice clasts form breadcrusted surface textures. We interpret these compositional and textural variations to indicate distinct magma batches, where grey pumice originated from an originally deeper, more volatile-rich dacite recharge magma that ascended through and mingled with the volumetrically dominant, more highly crystalline chamber that produced white pumice. Shortly before eruption, the grey pumice magma stalled within shallow fractures, forming a vanguard magma phase whose ascent may have provided a trigger for eruption of the highly crystalline rhyodacite magma. We suggest that in the case of the Cerro Galán eruption, grey pumice provides evidence not only for cryptic silicic recharge in a large caldera system but also a probable trigger for the eruption.  相似文献   

9.
The climactic event of Mount Pinatubo represents one of the most thoroughly studied eruptions of the century and has provided important insights into the dynamics of explosive volcanism. We have performed detailed textural analyses of the white and gray pumices of the plinian and pyroclastic flow deposits, and found that differences in color and clast density reflect different crystal and vesicle amounts and size distributions. White pumice has higher vesicularity, deformed and highly coalesced vesicles with thin walls, euhedral phenocrysts and microlite-free groundmass. Gray pumice shows lower vesicularity, wider ranges in vesicle number density, limited coalescence, vesicles with thick walls that are less deformed, phenocrysts and microphenocrysts with abundant solution pitting, and groundmass containing ubiquitous microlites and crystal fragments. The presence of white and gray pumice varieties and the broad range in vesicularity and vesicle number density that characterizes both of them appear to record the complexities of conduit processes such as magma vesiculation and fragmentation and the development of conduit regions marked by different rheological behaviors. In particular, the results of this study suggest the likely importance of intense shear and viscous dissipation at the conduit walls, a mechanism that may be responsible for the creation and discharge of the gray pumice of this eruption along with the dominant white variety.  相似文献   

10.
Textural characterization of pumice clasts from explosive volcanic eruptions provides constraints on magmatic processes through the quantification of crystal and vesicle content, size, shape, vesicle wall thickness and the degree of interconnectivity. The Plinian fallout deposit directly underlying the Campanian Ignimbrite (CI) eruption represents a suitable case to investigate pumice products with different textural characteristics and to link the findings to processes accompanying conduit magma ascent to the crater. The deposit consists of a lower (LFU) and upper (UFU) pumice lapilli bed generated by the sub-steady eruption of trachytic magma with <5 vol%. crystals and a peak discharge rate of 3.2×10 8 kg/s. Density measurements were performed on samples collected from different stratigraphic intervals at the Voscone-type outcrop, and their textural characteristics were investigated at different magnifications through image analysis techniques. According to clast densities, morphologies and vesicle textures pumice clasts were classified into microvesicular (heterogeneous vesicles), tube (elongated/deformed vesicles) and expanded (coalesced/inflated vesicles).The combination of density data and textural investigations allowed us to characterize both representative areas and textural extremes of pumice products. Bulk vesicularity spans a broad interval varying from 0.46 to >0.90, with vesicle number density ranging from 10 7–10 8 cm -3. The degree of vesicle coalescence is high for all pumice types, with interconnected vesicles generally representing more than 90% of the bulk vesicle population. The results show a high degree of heterogeneous textures among pumice clasts from both phases of the eruption and within each eruption phase, the different pumice types and also within each single pumice type fragment. The origin of pumice clasts with different textural characteristics is ascribed to the development of conduit regions marked by different rheological behavior. The conclusions of this study are that vesicle deformation, degree of coalescence and intense shear at the conduit walls play a major role on the degassing process, hence affecting the entire conduit dynamics.  相似文献   

11.
The small- to moderate-volume, Quaternary, Siwi pyroclastic sequence was erupted during formation of a 4 km-wide caldera on the eastern margin of Tanna, an island arc volcano in southern Vanuatu. This high-potassium, andesitic eruption followed a period of effusive basaltic andesite volcanism and represents the most felsic magma erupted from the volcano. The sequence is up to 13 m thick and can be traced in near-continuous outcrop over 11 km. Facies grade laterally from lithic-rich, partly welded spatter agglomerate along the caldera rim to two medial, pumiceous, non-welded ignimbrites that are separated by a layer of lithic-rich, spatter agglomerate. Juvenile clasts comprise a wide range of densities and grain sizes. They vary between black, incipiently vesicular, highly elongate spatter clasts that have breadcrusted pumiceous rinds and reach several metres across to silky, grey pumice lapilli. The pumice lapilli range from highly vesicular clasts with tube or coalesced spherical vesicles to denser finely vesicular clasts that include lithic fragments.Textural and lithofacies characteristics of the Siwi pyroclastic sequence suggest that the first phase of the eruption produced a base surge deposit and spatter-poor pumiceous ignimbrite. A voluminous eruption of spatter and lithic pyroclasts coincided with a relatively deep withdrawal of magma presumably driven by a catastrophic collapse of the magma chamber roof. During this phase, spatter clasts rapidly accumulated in the proximal zone largely as fallout, creating a variably welded and lithic-rich agglomerate. This phase was followed by the eruption of moderately to highly vesiculated magma that generated the most widespread, upper pumiceous ignimbrite. The combination of spatter and pumice in pyroclastic deposits from a single eruption appears to be related to highly explosive, magmatic eruptions involving low-viscosity magmas. The combination also indicates the coexistence of a spatter fountain and explosive eruption plume for much of the eruption.Editorial responsibility: R. Cioni  相似文献   

12.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

13.
The Monte Nuovo eruption is the most recent event that occurred at Phlegrean Fields (Italy) and lasted from 29 September to 6 October 1538. It was characterized by 2 days of quasi-sustained phreatomagmatic activity generating pumice-bearing pyroclastic density currents and forming a 130-m-high tuff cone (Lower Member deposits). The activity resumed after a pause of 2 days with two discrete Vulcanian explosions that emplaced radially distributed, scoria-bearing pyroclastic flows (Upper Member deposits). The juvenile products of Lower and Upper Members are, respectively, phenocryst-poor, light-coloured pumice and dark scoria fragments with K-phonolitic bulk compositions, identical in terms of both major and trace elements. Groundmass is formed by variable proportions of K-feldspar and glass, along with minor sodalite and Fe-Ti oxide present in the most crystallized samples. Investigations of groundmass compositions and textures were performed to assess the mechanisms of magma ascent, degassing and fragmentation along the conduit and implications for the eruptive dynamics. In pumice of the Lower Member groundmass crystal content increases from 13 to 28 vol% from the base to the top of the sequence. Products of the Upper Member consist of clasts with a groundmass crystal content between 30 and 40 vol% and of totally crystallized fragments. Crystal size distributions of groundmass feldspars shift from a single population at the base of the Lower Member to a double population in the remaining part of the sequence. The average size of both populations regularly increases from the Lower to the Upper Member. Crystal number density increases by two orders of magnitude from the Lower to the Upper Member, suggesting that nucleation dominated during the second phase of the eruption. The overall morphological, compositional and textural data suggest that the juvenile components of the Monte Nuovo eruption are likely to record variations of the magma properties within the conduit. The different textures of pumice clasts from the Lower Member possibly reflect horizontal gradients of the physical properties (P, T) of the ascending magma column, while scoriae from the second phase are thought to result from the disruption of a slowly rising plug crystallizing in response to degassing. In particular, crystal size distribution data point to syn-eruptive degassing-induced crystallization as responsible for the transition in eruptive style from the first to the second phase of the eruption. This mechanism not only has been proved to profoundly affect the dynamics of dome-forming calc-alkaline eruptions, but may also have a strong influence in driving the eruption dynamics of alkaline magmas of intermediate to evolved compositions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

14.
The Filakopi Pumice Breccia (FPB) is a very well exposed, Pliocene volcaniclastic unit on Milos, Greece, and has a minimum bulk volume of 1 km3. It consists of three main units: (A) basal lithic breccia (4–8 m) mainly composed of angular to subangular, andesitic and dacitic clasts up to 2.6 m in diameter; (B) very thickly bedded, poorly sorted pumice breccia (16–17 m); and (C) very thick, reversely graded, grain-supported, coarse pumice breccia (6.5–20 m), at the top. The depositional setting is well constrained as shallow marine (up to a few hundred metres) by overlying fossiliferous and bioturbated mudstone. This large volume of fine pumice clasts is interpreted to be the product of an explosive eruption from a submarine vent because: (1) pumice clasts are the dominant component; (2) the coarse pumice clasts (>64 mm) have complete quenched margins; (3) very large (>1 m) pumice clasts are common; (4) overall, the formation shows good hydraulic sorting; and (5) a significant volume of ash was deposited together with the coarsest pyroclasts.The bed forms in units A and B suggest deposition from lithic-rich and pumiceous, respectively, submarine gravity currents. In unit C, the coarse (up to 6.5 m) pumice clasts are set in matrix that grades upwards from diffusely stratified, fine (1–2 cm) pumice clasts at the base to laminated shard rich mud at the top. The coarse pumice clasts in unit C were settled from suspension and the framework was progressively infilled by fine pumice clasts from waning traction currents and then by water-settled ash. The FPB displays important features of the products of submarine explosive eruptions that result from the ambient fluid being seawater, rather than volcanic gas or air. In particular, submarine pyroclastic deposits are characterised by the presence of very coarse juvenile pumice clasts, pumice clasts with complete quenched rims, and good hydraulic sorting.Electronic Supplementary Material Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.Editorial responsibility: J. Donelly-Nolan  相似文献   

15.
The 161 ka explosive eruption of the Kos Plateau Tuff (KPT) ejected a minimum of 60 km3 of rhyolitic magma, a minor amount of andesitic magma and incorporated more than 3 km3 of vent- and conduit-derived lithic debris. The source formed a caldera south of Kos, in the Aegean Sea, Greece. Textural and lithofacies characteristics of the KPT units are used to infer eruption dynamics and magma chamber processes, including the timing for the onset of catastrophic caldera collapse.The KPT consists of six units: (A) phreatoplinian fallout at the base; (B, C) stratified pyroclastic-density-current deposits; (D, E) volumetrically dominant, massive, non-welded ignimbrites; and (F) stratified pyroclastic-density-current deposits and ash fallout at the top. The ignimbrite units show increases in mass, grain size, abundance of vent- and conduit-derived lithic clasts, and runout of the pyroclastic density currents from source. Ignimbrite formation also corresponds to a change from phreatomagmatic to dry explosive activity. Textural and lithofacies characteristics of the KPT imply that the mass flux (i.e. eruption intensity) increased to the climax when major caldera collapse was initiated and the most voluminous, widespread, lithic-rich and coarsest ignimbrite was produced, followed by a waning period. During the eruption climax, deep basement lithic clasts were ejected, along with andesitic pumice and variably melted and vesiculated co-magmatic granitoid clasts from the magma chamber. Stratigraphic variations in pumice vesicularity and crystal content, provide evidence for variations in the distribution of crystal components and a subsidiary andesitic magma within the KPT magma chamber. The eruption climax culminated in tapping more coarsely crystal-rich magma. Increases in mass flux during the waxing phase is consistent with theoretical models for moderate-volume explosive eruptions that lead to caldera collapse.  相似文献   

16.
The Monte Guardia rhyolitic eruption (~22 ka, Lipari, Aeolian Islands, Italy) produced a sequence of pyroclastic deposits followed by the emplacement of lava domes. The total volume of dense magma erupted was nearly 0.5 km3. The juvenile clasts in the pyroclastic deposits display a variety of magma mixing evidence (mafic magmatic enclaves, streaky pumices, mineral disequilibria and heterogeneous glass composition). Petrographic, mineralogical and geochemical investigations and melt inclusion studies were carried out on the juvenile clasts in order to reconstruct the mixing process and to assess the pre-eruptive chemico-physical magmatic conditions. The results suggest that the different mingling and mixing textures were generated during a single mixing event between a latitic and a rhyolitic end member. A denser, mixed magma was first erupted, followed by a larger volume of an unmixed, lighter rhyolitic one. This compositional sequence is the reverse of what would be expected from the tapping of a zoned magma chamber. The Monte Guardia rhyolitic magma, stored below 200 MPa, was volatile-rich and fluid-saturated, or very close to this, despite its relatively low explosivity. In contrast to previous interpretations, there exists the possibility that the rhyolite could rise and erupt without the trigger of a mafic input. The entire data collected are compatible with two possible mechanisms that would generate a reversely zoned sequence: (1) the occurrence of thermal instabilities in a density stratified, salic to mafic magma chamber and (2) the intrusion of rising rhyolite into a shallower mafic sill/dike.  相似文献   

17.
We estimated time scales of magma-mixing processes just prior to the 2011 sub-Plinian eruptions of Shinmoedake volcano to investigate the mechanisms of the triggering processes of these eruptions. The sequence of these eruptions serves as an ideal example to investigate eruption mechanisms because the available geophysical and petrological observations can be combined for interpretation of magmatic processes. The eruptive products were mainly phenocryst-rich (28 vol%) andesitic pumice (SiO2 57 wt%) with a small amount of more silicic pumice (SiO2 62–63 wt%) and banded pumice. These pumices were formed by mixing of low-temperature mushy silicic magma (dacite) and high-temperature mafic magma (basalt or basaltic andesite). We calculated the time scales on the basis of zoning analysis of magnetite phenocrysts and diffusion calculations, and we compared the derived time scales with those of volcanic inflation/deflation observations. The magnetite data revealed that a significant mixing process (mixing I) occurred 0.4 to 3 days before the eruptions (pre-eruptive mixing) and likely triggered the eruptions. This mixing process was not accompanied by significant crustal deformation, indicating that the process was not accompanied by a significant change in volume of the magma chamber. We propose magmatic overturn or melt accumulation within the magma chamber as a possible process. A subordinate mixing process (mixing II) also occurred only several hours before the eruptions, likely during magma ascent (syn-eruptive mixing). However, we interpret mafic injection to have begun more than several tens of days prior to mixing I, likely occurring with the beginning of the inflation (December 2009). The injection did not instantaneously cause an eruption but could have resulted in stable stratified magma layers to form a hybrid andesitic magma (mobile layer). This hybrid andesite then formed the main eruptive component of the 2011 eruptions of Shinmoedake.  相似文献   

18.
 A subaqueous volcaniclastic mass-flow deposit in the Miocene Josoji Formation, Shimane Peninsula, is 15–16 m thick, and comprises mainly blocks and lapilli of rhyolite and andesite pumices and non- to poorly vesiculated rhyolite. It can be divided into four layers in ascending order. Layer 1 is an inversely to normally graded and poorly sorted lithic breccia 0.3–6 m thick. Layer 2 is an inversely to normally graded tuff breccia to lapilli tuff 6–11 m thick. This layer bifurcates laterally into minor depositional units individually composed of a massive, lithic-rich lower part and a diffusely stratified, pumice-rich upper part with inverse to normal grading of both lithic and pumice clasts. Layer 3 is 2.5–3 m thick, and consists of interbedded fines-depleted pumice-rich and pumice-poor layers a few centimeters thick. Layer 4 is a well-stratified and well-sorted coarse ash bed 1.5–2 m thick. The volcaniclastic deposit shows internal features of high-density turbidites and contains no evidence for emplacement at a high temperature. The mass-flow deposit is extremely coarse-grained, dominated by traction structures, and is interpreted as the product of a deep submarine, explosive eruption of vesicular magma or explosive collapse of lava. Received: 10 January 1996 / Accepted: 23 February 1996  相似文献   

19.
The 79 ad Plinian eruption of Vesuvius produced first a white pumice fallout from a high steady eruptive column, and then a grey pumice fallout originating from an oscillatory eruptive column with several partial column collapse events after which there was a total column collapse. This first total collapse was followed by renewed Plinian activity and produced the last grey pumice (GP) fallout deposit of the eruption. Textural characteristics (vesicularity and microcrystallinity) of a complete sequence of the pumice fallout deposits are presented along with the major element compositions and residual volatile contents (H2O, Cl) to constrain the degassing processes and the eruptive dynamics. Large variations in residual volatile contents exist between the different eruptive units. Textural features also strongly differ between white and grey pumices, but also within the grey pumices. The degassing processes were thus highly heterogeneous. We propose a new model of the 79 ad eruption in which pre-eruptive conditions (H2O saturation, magma temperature and viscosity) are the critical controls on the diversity of the syn-eruptive degassing processes and hence the eruptive dynamics. Cl contents measured in melt inclusions show that only the white pumice and the upper part of the grey pumice magma were H2O saturated prior to eruption. The white pumice eruptive units represent a typical closed-system degassing evolution, whereas the first grey pumice one, stored under similar pre-eruptive saturation conditions, follows a particular open-system degassing evolution. We suggest that the oscillatory regime that dominated the grey pumice eruptive phase is linked to pre-eruptive water undersaturation of most of the grey magma, and the associated time delays necessary for H2O exsolution. We also suggest that the high residual H2O content of the last grey pumice, deposited after the renewal of Plinian activity following the first total column collapse event, is due to syn-eruptive saturation of GP magma and reduced H2O exsolution efficiency resulting from speciation of dissolved H2O in the melt.  相似文献   

20.
Examination of glass and crystal chemistry in the Rotoiti Pyroclastics (>100 km3 of magma) demonstrates that compositional diversity was produced by mingling of the main rhyolite magma body with small volumes of other magmas that had been crystallizing in separate stagnant magma chambers. Most (>90%) of the Rotoiti deposits were derived from a low-K2O, cummingtonite-bearing, rhyolitic magma (T1) discharged throughout the eruption sequence. T1 magma is homogeneous in composition (melt SiO2=77.80±0.28 wt.%), temperature (766±13 °C) and oxygen fugacity (NNO+0.92±0.09). Most T1 phenocrysts formed in a shallow (∼200 MPa), near water-saturated (awater=0.8) storage chamber shortly before eruption. Basaltic scoria erupted immediately before the rhyolites, and glass-bearing microdiorite inclusions within the rhyolite deposits, suggest that basalt emplaced on the floor of the chamber drove vigorous convection to produce the well-mixed T1 magma. Lithic lag breccias contain melt-bearing biotite granitoid inclusions that are compositionally distinct from T1 magma. The breccias which overlie the voluminous T1 pyroclastic flow deposits resulted from collapse of the syn-Rotoiti caldera. Post-collapse Rotoiti pumices contain T1 magma mingled with another magma (T2) that is characterized by high-K glass and biotite, and was cooler and less oxidised (712±16 °C; NNO−0.16±0.16). The mingled clasts contain bimodal disequilibrium populations of all crystal phases. The granitoid inclusions and the T2 magma are interpreted as derived from high-K magma bodies of varying ages and states of crystallization, which were adjacent to but not part of the large T1 magma body. We demonstrate that these high-K magmas contaminated the erupting T1 magma on a single pumice clast scale. This contamination could explain the reported wide range of zircon U–Th ages in Rotoiti pumices, rather than slow crystallization of a single large magma body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号