首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents an equivalent stress approach that can be used in many elastoplastic constitutive models for unsaturated soils. The use of the equivalent stress leads to a modified yield locus that is independent of the suction. In addition, the equivalent stress becomes the major stress variable, with suction required only as an additional variable in calculations. The model on the basis of equivalent stress predicts exactly the same soil behaviour, with the sole difference being the use of equivalent stress instead of original stress variables. This article also presents the equivalent stress formulations of several constitutive models for unsaturated soils, including the Barcelona Basic Model. The predictions from these models remain unchanged, with the only difference being in their implementation. Finally, the equivalent stress approach and the net stress approach are compared for the Barcelona Basic Model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The effective stress principle has been efficiently applied to saturated soils in the soil mechanics and geotechnical engineering practice; however, its applicability to unsaturated soils is still under debate. The appropriate selection of stress state variables is essential for the construction of constitutive models for unsaturated soils. Owing to the complexity of unsaturated soils, it is difficult to determine the deformation and strength behaviors of unsaturated soils uniquely with the previous single‐effective‐stress variable theory and two‐effective‐stress‐variable theory in all the situations. In this paper, based on the porous media theory, the specific expression of work is proposed, and the effective stress of unsaturated soils conjugated with the displacement of the soil skeleton is further derived. In the derived work and energy balance equations, the energy dissipation in unsaturated soils is taken into account. According to the derived work and energy balance equations, all of the three generalized stresses and the conjugated strains have effects on the deformation of unsaturated soils. For considering these effects, a principle of generalized effective stress to describe the behaviors of unsaturated soils is proposed. The proposed principle of generalized effective stress may reduce to the previous effective stress theory of single‐stress variable or the two‐stress variables under certain conditions. This principle provides a helpful reference for the development of constitutive models for unsaturated soils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents an advanced constitutive model for unsaturated soils, using Bishop’s effective stress (σ′) and the effective degree of saturation (Se) as two fundamental constitutive variables in the proposed constitutive model. A sub-loading surface and a unified hardening parameter (H) are introduced into the σ′–Se modelling framework to interpret the effects of initial density on coupled hydro-mechanical behaviour of compacted soils. Compared with existing models in the literature, the main advantage of the proposed model that it is capable of modelling hydro-mechanical behaviour of unsaturated soils compacted to different initial densities, such as the dependence of loading–collapse volume on initial void ratio and density effect on the shearing-induced saturation change. The proposed model requires 13 material parameters, all of which can be calibrated through conventional laboratory tests. Numerical studies are conducted to assess the performance of the model for a hypothetical soil under two typical hydro-mechanical loading scenarios. The proposed advanced unsaturated soil model is then validated against a number of experimental results for both isotropic and triaxial conditions reported in the literature.  相似文献   

4.
A new data‐mining approach is presented for modelling of the stress–strain and volume change behaviour of unsaturated soils considering temperature effects. The proposed approach is based on the evolutionary polynomial regression (EPR), which unlike some other data‐mining techniques, generates a transparent and structured representation of the behaviour of systems directly from raw experimental (or field) data. The proposed methodology can operate on large quantities of data in order to capture nonlinear and complex relationships between contributing variables. The developed models allow the user to gain a clear insight into the behaviour of the system. Unsaturated triaxial test data from the literature were used for development and verification of EPR models. The developed models were also used (in a coupled manner) to produce the entire stress path of triaxial tests. Comparison of the EPR model predictions with the experimental data revealed the robustness and capability of the proposed methodology in capturing and reproducing the constitutive thermomechanical behaviour of unsaturated soils. More importantly, the capability of the developed models in accurately generalizing the predictions to unseen data cases was illustrated. The results of a sensitivity analysis showed that the models developed from data are able to capture and represent the physical aspects of the unsaturated soil behaviour accurately. The merits and advantages of the proposed methodology are also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
刘艳  韦昌富  赵成刚  房倩 《岩土力学》2013,34(8):2189-2194
高饱和度的非饱和土中由于气体处于封闭状态,其内部气压的变化必将对土体的行为产生影响。首先,对高饱和度非饱和土特性进行探讨和研究,随后,在已有非饱和土模型框架基础上,采用广义有效应力原理,建立一个适用于高饱和度条件下的非饱和土的弹塑性本构模型。模型中引入气相耗散的影响,在硬化方程中考虑封闭气体压力改变的影响。最后,利用已有的试验结果来对模型进行验证,并将模型预测结果与前人模型进行对比,表明模型预测可以很好地预测土体的行为,尤其是在高饱和度条件下其结果比其他模型更加接近实际情况。  相似文献   

6.
非饱和土力学中几个基本问题的探讨   总被引:3,自引:0,他引:3  
近些年非饱和土力学的研究非常活跃,但对一些基本问题的认识并不一致,有时甚至概念混淆。针对非饱和土力学的几个基本问题:非饱和土状态变量的选择、非饱和土有效应力变量的选择、吸力概念的界定和轴平移技术的局限性、非饱和土的结构的表征方法等问题进行了分析和探讨。其中非饱和土状态变量和有效应力的选择对于非饱和土力学的理论和相应本构模型的建立具有重要影响,因此,首先深入讨论了这一问题,概括论述了非饱和土有效应力的演变并深入探讨了目前各种形式有效应力的优缺点。其次,指出由于受负压孔隙水气化(液-气相变化)的影响,在实际场地中大于某一界限值的基质吸力是不存在的;目前被广泛使用的轴平移试验技术却掩盖了这一情况,而基于此所建立的非饱和土强度和变形理论的适用性需要进一步的研究和论证。再次,指出非饱和土的结构除了包括组构和颗粒之间作用力的综合效应外,还建议增加孔隙水和孔隙气的分布以及各相之间的相互作用和物理-化学作用。最后对一些容易混淆的概念进行了梳理。其目的是希望国内同行在今后的研究中对这些问题加以关注,并建立正确的认识,促进非饱和土力学沿着正确的方向发展。  相似文献   

7.
Unsaturated soils are highly heterogeneous 3‐phase porous media. Variations of temperature, the degree of saturation, and density have dramatic impacts on the hydro‐mechanical behavior of unsaturated soils. To model all these features, we present a thermo‐hydro‐plastic model in which the hydro‐mechanical hardening and thermal softening are incorporated in a hierarchical fashion for unsaturated soils. This novel constitutive model can capture heterogeneities in density, suction, the degree of saturation, and temperature. Specifically, this constitutive model has 2 ingredients: (1) it has a “mesoscale” mechanical state variable—porosity and 3 environmental state variables—suction, the degree of saturation, and temperature; (2) both temperature and mechanical effects on water retention properties are taken into account. The return mapping algorithm is applied to implement this model at Gauss point assuming an infinitesimal strain. At each time step, the return mapping is conducted only in principal elastic strain space, assuming no return mapping in suction and temperature. The numerical results obtained by this constitutive model are compared with the experimental results. It shows that the proposed model can simulate the thermo‐hydro‐mechanical behavior of unsaturated soils with satisfaction. We also conduct shear band analysis of an unsaturated soil specimen under plane strain condition to demonstrate the impact of temperature variation on shear banding triggered by initial material heterogeneities.  相似文献   

8.
An unsaturated soil is a state of the soil. All soils can be partially saturated with water. Therefore, constitutive models for soils should ideally represent the soil behaviour over entire ranges of possible pore pressure and stress values and allow arbitrary stress and hydraulic paths within these ranges. The last two decades or so have seen significant advances in modelling unsaturated soil behaviour. This paper presents a review of constitutive models for unsaturated soils. In particular, it focuses on the fundamental principles that govern the volume change, shear strength, yield stress, water retention and hydro-mechanical coupling. Alternative forms of these principles are critically examined in terms of their predictive capacity for experimental data, the consistency between these principles and the continuity between saturated and unsaturated states.  相似文献   

9.
A simple method called anisotropic transformed stress (ATS) method is proposed to develop failure criteria and constitutive models for anisotropic soils. In this method, stress components in different directions are modified differently in order to reflect the effect of anisotropy. It includes two steps of mapping of stress. First, a modified stress tensor is introduced, which is a symmetric multiplication of stress tensor and fabric tensor. In the modified stress space, anisotropic soils can be treated to be isotropic. Second, a TS tensor is derived from the modified stress tensor for the convenience of developing anisotropic constitutive models to account for the effect of intermediate principal stress. By replacing the ordinary stress tensor with the TS tensor directly, the unified hardening model is extended to model the anisotropic deformation of soils. Anisotropic Lade's criterion is adopted for shear yield and shear failure in the model. The form of the original model formulations remains unchanged, and the model parameters are independent of the loading direction. Good agreement between the experimental results and predictions of the anisotropic unified hardening model is observed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
At present, several of the existing elastoplastic constitutive models are adapted for describing the stress–strain behavior of unsaturated soils. However, most of them present certain limitations in this field. These limitations can be related to the basic model and/or added unsaturated state variables and formulations. In this regard, inability to model the hydro‐mechanical behavior in constant water (CW) conditions is an example of these limitations. In this paper, an advanced version of CJS model is selected for adaptation to the unsaturated states. Adaptation to unsaturated states is achieved in the framework of effective stress approach. Effective stress equation and unsaturated state variables are selected based on the recent research existing in the literature. The developed model is capable of describing the complex behavior of unsaturated soil in the CW condition in addition to predicting the behavior at failure and post–failure, nonlinear elastoplastic behavior at low levels of stress and strain (by selecting a very small elastic domain), as well as wetting and collapse behaviors. In order to validate the model, results of triaxial tests in CD and CW conditions are used. The validation results indicate the good capability of the proposed model. Behavior of the unsaturated soils during wetting is an important issue. For this reason, the model is also evaluated based on the results of wetting and collapse triaxial tests. A comparison between the tests and simulation results shows that the model is able to predict the soil behavior under the wetting path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Expansive clays are widely prevalent all over the world as one of the most problematic soils. These soils undergo significant volume change with a change in the moisture regime, thereby posing problems to the stability of the structures founded on such strata. Efforts have been made to model the erratic behaviour of these soils at the macro, micro, and, to a lesser extent, nano levels. Micro and nano level fabrics, believed to have a central role in the overall behaviour of expansive clays, are only partially considered in the modelling concepts; natural clay fabrics with multiple clay minerals, silt and sand inclusions, micro fissures, cementation, overconsolidation, induration and other such features have never been considered. This paper covers a review of deficiencies in the existing constitutive models for the expansive characteristics of the natural clayey soils at macro, micro and nano levels. These shortcomings are discussed in the light of the understanding of the fundamentals including fabric and structure controlling the swelling mechanism of the expansive clayey soils at the molecular level. Finally, a framework based on authors’ work to incorporate molecular level behaviour in the constitutive modelling of expansive clays is presented.  相似文献   

12.
山涧软土的流变工程特性试验研究   总被引:2,自引:1,他引:1  
山涧软土是广泛分布于山谷和沟壑之中软弱土层,其变形特性对路基的沉降有直接影响。现场取样后借助多种室内试验手段,对衡-炎高速公路部分路段的软土进行室内流变试验,对流变曲线进行分析,找出了符合山涧软土流变特性的几个流变本构模型,并通过待定系数法求得模型参数。山涧软土的流变的规律为:砂质山涧软土的蠕变处于衰减稳定的相对应力范围比较大,砂质山涧软土的流变特性最不明显,在近似情况下,可以不考虑流变;淤泥质山涧软土蠕变曲线的形式随着应力水平的变化比较剧烈,随着应力水平的提高,等速蠕变曲线的斜率越来越大;粉质山涧软土的不同应力水平的等速蠕变曲线几乎具有相同的斜率,而且每一级应力水平下的蠕变变形也较小。因此研究淤泥质山涧软土的流变特性最为重要,在研究山涧软土的流变特性时,应以淤泥质软土为重点。研究成果可对路基填筑过程中山涧软土的处理和路基工后沉降评估提供参考。  相似文献   

13.
工程中常见的地基往往含有多个夹层 ,将各个夹层按力学性质进行分组 ,分别考虑了各组夹层对整个地基本构关系的影响 ,得出了含有若干夹层的地基的本构方程 ,为求解夹层地基的本构关系的研究提供了新的思路。利用该理论可反求横观各向同性地基的弹性参数 ,并可考虑地基的弹性参数随深度变化的情况对整个地基的本构关系的影响  相似文献   

14.
The effective stress principle, conventionally applied in saturated soils, is reviewed for constitutive modelling purposes. The assumptions for the applicability of Terzaghi's single effective stress are recalled and its advantages are inventoried. The possible stress frameworks applicable to unsaturated soil modelling are reassessed in a comparative manner, specifically the Bishop's single effective stress, the independent stress variables approach and the generalized stress framework. The latter considerations lead to the definition of a unified stress context, suitable for modelling soils under different saturation states. In order to qualify the implications brought by the proposed stress framework, several experimental data sets are re‐examined in the light of the generalized effective stress. The critical state lines (CSLs) at different saturation states tend to converge remarkably towards a unique saturated line in the deviatoric stress versus mean effective stress plane. The effective stress interpretation is also applied to isotropic paths and compared with conventional net stress conception. The accent is finally laid on a second key feature for constitutive frameworks based on a unified stress, namely the sufficiency of a unique mechanical yield surface besides the unique CSL. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Wheeler, Sharma and Buisson proposed an elasto‐plastic constitutive model for unsaturated soils that couples the mechanical and water retention behaviours. The model was formulated for isotropic stress states and adopts the mean Bishop's stress and modified suction as stress state variables. This paper deals with the extension of this constitutive model to general three‐dimensional stress conditions, proposing the generalized stress–strain relationships required for the numerical integration of the constitutive model. A characteristic of the original model is the consideration of a number of elasto‐plastic mechanisms to describe the complex behaviour of unsaturated soils. This work presents the three‐dimensional formulation of these coupled irreversible mechanisms in a generalized way including anisotropic loading. The paper also compares the results from the model with published experiments performed under different loading conditions. The response of the model is very satisfactory in terms of both mechanical and water retention behaviours. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The Barcelona basic model (BBM) successfully explained many key features of unsaturated soils and received extensive acceptance. It is also one of the few elastoplastic constitutive models for unsaturated soils that have been implemented within finite element codes and applied to the analysis of real boundary value problems. The BBM was proposed in incremental forms according to theories of soil plasticity in which individual aspects of the isotropic virgin behavior are controlled by multiple parameters, whereas at the same time, a single parameter controls more than one aspect of soil behavior. Although a variety of methods have been recently developed for calibrating model parameters for elastoplastic soil models, at present, there are no well‐established, simple, and objective methods for selecting parameter values in the BBM from laboratory tests. This has been one of the major obstacles to the dissemination of this constitutive model beyond the research context. This article presents an optimization approach especially developed for simple and objective identification of material parameters in the BBM. This is achieved by combining a modified state surface approach, recently proposed to model the elastoplastic behavior of unsaturated soils under isotropic stress conditions, with the Newton or quasi‐Newton method to simultaneously determine the five parameters governing isotropic virgin behavior in the BBM. The comparison between results using the proposed method and an existing method for the same laboratory tests was discussed from which the simplicity and objectivity of the proposed method were evaluated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper synthesizes the state-of-the art of the various laboratory testing techniques presently available for measuring the water hydraulic constitutive functions of unsaturated soils. Emphasis is on the laboratory testing techniques for measuring the soil–water retention curves and the water hydraulic conductivity functions of unsaturated soils. The significant recent advances in the investigation of the hydraulic behaviour of unsaturated swelling soils, are also presented. Comprehensive recent references on each measurement method are listed and discussed.  相似文献   

18.
In this research, the interfacial energy is taken into account in the deformation work for unsaturated soils. Based on porous media theory, the thermodynamic balance equations for each phase and the interface are used to derive the work input for unsaturated soils. The work input equation serves as the basis and starting point for the choice of stress state variables, based on which the conjugate stresses and strain increments are derived. The influences of the interfaces on the effective stress and the constitutive law for the liquid phase are then discussed based on the work input equation. The effective stress can be expressed as Bishop's type, and the effective stress parameter is shown to be a function of both the degree of saturation and the interfacial area. The constitutive law for the liquid phase under dynamic condition is also presented. The relationship among interfacial area, saturation, and capillary pressure is proposed to calculate the value of the effective stress. Experimental data obtained from literature are used to validate the proposed model equations. Results show that our findings are in accordance with the existing research. Unlike the phenomenal study, our research has a rigorous theoretical basis, which lays a foundation for further research of unsaturated soils considering the interfacial effects.  相似文献   

19.
Behavior of unsaturated soils is influenced by many factors, and the influences of these factors are usually coupled together. Suction‐controlled triaxial (SCTX) tests are considered to allow researchers to investigate influences of individual variables on unsaturated soils under specified stress path with controls of stresses, pore water, and air pressures. In the past 50 years, SCTX testing method has been established as a standard approach to characterize constitutive behavior of unsaturated soils. Most important concepts for modern unsaturated soil mechanics were developed upon results from the SCTX tests. Among these, one of the most important contributions in the constitutive modeling of elasto‐plastic behavior for unsaturated soils is the Barcelona basic model (BBM) proposed by Alonso et al. in 1990. The BBM successfully explained many features of unsaturated soils and received extensive acceptance. However, the SCTX tests are designed based upon the divide‐and‐conquer approach in which an implicit assumption is used: soil behavior is stress‐path independent. However, it is well‐established that unsaturated soil behavior is elasto‐plastic and stress‐path dependent. It is found that the SCTX tests in fact cannot control the stress path of an unsaturated soil during loading. This incapability, in combination with complicated loading/collapse behavior of unsaturated soils, makes the SCTX tests for characterizing unsaturated soil questionable. This paper discusses the limitations of the SCTX tests in the characterization of unsaturated soils. A possible solution to the problem was proposed based on a newly developed modified state surface approach. The discussions are limited for isotropic conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A simple thermo‐hydro‐mechanical (THM) constitutive model for unsaturated soils is described. The effective stress concept is extended to unsaturated soils with the introduction of a capillary stress. This capillary stress is based on a microstructural model and calculated from attraction forces due to water menisci. The effect of desaturation and the thermal softening phenomenon are modelled with a minimal number of material parameters and based on existing models. THM process is qualitatively and quantitatively modelled by using experimental data and previous work to show the application of the model, including a drying path under mechanical stress with transition between saturated and unsaturated states, a heating path under constant suction and a deviatoric path with imposed suction and temperature. The results show that the present model can simulate the THM behaviour in unsaturated soils in a satisfactory way. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号